Skip to main content

The influence of dietary energy on feed efficiency in grow-finish swine

  • Chapter
Feed efficiency in swine

Abstract

It is widely accepted within the field of nutrition that there is a very close relationship between the concentration of energy in the diet and the feed efficiency achieved by a group of pigs. All other things being equal, increasing dietary energy concentration will normally improve feed efficiency. However, in commercial practice, all other things are not equal, so the statistical correlation between dietary energy and feed efficiency is in reality very small. This is because so many factors influence feed efficiency outcomes. Some are related to the pig and some are related to the physical, social and health environment in which the pig lives. And some are related to dietary energy and how the pig uses this energy for maintenance and for growth. It is only through a thorough understanding of energy metabolism that we can begin to most effectively manage feed efficiency on the farm by manipulating dietary energy concentration and dietary energy supply. This chapter will provide an overview of energy metabolism in the pig: (1) defining exactly what energy is; (2) describing the dietary sources of energy; (3) explaining energy metabolism and discussing why it is so much more complicated than the metabolism of nutrients in the diet; (4) describing the various energy systems; and (5) explaining how energy is ultimately used by the pig for maintenance and for growth. The chapter will also discuss the importance of feed intake, and how this will become even more critical for success in the future when diets are likely to contain less energy than they do today. The chapter will end by taking the information on energy metabolism presented in this chapter and applying it in a practical circumstance to assemble very specific recommendations on how to improve feed efficiency in the pig.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adeola, O. 2001. Digestion and balance techniques in pigs. Pages 903–916 In Swine Nutrition, A.J. Lewis and L.L. Southern, eds. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Anonymous. 2008. Danish pig production: nutrient standards. CVR-no. 31-07-14-37. Danish Pig Production, Copenhagen, Denmark.

    Google Scholar 

  • Apple, J. K., C. V. Maxwell, D. C. Brown, K. G. Friesen, R. E. Musser, Z. B. Johnson, and T. A. Armstrong. 2004. Effects of dietary lysine and energy density on performance and characass characteristics of finishing pigs fed ractopamine. J. Anim. Sci. 82:3277–3287.

    PubMed  CAS  Google Scholar 

  • Apple, J. K., C. V. Maxwell, D. L. Galloway, S. Hutchison, and C. R. Hamilton. 2009. Interactive effects of dietary fat source and slaughter weight in growing-finishing swine: I. Growth performance and longissimus muscle fatty acid composition. J. Anim. Sci. 87:1407–1422.

    CAS  Google Scholar 

  • ARC. 1981. The Nutrient Requirements of Pigs. Commonwealth Agricultural Bureaux, Slough, UK.

    Google Scholar 

  • Barea, R., S. Dubois, H. Gilbert, P. Sellier, J. van Milgen, and J. Noblet. 2010. Energy utilization in pigs selected for high and low residual feed intake. J. Anim. Sci. 88:2062–2072.

    Article  PubMed  CAS  Google Scholar 

  • Beaulieu, A.D., N.H. Williams, and J.F. Patience. 2009. Response to dietary digestible energy concentration in growing pigs fed cereal-grain based diets. J. Anim. Sci. 87:965–976.

    Article  PubMed  CAS  Google Scholar 

  • Bender, D. A., and A. E. Bender. 1997. Nutrition: A Reference Book. Oxford University Press, Oxford, UK.

    Google Scholar 

  • Benz, J. M., M. D. Tokach, S. S. Dritz, J. L. Nelssen, J. M. DeRouchey, R. C. Sulabo and R. D. Goodband. 2011. Effects of choice white grease and soybean oil on growth performance, carcass characteristics, and carcass fat quality of growing-finishing pigs. J. Anim. Sci. 89:404–413.

    Article  PubMed  CAS  Google Scholar 

  • Bensaude-Vincent, B. 1996. Between history and memory: Centennial and bicentennial images of lavoisier. Isis 87(3):481–499.

    Article  Google Scholar 

  • Bikker, P. 1994. Protein and lipid accretion in body components of growing pigs: Effects of body weight and nutrient intake. Ph.D. Dissertation. Wageningen Agricultural University, Wageningen, the Netherlands.

    Google Scholar 

  • Birkett, S., and C. F. M. de Lange. 2001a. A computational framework for a nutrient flow representation of energy utilization by growing monogastric animals. Br. J. Nutr. 86:661–674.

    Article  PubMed  CAS  Google Scholar 

  • Birkett, S., and C. F. M. de Lange. 2001b. Calibration of the nutrient flow model of energy utilization by growing pigs. Br. J. Nutr. 86:675–689.

    Article  PubMed  CAS  Google Scholar 

  • Birkett, S., and C. F. M. de Lange. 2001c. Limitations of conventional models and a conceptual framework for a nutrient flow representation of energy utilization by animals. Br. J. Nutr. 86:647–659.

    Article  PubMed  CAS  Google Scholar 

  • Black, J. L. 1995. Modelling energy metabolism in the pig - critical evaluation of a simple reference model. Pages 87–102 in Modelling Growth in the Pig, EAAP Publication no. 78. P.J. Moughan, M.W.A. Verstegen and M.I. Visser-Reyneveld, ed. Wageningen Pers, Wageningen, the Netherlands.

    Google Scholar 

  • Boisen, S. 2007. A new concept for practical feed evaluation systems. Publ. No. 79, Faculty of Agriculture, Aarhus University, Fulum, Denmark.

    Google Scholar 

  • Brouwer, E. 1965. Report of sub-committee on constants and factors. Pages 441–443 in Proc. 3rd Symp. Eur Assoc. Anim. Prod. K.L. Blaxter, ed. Publication No. 11, Academic Press, London, UK.

    Google Scholar 

  • Close, W. H., F. Berschauer, and R. P. Heavens. 1983. The influence of protein:energy value of the ration and the level of feed intake on the energy and nitrogen metabolism of the growing pig. Br. J. Nutr. 49:255269.

    Article  Google Scholar 

  • Collins, C. J., A. C. Philpotts, and D. J. Henman. 2009. Improving growth performance of finisher pigs with high fat diets. Anim. Prod. Sci. 49:262–267.

    Article  CAS  Google Scholar 

  • CVB. 1993. Netto energie van voedermiddelen voor varkens: argumentatie van de niewe Nev-formule. CVB Report No. 7, Lelystad, the Netherlands.

    Google Scholar 

  • Danfer, A. 2000. Model simulation of energy metabolism and utilization in growing pigs. Pages 293–296 in Energy Metabolism in Animals. A. Chwalibog and K. Jakobsen, eds. Wageningen Pers, Wageningen, the Netherlands.

    Google Scholar 

  • De Greef, K. H., and M. W. A. Verstegen. 1995. Evaluation of a concept on energy partitioning in growing pigs. Pages 137–149 in Modelling Growth in the Pig. P. J. Moughan, M. W. A. Verstegen and M. I. Visser- Reyneveld, eds. Wageningen Pers, Wageningen, the Netherlands.

    Google Scholar 

  • De Lange, C. F. M., B. J. Marty, S. Birkett, P. Morel, and B. Szkotnicki. 2001. Application ofpig growth models in commercial pork production. Can. J. Anim. Sci. 81:1–8.

    Article  Google Scholar 

  • Dove, C. R. 1993. The effect of adding copper and various fat sources to the diets of weanling swine on growth performance and serum fatty acid profiles. J. Anim. Sci. 71:2187–2192.

    PubMed  CAS  Google Scholar 

  • Drummon, K. E. 1996. Dictionary of Nutrition and Dietetics. Van Nostrand Reinhold, New York, NY.

    Google Scholar 

  • Duijvesteijn, N., B. A. N Silva, and E. F. Knol. 2010. Modelling protein deposition: defining pig genotypes and deriving their nutritional requirements. Pages 601–602 in Energy and Protein Metabolism and Nutrition, EAAP 127. G.M. Crovetto, ed., Wageningen Academic Publishers, Wageningen, the Netherlands.

    Google Scholar 

  • Ewan, R.C. 2001. Energy utilization in swine nutrition. Pages 85–94. In Swine Nutrition, A. J. Lewis and L. L. Southern, eds. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Fandrejewski, H., S. Raj, D. Werenko, L. Buraczewska, and G. Skiba. 2000. Protein and energy metabolism in pigs of two genotypes. Pages 373–376 in Energy Metabolism in Animals. A. Chwalibog and K. Jakobsen, eds. Wageningen Pers, Wageningen, the Netherlands.

    Google Scholar 

  • Fox, D. G. C. J. Sniffen, J. D. O’Connor, J. B. Russell, and P. J. Van Soest. 1992. A net carbohydrate and protein system for evaluating cattle diets: 3. Cattle requirements and diet adequacy. J. Anim. Sci. 70:3578–3596.

    CAS  Google Scholar 

  • Goodband, R.D., R.D. Tokach, and J.L. Nelssen. 2002. The effects of diet particle size on animal performance. Extension Bulletin, MF-2050. Kansas State University, Manhattan, KS.

    Google Scholar 

  • Graham, H., K. Hesselman, and P. Aman. 1986. The influence of wheat and suger-beet pulp on the digestibility of dietary components in a cereal-based pig diet. J. Nutr. 116:242–251.

    PubMed  CAS  Google Scholar 

  • Hinson, R. B., B. R. Wiegand, M. J. Ritter, G. L. Allee and S. N. Carr. 2011. Impact of dietary energy level and ractopamine on growth performance, carcass characteristics and meat quality of finishing pigs. J. Anim. Sci. 89:3572–3579.

    Article  PubMed  CAS  Google Scholar 

  • Holmes, F. L. 1985. Lavoisier and the Chemistry of Life. Univ. of Wisconsin Press, Madison, WI.

    Google Scholar 

  • Ihde, A. J. 1964. The Development of Modern Chemistry. Harper and Row, New York, NY.

    Google Scholar 

  • Jones, C. K., and J. F. Patience. 2012. Birth weight and transition ADG can serve as tools to manage within- barn body weight variation. J. Anim. Sci. 90 (E-Suppl. 2):74.

    Google Scholar 

  • Just, A. 1982a. The net energy value of balanced diets for growing pigs. Livest. Prod. Sci. 8:541–555.

    Article  Google Scholar 

  • Just, A. 1982b. The net energy value of crude (catabolized) protein for growth in pigs. Livest. Prod. Sci. 9:349–360.

    Article  Google Scholar 

  • Kellner, T. A., K. J. Prusa, and J. F. Patience. 2012. Carcass iodine values taken from three carcass sites are affected by dietary fat level and source during the finishing period. J. Anim. Sci. 90 (E-Suppl. 2):57.

    Google Scholar 

  • Kielanowski, J. 1965. Estimates of the energy cost of protein deposition in growing pigs. Pages 13–20 in Proc. 3rd Symp. Energy Metabolism. K.L. Blaxter, ed. Academic Press, London, UK.

    Google Scholar 

  • Kleiber, M. 1961. The Fire of Life. John Wiley and Sons, New York, NY, USA.

    Google Scholar 

  • Knap, P.W. 2009. Allocation of resources to maintenance. Pages 110–129 in Resource Allocation Theory Applied to Farm Animal Production. W.M. Rauw, ed. CAB Int., Cambridge, MA, USA.

    Google Scholar 

  • Kotarbinska, M., and J. Kielanowski. 1969. Energy balance studies with growing pigs by the comparative slaughter technique. Pages 299–310 in Energy Metabolism in Farm Animals. K. L. Blaxter, J. Kielanowski and G. Thorbek, eds. Oriel Press Ltd., Newcastle Upon Tyne, UK.

    Google Scholar 

  • Labussière, E., J. van Milgen, C.F.M. de Lange and J. Noblet. 2011. Maintenance energy requirements of growing pigs and calves are influenced by feeding level. J. Nutr. 141:1855–1861.

    Article  PubMed  Google Scholar 

  • Le Bellego, L., J. van Milgen, S. Dubois, and J. Noblet. 2001. Energy utilization of low-protein diets in growing pigs. J. Anim. Sci. 79:1259–1271.

    PubMed  Google Scholar 

  • Le Goff, G., and J. Noblet. 2001. Comparative total tract digestibility of dietary energy and nutrients in growing pigs and adult sows. J. Anim. Sci. 79:2418–2427.

    PubMed  Google Scholar 

  • Linneen, S. K., J. M. DeRouchey, S. S. Drtiz, R. D. Goodband, M. D. Tokach, and J. L. Nelssen. 2008. Effects of dried distillers grains with solubles on growing and finishing pig performance in a commercial environment. J. Anim. Sci. 86:1579–1587.

    Article  PubMed  CAS  Google Scholar 

  • Moe, P. W. 1981. Energy metabolism of dairy cattle. J. Dairy Sci. 64:1120–1139.

    Article  PubMed  CAS  Google Scholar 

  • Moughan, P. J., and M. W. A. Verstegen. 1988. The modelling of growth in the pig. Neth. J. Agric. Res. 36:145–166.

    Google Scholar 

  • National Swine Nutrition Guide. 2010. Tables of Nutrient Recommendations, Ingredient Composition and Use Rates. U.S. Pork Center of Excellence, Ames, IA.

    Google Scholar 

  • Noblet, J. 2005. Recent advances in energy evaluation of feeds for pigs. pp 1–25 in Recent advances in animal nutrition. P. C. Garnsworthy and J. Wiseman, eds. Nottingham University Press, Nottingham, UK.

    Google Scholar 

  • Noblet, J., Y. Henry, and S. Dubois. 1987. Effect of protein and lysine levels on the diet and body gain composition and energy utilization in growing pigs. J. Anim. Sci. 65:717–726.

    PubMed  CAS  Google Scholar 

  • Noblet, J., and Y. Henry. 1993. Energy evaluation systems for pig diets: a review. Livest. Prod. Sci. 36:121–141.

    Article  Google Scholar 

  • Noblet, J., and J. M. Perez. 1993. Prediction of digestibility of nutrients and energy values of pig diets from chemical analysis. J. Anim. Sci. 71:3389–3398.

    PubMed  CAS  Google Scholar 

  • Noblet, J., H. Fortune, X. S. Shi, and S. Dubois. 1994. Prediction of net energy of feeds for growing pigs. J. Anim. Sci. 72:344–354.

    PubMed  CAS  Google Scholar 

  • Noblet, J., C. Karege, S. Dubois, and J. van Milgen. 1999. Metabolic utilization of energy and maintenance requirements in growing pigs: Effects of sex and genotype. J. Anim. Sci. 77:1208–1216.

    PubMed  CAS  Google Scholar 

  • Noblet, J., and G. Le Goff. 2001. Effect of dietary fibre on the energy value of feeds for pigs. Anim. Feed Sci. Tech. 90:35–52.

    Article  CAS  Google Scholar 

  • NRC. 1998. Nutrient Requirements of Swine. National Academy Press, Washington, DC.

    Google Scholar 

  • NRC. 2012. Nutrient Requirements of Swine. National Academy Press, Washington, DC.

    Google Scholar 

  • Oresanya, T.F., A.D. Beaulieu, and J.F. Patience. 2008. Investigations of energy metabolism in weanling barrows: The interaction of dietary energy concentration and daily feed (energy) intake. J. Anim. Sci. 86: 348–363.

    Article  PubMed  CAS  Google Scholar 

  • Oresanya, T. F. 2005. Energy metabolism in the weanling pig: Effects of energy concentration and intake on growth, body composition and nutrient accretion in the empty body. PhD Disseration. University of Saskatchewan, Saskatoon, Canada.

    Google Scholar 

  • Patience, J. F., and R. K. Chaplin. 1997. The relationship among dietary undetermined anion, acid–base balance, and nutrient metabolism in swine. J. Anim. Sci. 75:2445–2452.

    PubMed  CAS  Google Scholar 

  • Patience, J. F., A. D. Beaulieu, R. T. Zijlstra, T. Oresanya, and R. Mohr. 2004. Energy systems for swine: A critical review of DE, ME and NE. Proc. Midwest Swine Nutr. Conf. Indianapolis, IN.

    Google Scholar 

  • Patience, J. F., P. Leterme, and A. D. Beaulieu. 2006. Advantages of the net energy system. Proc. Pre- symposium Worshop ‘Net Energy Systems For Growing And Finishing Pigs.’ 10th Int. Symp. Digestive Physiology in Pigs, Vejle, Denmark. May 24.

    Google Scholar 

  • Patience, J. F. 2011. Obvious - and not so obvious - challenges associated with the adoption of new ingredients in swine feeding programs. Proc. 19th Annual Swine Disease Conference for Swine Practitioners. Ames, IA.

    Google Scholar 

  • Patience, J. F., A. Chipman, C. K. Jones, and T. Scheer. 2011. Varying corn particle size distribution affects the digestibility of energy for the growing pig. J. Anim. Sci. 89 (E-Suppl. 1):127.

    Google Scholar 

  • Quiniou, N., J. Noblet, J. van Milgen, and J. Y. Dourmad. 1995. Effect of energy intake on performance, nutrient and tissue gain and protein and energy utilization in growing boars. Anim. Sci. 61:133–143.

    Article  Google Scholar 

  • Quiniou, N., J. Y. Dourmad, and J. Noblet. 1996. Effect of energy intake on performance of different types of pig from 45 to 100 kg body weight. 1. Protein and lipid deposition. Anim. Sci. 63:277–288.

    Article  Google Scholar 

  • Realini, C. E., P. Duran-Montgé, R. Lizardo, M. Gispert, M. A. Oliver, and E. Esteve-Garcia. 2010. Effect of source of dietary fat on pig performance, carcass characteristics and carcass fat content, distribution and fatty acid composition. Meat Sci. 85:606–612.

    Article  PubMed  CAS  Google Scholar 

  • Rijnen, M. M. J. A., J. Doorenbos, J. Mallo, and L. A. Den Hartog. 2004. The application of the net energy system for swine. Proc. 25th Western Nutr. Conf., Saskatoon, SK.

    Google Scholar 

  • Russo, S., and M. Silver. 2011. Introductory Chemistry. Prentice Hall, Upper Saddle River, New Jersey, USA.

    Google Scholar 

  • Schiemann, R., K. Nehring, L. W. Hoffman, and A. Chudy. 1972. Energetische Futterbewertung und Energienormen. VEB Deutscher Landwirtschaftsverlag, Berlin, Germany.

    Google Scholar 

  • Stein, H. H., J. D. Hahn, and R. A. Easter. 1996. Effects of decreasing dietary energy concentration in finshing pigs on carcass composition. J. Anim. Sci. 74(Suppl. 1: 65.

    Google Scholar 

  • Stipanuk, M. N. 2006. Biochemical, Physiological, Molecular Aspects of Human Nutrition 2nd ed. Saunders, St. Louis, Missouri.

    Google Scholar 

  • Thorbek, G. 2000. Measurements of energy metabolism. How did it start? Pages 11–15 in Energy Metabolism in Animals. A. Chwalibog and K. Jakobsen, eds. Wageningen Pers, Wageningen, the Netherlands.

    Google Scholar 

  • Van Es, A. J. H. 1980. Energy costs of protein deposition. In: Protein Deposition in Animals, Butterworth, London, 215–224.

    Google Scholar 

  • Van Milgen, J., and J. Noblet. 1999. Energy partitioning in growing pigs: The use of a multivariate model as an alternative for the factorial analysis. J. Anim. Sci 77:2154–2162.

    PubMed  Google Scholar 

  • Van Milgen, J. Noblet, and S. Dubois. 2000. Energetic efficiency of nutrient utilization in growing pigs. Pages 329–332 in Energy Metabolism in Animals. A. Chwalibog and K. Jakobsen, eds. Wageningen Pers, Wageningen, the Netherlands.

    Google Scholar 

  • Van Milgen, J., J. Noblet, and S. Dubois. 2001. Energetic efficiency of starch, protein and lipid utilization in growing pigs. J. Nutr. 131:1309–1318.

    PubMed  Google Scholar 

  • Van Milgen, J., and J. Noblet. 2003. Partitioning of energy intake to heat, protein and fat in growing pigs. J. Anim. Sci 81(E. Suppl. 2):E86-E93.

    Google Scholar 

  • Whittemore, C. 1993. The Science and Practice of Pig Production. Longman Scientific and Technical, Essex, UK.

    Google Scholar 

  • Williams, N. H., T. S. Stahly, and D. R. Zimmerman. 1997. Effect of chronic immune system activation on the rate, efficiency, and composition of growth and lysine needs of pigs fed from 6 to 27 kg. J. Anim. Sci. 75:2463–2471.

    PubMed  CAS  Google Scholar 

  • Wiseman, J., and J. A. Agunbiade. 1998. The influence of changes in dietary fats and oils on fatty acid profiles of carcass fat in finishing pigs. Livestock Prod. Sci. 54:217–227.

    Article  Google Scholar 

  • Wondra, K. J., J. D. Hancock, K. C. Behnke, R. H. Hines, and C. R. Stark. 1995. Effects of particle and pelleting on growth performance, nutrient digestibility and stomach morphology in finishing pigs. J. Anim. Sci. 73:757–763.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Patience .

Editor information

John F. Patience

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Wageningen Academic Publishers The Netherlands

About this chapter

Cite this chapter

Patience, J.F. (2012). The influence of dietary energy on feed efficiency in grow-finish swine. In: Patience, J.F. (eds) Feed efficiency in swine. Wageningen Academic Publishers, Wageningen. https://doi.org/10.3920/978-90-8686-756-1_5

Download citation

Publish with us

Policies and ethics