Advertisement

The utility of GIS in studying the distribution of Bovine Tuberculosis in wild boar (Sus scrofa) and red deer (Cervus elaphus) in Central Portugal

  • João R. AlbertoEmail author
  • José M. Aranha
  • João P. Serejo
  • Alice Amado
  • Madalena Vieira-Pinto
Chapter
  • 603 Downloads

Summary

Tuberculosis in game animals has gained, in the past few years, an increasing significance in the central region of Portugal, mainly in wild ungulates such as red deer (Cervus elaphus) and wild boar (Sus scrofa). Geographical Information Systems (GIS) technology is becoming an essential component of modern disease surveillance systems. In this study GIS was used to evaluate the geographical distribution of Bovine Tuberculosis (BT) in large game species in Central Portugal. Sampling plots for GIS were mapped by means of a GPS (Global Positioning System) receiver in Idanha-a-Nova county (lat 39° 55’ N: long 7° 14’ W) from November 2008 to February 2009. Over this period, 526 animals (337 red deer (Cervus elaphus), 142 wild boars (Sus scrofa), 29 fallow deer (Dama dama), and 18 mouflon (Ovis musimon)) were analysed for BT lesions, during meat inspection. From these harvested animals, 73 (13.88%) carried BT compatible lesions, which were later confirmed by laboratorial analysis. Data collected during fieldwork were assigned to each sampling plot location, in order to enable geostatistical analysis. The analyses of the BT intensity map, created by GIS, for wild boar and red deer hunted in Central Portugal, allow the conclusion that the main BT-afected areas were located at the south-east area of the county. These areas should be the first ones under veterinarian scrutiny with a view to control or reduce disease spread and prevalence. GIS provided an important tool to define objective strategies for preventing the spread of infectious disease.

Keywords

tuberculosis wild ungulates Mycobacterium bovis zoonoses GIS 

References

  1. Antenucci, J.C., Brown, K., Croswell, P.L., Kevany, M.J. and Archer, H., 1989. Geographic Informations Systems. A guide to the technology. Van Nostrand Reinold, New York, USA.Google Scholar
  2. Artois, M., 2003. Wildlife infectious disease control in Europe. J. Mt. Ecol. 7 (suppl.), 89-97.Google Scholar
  3. Bengis, R.G., Kock, R.A. and Fisher, J., 2002. Infectious animal diseases: the wildlife/livestock interface. Rev. Sci. Tech. Off. Int. Epiz. 21(1), 53-65.Google Scholar
  4. Childs, J.E., Krebs, J.W., Real, L.A. and Gordon, E.R., 2007. Animal-based national surveillance for zoonotic disease: Quality, limitations, and implications of a model system for monitoring rabies. Prev. Vet. Med. 78(3-4), 246-261.PubMedCrossRefGoogle Scholar
  5. Clark, K.C., McLafferty, S.L. and Tempalski, J., 1996. On Epidemiology and Geographic Information Systems: A Review and Discussion of Future Directions. Emerg. Inf. Dis. 2 (2), 85-92.CrossRefGoogle Scholar
  6. Curtis, A., 1999. Using a Spatial Filter and a Geographic Information System to Improve Rabies Surveillance Data. Emerg. Inf. Dis. 5(5), 603-606.CrossRefGoogle Scholar
  7. Duarte, E.L., Domingos, M., Amado, A. and Botelho, A., 2008. Spoligotype diversity of Mycobacterium bovis and Mycobacterium caprae animal isolates. Vet. Mic. 130(3-4), 415-421.CrossRefGoogle Scholar
  8. Goodchild, M., Haining, R., Wise, S. and 12 others, 1992. Integration GIS and Spatial Data Analysis: Problems and Possibilities. Int. J. G.I.S. 6(5), 407-423.Google Scholar
  9. Gorman, J., Pearson, D. and Whitehead, P., 2008. Assisting indigenous resource management and sustainable utilization of species through the use of GIS and environmental modelling techniques. J. Env. Man. 86(1), 104-113.CrossRefGoogle Scholar
  10. Gortázar, C., Ferroglio, E., Höfle, U., Frölich, K. and Vicente, J., 2007. Diseases shared between wildlife and livestock: a European perspective. Eur. J. Wildl. Res. 53: 241-256.CrossRefGoogle Scholar
  11. Hermoso de Mendonza, J., Parra, A., Tato, A., Alonso, J.M., Rey, J.M., Peña, J., García-Sánches, A., Larrasa, J., Teixidó, J., Manzano, G., Cerrato, R., Pereira, G., Fernández-Llario, P. and Hermoso de Mendonza, M., 2006. Bovine tuberculosis in wild boar (Sus scrofa), red deer (Cervus elaphus) and cattle (Bos taurus) in a Mediterranean ecosystem (1992-2004). Prev. Vet. Med. 74(2-3), 239-247.CrossRefGoogle Scholar
  12. Kistemann, T., Dangendorf, F. and Schweikart, J., 2002. New perpectives on the use of Geographical Information Systems (GIS) in environmental health sciences. Int. J. Hyg. Environ. Health 205, 169-181.PubMedCrossRefGoogle Scholar
  13. Kruse, H., Kirkemo, A. and Handeland, K., 2004. Wildlife as Source of Zoonotic Infections. Emerg. Inf. Dis. 10(12), 2067-2072.CrossRefGoogle Scholar
  14. Martín-Hernando, M. P., Höfleb, U., Vicente, J., Ruiz-Fons, F., Vidal, D., Barral, M., Garrido, J.M., de la Fuente, J. and Gortázar, C., 2007. Lesions associated with Mycobacterium tuberculosis complex infection in the European wild boar. Tuberculosis 87(4), 360-367.PubMedCrossRefGoogle Scholar
  15. Meldrum, K.C., 2003. Animal Disease Eradication Demands Targetted Resources and Determination. Vet. J. 1(1), 1-2.CrossRefGoogle Scholar
  16. Niemann, S., Harmsen, D., Rusch-Gerdes, S. and Richter, E., 2000. Differentiation of clinical Mycobacterium tuberculosis complex isolates by gyr B DNA sequence polymorphism analysis. J. Clin. Microbiol. 38, 3231-3234.PubMedGoogle Scholar
  17. Pfeiffer, D.U. and Hugh-Jones, M., 2002. Geographical information systems as a tool in epidemiological assessment and wildlife disease management. Rev. Sci. Tech. Off. Int. Epizoot. 21, 91-102.Google Scholar
  18. Radeloff, V.C., Pidgeon, A.M. and Hostert, P., 1999. Habitat and population modelling of roe deer using an interactive geographic information system. Ecol. Mod. 114(2-3), 287-304.CrossRefGoogle Scholar
  19. Santos, N., 2006. A tuberculose no javali em Portugal. Tese de Mestrado em Saúde Pública Veterinária, Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Portugal, 109 pp.Google Scholar
  20. Schlecht, E., Hülsebusch, C., Mahaler, F. and Becker, K., 2004. The use of differential corrected global positioning system to monitor activities of cattle at pasture. Appl. Anim. 85(3-4), 185-202.CrossRefGoogle Scholar
  21. Schröder, W., 2006. GIS, geostatistics, metada banking, and tree-based models for data analysis and mapping in environmental monitoring and epidemiology. Int. J. Med. Micro. 296(1), 23-36.CrossRefGoogle Scholar
  22. Xavier, S.C.C., Vaz, V.C., D’Andrea, P.S., Herrera, L., Emperaire, L., Alves, J.R., Fernandes, O., Ferreira, L.F. and Jansen, A.M., 2007. Mapping of the distribution of Trypanosoma cruzi infection among small wild mammals in a conservation unit and its surroundings (Northeast-Brazil). Par. Int. 56(2), 119-128.CrossRefGoogle Scholar

Copyright information

© Wageningen Academic Publishers 2011

Authors and Affiliations

  • João R. Alberto
    • 1
    Email author
  • José M. Aranha
    • 2
  • João P. Serejo
    • 3
  • Alice Amado
    • 4
  • Madalena Vieira-Pinto
    • 1
  1. 1.Departamento de Ciências Veterinárias, Lab. Inspecção Sanitária, CECAV-UTADUniversidade de Trás-os-Montes e Alto DouroVila RealPortugal
  2. 2.Departamento de Ciências Florestais, Lab SIGUniversidade de Trás-os-Montes e Alto DouroVila RealPortugal
  3. 3.Câmara Municipal de Idanha-a-Nova, Gabinete Médico VeterinárioIdanha-a-NovaPortugal
  4. 4.Laboratório Nacional de investigação Veterinária (LNIV)LisboaPortugal

Personalised recommendations