Skip to main content

Part of the book series: Human Health Handbooks no. 1 ((HHH,volume 1))


The color of human hair is determined by melanin. Melanin is produced and packaged into membrane-enclosed melanosomes by melanocytes. The melanosomes are then embedded in a matrix of keratin-associated proteins in keratinocytes while these keratinize during hair growth. This results in a relatively uniform coloration of the entire hair shaft. Ultimately, hair color is a result of the mixing ratio of the two types of occurring melanin: the blackish-brown eumelanin and the yellowish-red pheomelanin. The genetics of hair color is still being researched. The melanocortin-1-receptor (MC1R) gene is an important component here because it plays a central role in regulating which type of melanin is produced. When the MC1R gene suffers a lossof- function mutation, only pheomelanin is produced; this results in a red-headed, hard-to-tan phenotype. The production of both types of melanin is controlled by the rate-limiting enzyme tryosinase. Tyrosinase activity is much higher in people with red or blond hair than in people with brown or black hair. In people with grey hair, tyrosinase activity is significantly reduced as a result of aging processes. Grey hair color is a product of residual melanin pigments in the hair shaft and the intrinsic color of keratin. A person’s perceived hair color is the overall impression created by the totality of colors of individual (head) hairs, which can differ in color from hair to hair. A distinction is therefore made between the macroscopic determination of hair color from a whole head of hair, or strand of hair, and the microscopic determination of color from single hairs. In both cases, the classification of hair color can be made either by subjectively comparing the hair to color scales or by using colorimetric methods. Increasingly, artificially colored hair is sent in for examination. Artificial coloring can be recognized under the microscope. The shape and color of human body hair can be different from head hair and can also display considerable intra-individual variety. It is thus not possible to conclude the color of head hair from the color of pubic hair, for example, or vice versa. Every day, a person loses about 100 telogenic head hairs. It is thus not surprising that hair is the most common material evidence found at crime scenes, and identification methods that can associate evidential hair with the person it originated from rank highly in the forensic sciences. There are both morphological and molecular genetic methods available to individualize and associate hair with potential suspects. Determining hair color is an important aspect of the morphological examination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions



Base pairs


Desoxyribonucleic acid




Mitochondrial DNA


Nuclear DNA


Single nucleotide polymorphism


Short tandem repeat


  • Amory, S., Keyser, C., Crubezy, E. and Ludes, B., 2007. STR typing of ancient DNA extracted from hair shafts of Siberian mummies. Forensic Science International 166, 218–229.

    Article  PubMed  CAS  Google Scholar 

  • Appenzeller, B.M., Schuman, M., Yegles, M. and Wennig, R., 2007. Ethyl glucuronide concentration in hair is not influenced by pigmentation. Alcohol and Alcoholism 42, 326–327.

    Article  PubMed  CAS  Google Scholar 

  • Bandmann, H.J. and Bosse, K., 1966. Histologie und Anatomie des Haarfollikels im Verlauf des Haarcyclus. Archives of Dermatological Research 227, 390–409.

    CAS  Google Scholar 

  • Baumgartner, A.M., Jones, P.F., Baumgartner, W.A. and Black, C.T., 1979. Radioimmunoassay of hair for determining opiate-abuse histories. Journal of Nuclear Medicine 20, 748–752.

    PubMed  CAS  Google Scholar 

  • Berg, S., 1977. Der Identifizierungswert des menschlichen Haares. Archiv fur Kriminologie 159, 65–73.

    PubMed  CAS  Google Scholar 

  • Birngruber, C.G., Ramsthaler, F. and Verhoff, M.A., 2009. The color(s) of human hair – Forensic hair analysis with SpectraCube®. Forensic Science International 185, e19-e23.

    Article  PubMed  Google Scholar 

  • Bisbing, R.E., 1982. The forensic identification and association of human hair. In: Saferstein, R. (ed.) Forensic science handbook. Prentice Hall, Eaglewood Cliffs, NJ, USA, pp. 184–221.

    Google Scholar 

  • Bohnert, M., Vogt, S. and Weinmann, W., 1998. Farbmetrische Untersuchungen der menschlichen Kopfhaare. Rechtsmedizin 8, 207–211.

    Article  Google Scholar 

  • Branicki, W., Liu, F., Van Duijn, K., Draus-Barini, J., Pośpiech, E., Walsh, S., Kupiec, T., Wojas-Pelc, A. and Kayser, M., 2011. Model-based prediction of human hair color using DNA variants. Human Genetics 129, 443–454.

    Article  PubMed  Google Scholar 

  • Burchill, S.A., Ito, S. and Thody, A.J., 1991. Tyrosinase expression and its relationship to eumelanin and phaeomelanin synthesis in human hair follicles. Journal of Dermatological Science 2, 281–286.

    Article  PubMed  CAS  Google Scholar 

  • Deedrick, D.W. and Koch, S.L., 2004. Microscopy of hair part 1: a practical guide and manual for human hairs. Forensic Science Communications 6.

    Google Scholar 

  • Fischer, E. and Saller, K., 1928. Eine neue Haarfarbentafel. Anthropologischer Anzeiger 5, 238–244.

    Google Scholar 

  • Higuchi, R., Von Beroldingen, C.H., Sensabaugh, G.F. and Erlich, H.A., 1988. DNA typing from single hairs. Nature 332, 543–546.

    Article  PubMed  CAS  Google Scholar 

  • Jeffreys, A.J., Wilson, V. and Thein, S.L., 1985. Hypervariable “minisatellite” regions in human DNA. Nature 314, 67–73.

    Article  PubMed  CAS  Google Scholar 

  • Junqueira, L.C., Carneiro, J. and Gratzl, M., 2001. Histologie. Springer, Heidelberg, Germany.

    Google Scholar 

  • Krahmer, L., 1857. Handbuch der gerichtlichen Medizin fur Aerzte und Juristen. C. A. Schwetschke & Sohn, Braunschweig, Germany.

    Google Scholar 

  • Lochte, T., 1936. Atlas der menschlichen und tierischen Haare. Verlag Dr. Paul Schöps, Leipzig, Germany.

    Google Scholar 

  • Makova, K. and Norton, H., 2005. Worldwide polymorphism at the MC1R locus and normal pigmentation variation in humans. Peptides 26, 1901–1908.

    Article  PubMed  CAS  Google Scholar 

  • Ogle Jr., R.R. and Fox, M.J., 1998. Atlas of human hair microscopic characteristics. CRC Press, Boca Raton, FL, USA.

    Book  Google Scholar 

  • Orfanos, C.E. (ed.), 1991. Haar und Haarkrankheiten. Gustav Fischer, Stuttgart, Germany.

    Google Scholar 

  • Oyehaug, L., Plahte, E., Vage, D.I. and Omholt, S.W., 2002. The regulatory basis of melanogenic switching. Journal of Theoretical Biology 215, 449–468.

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer, H., Huhne, J., Ortmann, C., Waterkamp, K. and Brinkmann, B., 1999. Mitochondrial DNA typing from human axillary, pubic and head hair shafts – success rates and sequence comparisons. International Journal of Legal Medicine 112, 287–290.

    Article  PubMed  CAS  Google Scholar 

  • Rees, J.L., 2006. The genetics of skin and hair pigmentation in man. Experimental Dermatology 15, 842–843.

    Article  Google Scholar 

  • Robertson, J. (ed.), 1999. Forensic examination of hair. Taylor & Francis Forensic Science Series. Taylor & Francis, London, UK.

    Google Scholar 

  • Saitoh, M., Uzaka, M., Sakamoto, M. and Kobori, T., 1969. Rate of hair growth. In: Montagna, W. and Dobson, R.L. (eds.) Advances in biology of skin. IX. Hair growth. Pergamon Press, Oxford, UK, pp. 183–201.

    Google Scholar 

  • Sturm, R.A., 2009. Molecular genetics of human pigmentation diversity. Human Molecular Genetics 18, R9-R17.

    Article  PubMed  CAS  Google Scholar 

  • Tobin, D.J., 2008. Human hair pigmentation – biological aspects. International Journal of Cosmetic Science 30, 233–257.

    Article  PubMed  CAS  Google Scholar 

  • Van Neste, D. and Tobin, D.J., 2004. Hair cycle and hair pigmentation: dynamic interactions and changes associated with aging. Micron 35, 193–200.

    Article  PubMed  Google Scholar 

  • Virchow, R., 1879. Identität oder Nicht-Identität von Haaren. (Gerichtliches Gutachten von 1861) Gesammelte Abhandlungen aus dem Gebiete der offentlichen Medicin und der Seuchenlehre, Band 2. Hirschwald, Berlin, Germany, pp. 552–556.

    Google Scholar 

  • Wiltshire, P.E., 2006. Hair as a source of forensic evidence in murder investigations. Forensic Science International 163, 241–248.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Christoph G. Birngruber .

Editor information

Victor R. Preedy PhD DSc FRSPH FIBiol FRCPath

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Wageningen Academic Publishers

About this chapter

Cite this chapter

Birngruber, C.G., Verhoff, M.A. (2012). The color of human hair. In: Preedy, V.R. (eds) Handbook of hair in health and disease. Human Health Handbooks no. 1, vol 1. Wageningen Academic Publishers.

Download citation

Publish with us

Policies and ethics