Skip to main content

Gut bacteria and skin health

  • Chapter
  • 2528 Accesses

Part of the Human Health Handbooks no. 1 book series (HHH,volume 2)

Abstract

Recently, gut commensal bacteria and their metabolites have been identified as important factors impacting host homeostasis. This chapter focuses on the relationship between phenolic metabolites produced by gut bacteria and the differentiation of host skin keratinocytes. In in vitro experiments, we have shown that phenols (phenol and p-cresol) disturb the differentiation of monolayer-cultured keratinocytes (Section 2.1). In hairless mice, a tyrosine-enriched diet caused increased levels of phenols in caecal contents, serum and flank skin, and imparted a yellowish dullness to skin, as determined by increased color meter b* values. Additional in vivo experiments were performed by challenging gnotobiotic mice with phenol-producing Morganella morganii and phenol-non-producing Escherichia coli. The skin of M. morganii-colonized gnotobiotic mice exhibited higher b* values and disturbed keratinocyte differentiation compared to E. coli-colonized gnotobiotic mice (Section 2.2). To examine the effects of gut bacteria on skin condition in humans, we conducted a prebiotic-beverage administration trial involving 19 healthy female volunteers who refrained from consuming pro- or prebiotics during a 3-week restriction period, and were then administered one daily prebiotic beverage for 3 weeks. Although serum p-cresol levels significantly increased during the restriction period, the levels markedly decreased on prebiotic administration. In addition, keratinocyte differentiation and skin conductance, an indicator of skin moisture level, significantly declined during the restriction period, but recovered following prebiotic administration (Section 2.3). Our results suggest that phenols produced by gut bacteria are absorbed, distributed by the circulatory system, and accumulate in skin, where they subsequently cause skin dullness and dryness through disruption of normal keratinocyte differentiation. Finally, we discuss approaches for decreasing phenolic metabolites through diet modification, and describe a pilot study involving the intake of a synbiotic beverage, which appears to be a promising treatment for maintaining healthy skin via decreasing p-cresol level (Section 2.4).

Keywords

  • gut bacterial metabolites
  • phenol
  • p-cresol
  • keratinocyte differentiation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.3920/978-90-8686-729-5_2
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   179.00
Price excludes VAT (USA)
  • ISBN: 978-90-8686-729-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8

Abbreviations

CKD:

Chronic kidney disease

D5a:

Phenol-non-producing bacterium strain (Escherichia coli)

HPLC:

High-performance liquid chromatography

TD4:

Phenol-producing bacterium strain (Morganella morganii)

References

  • Ara, K., Meguro, S., Hase, T., Tokimitsu, I., Otsuji, K., Kawai, S., Ito, S. and Iino, H., 2002. Effect of spore-bearing lactic acid-forming bacteria (Bacillus coagulans SANK 70258) administration on the intestinal environment, defection frequency, fecal characteristics and dermal characteristics in humans and rats. Microbial Ecology in Health and Disease 14, 4–13.

    CrossRef  Google Scholar 

  • Birkett, A., Muir, J., Phillips, J., Jones, G. and O’Dea, K., 1996. Resistant starch lowers fecal concentrations of ammonia and phenols in humans. American Journal of Clinical Nutrition 63, 766–772.

    PubMed  CAS  Google Scholar 

  • Bone, E., Tamm, A. and Hill, M., 1976. The production of urinary phenols by gut bacteria and their possible role in the causation of large bowel cancer. The American Journal of Clinical Nutrition 29, 1448–1454.

    PubMed  CAS  Google Scholar 

  • Cerini, C., Dou, L., Anfosso, F., Sabatier, F., Moal, V., Glorieux, G., De Smet, R., Vanholder, R., Dignat-George, F., Sampol, J., Berland, Y. and Brunet, P., 2004. P-cresol, a uremic retention solute, alters the endothelial barrier function in vitro. Journal of Thrombosis and Haemostasis 92, 140–150.

    CAS  Google Scholar 

  • Cheng, T., Hitomi, K., Van Vlijmen-Willems, I.M.J.J., De Jongh, G.J., Yamamoto, K., Nishi, K., Watts, C., Reinheckel, T., Schalkwijk, J. and Zeeuwen, P.L.J.M., 2006. Cystatin M/E is a high affinity inhibitor of cathepsin V and cathepsin L by a reactive site that is distinct from the legumain-binding site: a novel clue for the role of cystatin M/E in epidermal cornification. Journal of Biological Chemistry 281, 15893–15899.

    PubMed  CrossRef  CAS  Google Scholar 

  • Delomenie, C., Fouix, S., Longuemaux, S., Brahimi, N., Bizet, C., Picard, B., Denamur, E. and Dupret, J.M., 2001. Identification and functional characterization of arylamine N-actetyltransferases in eubacteria: evidence for highly selective acetylation of 5-aminosalicylic acid. Journal of Bacteriology 183, 3417–3427.

    PubMed  CrossRef  CAS  Google Scholar 

  • De Loor, H., Bammens, B., Evenepoel, P., Preter, V.D. and Verbeke, K., 2005. Gas chromatographic-mass spectorometric analysis for measurement of p-cresol and its conjugated metabolites in uremic and normal serum. Clinical Chemistry 51, 1535–1538.

    PubMed  CrossRef  Google Scholar 

  • De Preter, V., Vanhoutte, T., Huys, G., Swings, J., De Vuyst, L., Rutgeerts, P. and Verbeke, K., 2007. Effects of Lactobacillus casei Shirota, Bifidobacterium breve, and oligofructose-enriched inulin on colonic nitrogen-protein metabolism in healthy humans. American Journal of Physiology-Gastrointestinal and Liver Physiology 292, G358-G368.

    PubMed  CrossRef  Google Scholar 

  • Ekanayake-Mudiyanselarge, S., Aschauer, H., Schmook, F.P., Jensen, J.M., Meingassner, J.G. and Proksch, E., 1998. Expression of epidermal keratins and the cornified envelope protein involucrin is influenced by permeability barrier disruption. Journal of Investigative Dermatology 111, 517–523.

    CrossRef  Google Scholar 

  • Evenepoel, P., Claus, D., Geypens, B., Hiele, M., Geboes, K., Rutgeers, P. and Ghoos, Y., 1999. Amount and fate of egg protein escaping assimilation in the small intestine of humans. American Journal of Physiology 277, G935-G943.

    PubMed  CAS  Google Scholar 

  • Evenepoel, P., Meijers, B.K.I., Bammens, B.R.M. and Verbeke, K., 2009. Uremic toxins originating from colonic microbial metabolism. Kidney International 76, s12-s19.

    CrossRef  Google Scholar 

  • Filippo, C.D., Cavalieri, D., Paola, M.D., Ramazzotti, M., Poullet, J.B., Massart, S., Collini, S., Pieraccini, G. and Lionetti, P., 2010. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. In: Proceedings of the National Academy of Sciences of the United States of America 107, pp. 14691–14696.

    PubMed  CrossRef  Google Scholar 

  • Iizuka, R., Kawakami, K., Izawa, N. and Chiba, K., 2009a. Phenols produced by gut bacteria affect the skin in hairless mice. Microbial Ecology in Health and Disease 21, 50–56.

    CrossRef  CAS  Google Scholar 

  • Iizuka, R., Kawakami, K. and Chiba, K., 2009b. Gut bacteria producing phenols disturb keratinocyte differentiation in human skin. Microbial Ecology in Health and Disease 21, 221–227.

    CrossRef  CAS  Google Scholar 

  • Ito, M., Kimura, M., Deguchi, Y., Miyamori-Watabe, A., Yajima, T. and Kan, T., 1993. Effects of transgalactosylated disaccharides on the human intestinal microflora and their metabolism. Journal of Nutritional Science and Vitaminology 39, 279–288.

    PubMed  CrossRef  CAS  Google Scholar 

  • Ivanov, I.I., Atarashi, K., Manel, N., Brodie, E.L., Shima, T., Karaoz, U., Wei, D., Goldfarb, K.C., Santee, C.A., Lynch, S.V., Tanoue, T., Imaoka, A., Itoh, K., Takeda, K., Umesaki, Y., Honda, K. and Littman, D.R., 2009. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 1–14.

    CrossRef  Google Scholar 

  • Kano, M., Masuoka, N., Kaga, C., Iizuka, R., Manabe, K., Sone, T., Ooeda, K., Nonaka, C., Miyazaki, K. and Ishikawa, F., 2010. A double-blind, placebo-controlled, randomized trial of fermented milk containing bifidobacteria to verify the effect of gut bacteria producing phenols on skin conditions in healthy Japanese women. The Japan Society for Lactic Acid Bacteria 2010 annual meeting, July 26–27, Sendai Japan, p. 43.

    Google Scholar 

  • Kojima R., Doihara, H., Nozawa, K., Kawabata-Shoda, E., Yokoyama, T. and Ito, H., 2009. Characterization of two models of drug-induced constipation in mice and evaluation of mustard oil in these models. Pharmacology 84, 227–233.

    PubMed  CrossRef  CAS  Google Scholar 

  • Lee, S., Park, Y.K., Kim, Y.K. and Kang, J.S., 1983. An experimental study on corneocytes of acutely and chronically irritated skin. Achievement of Dermatological Research 275, 49–52.

    CrossRef  CAS  Google Scholar 

  • Ley, R.E., Turnbaugh, P.J., Klein, S. and Gordon, J.I., 2006. Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023.

    PubMed  CrossRef  CAS  Google Scholar 

  • Liabeuf, S., Barreto, D.V., Barreto, F.C., Meert, N., Glorieux, G., Schepers, E., Temmar, M., Choukroun, G., Vanholder, R., Massy, Z.A. and on behalf of the European Ureaemic Toxin Work Group (EUTox), 2009. Free p-cresylsulphate is a predictor of mortality in patients at different stages of chronic kidney disease. Clinical Journal of American Society of Nephrology 4, 1932–1938.

    CrossRef  Google Scholar 

  • Ling, W.H. and Hänninen, O., 1992. Shifting from a conventional diet to an uncooked vegan diet reversibly alters fecal hydrolytic activities in humans. Journal of Nutrition 122, 924–930.

    PubMed  CAS  Google Scholar 

  • Macfarlane, G.T. and Macfarlane, S., 2007. Models for intestinal fermentation: association between food components, delivery systems, bioavailability and functional interactions in the gut. Current Opinion in Biotechnology 18, 156–162.

    PubMed  CrossRef  CAS  Google Scholar 

  • Nakabayashi, I., Nakamura, M., Kawakami, K., Ohta, T., Kato, I., Uchida, K. and Yoshida, M., 2010. Effects of synbiotic treatment on serum level of p-cresol in haemodialysis patients: a preliminary study. Nephrology Dialysis Transplantation 16, 1094–1098.

    Google Scholar 

  • Niwa, T., 1993. Phenol and p-cresol accumulated in uremic serum measured by HPLC with fluorescence detection. Clinical Chemistry 39, 108–111.

    PubMed  CAS  Google Scholar 

  • Schepers, E., Meert, N., Glorieux, G., Goeman, J., Van der Eycken, J. and Vanholder R., 2007. P-cresylsulphate, the main in vivo metabolite of p-cresol activates leucocyte free radical production. Nephrology Dialysis Transplantation 22, 592–596.

    CrossRef  CAS  Google Scholar 

  • Smith, E.A. and Macfarlane, G.T., 1996. Enumeration of human colonic bacteria producing phenolic and indolic compounds: effects of pH, carbohydrate availability and retention time on dissimilatory aromatic amino acid metabolism. Journal of Applied Bacteriology 81, 288–302.

    PubMed  CrossRef  CAS  Google Scholar 

  • Sudo, N., Chida, Y., Aiba, Y., Sonoda, J., Oyama, N., Yu, X.N., Kubo, C. and Koga, Y., 2004. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. The Journal of Physiology 558, 263–275.

    PubMed  CrossRef  CAS  Google Scholar 

  • Vanholder, R., De Smet, R., Waterloos, M.A., Van Landschoot, N., Vogeleere, P., Hoste, E. and Ringoir, S., 1995. Mechanisms of uremic inhibition of phagocyte reactive species production: Characterization of the role of p-cresol. Kidney International 47, 510–517.

    PubMed  CrossRef  CAS  Google Scholar 

  • Wikoff, W.R., Anfora, A.T., Liu, J., Schultz, P.G., Lesley, S.A., Peters, E.C. and Siuzdak, G., 2009. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. In: Proceedings of the National Academy of Sciences of the United States of America 106, pp. 3698–3703.

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Iizuka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Wageningen Academic Publishers

About this chapter

Cite this chapter

Iizuka, R. (2012). Gut bacteria and skin health. In: Preedy, V.R. (eds) Handbook of diet, nutrition and the skin. Human Health Handbooks no. 1, vol 2. Wageningen Academic Publishers. https://doi.org/10.3920/978-90-8686-729-5_2

Download citation