Advertisement

Digestion and metabolism in the gastrointestinal tract

Chapter
Part of the EAAP – European Federation of Animal Science book series (EAAP, volume 30)

Abstract

In NorFor the digestion and metabolism are simulated in three compartments: (1) the rumen, (2) the small intestine and (3) the large intestine. This chapter describes the modelling of the digestion processes in the three compartments and the microbial OM synthesis in the rumen and large intestine. Most of the equations in this chapter could have been presented in a simpler form, but we present them here in the format they are implemented in the computer program since we believe this makes it easier to follow their biological rationale.

Keywords

Large Intestine Passage Rate Crude Protein Content Microbial Protein Animal Body Weight 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Allen, M.S. and D.R. Mertens, 1988. Evaluating constraints on fibredigestion by rumen microbes. Journal of Nutrition 118: 261–270.PubMedGoogle Scholar
  2. Archiméde, H., D. Sauvant and P. Schmidely, 1997. Quantitative review of ruminal and total tract digestion of mixed diet organic matter and carbohydrates. Reproduction Nutrition Development 37: 173–189.CrossRefGoogle Scholar
  3. Bosch, M.W., 1991. Influenceof stage of maturity of grass silages on digestion processes in dairy cows. Thesis, Agricultural University, Wageningen, the Netherlands. 150 pp.Google Scholar
  4. Brandt, M., K. Rohr and P. Lebzien, 1980. Bestimmung des endogenen protein-N im duodenalchymus von milchkühen mit hilfe von15N. Zeitschrift für Tierphysiologie, Tierernärung und Futtermittelkunde 44: 26–27.Google Scholar
  5. Clark, J.H., T.H. Klusmeyer and M.R. Cameron, 1992. Microbial protein synthesis and flowsof nitrogenous fractions to the duodenum of dairy cows. Journal Dairy Science 75: 2304–2323.CrossRefGoogle Scholar
  6. Danfær, A., P. Huhtanen, P. Udén, J. Sveinbjörnsson and H. Volden, 2006. The Nordic dairy cow model, Karoline - Description. In: Kebreab, E., J. Dijkstra, A. Bannink, J. Gerrits and J. France (eds.). Nutrient Digestion and Utilisation in Farm Animals: Modelling Approaches. CAB International, Wallingford, UK, pp. 383–406.CrossRefGoogle Scholar
  7. Demeyer, D., 1990. Quantitative aspects of microbial metabolism in rumen and hindgut. Indian Summer Course on Rumen Microbial Metabolism and Ruminant digestion. Theix, France, September 24th-October 3rd 1990. 22 pp.Google Scholar
  8. Hespell, R.B. and M.P. Bryant, 1979. Efficiencyof rumen microbial growth: Influenceof some theoretical and e1perimental factors on YATP. Journal of Animal Science 49: 1640–1659.PubMedGoogle Scholar
  9. Hoover, W.H., 1986. Chemical factors involved in ruminal fiberdigestion. Journal of Dairy Science 69: 2755–2766.PubMedCrossRefGoogle Scholar
  10. Huhtanen, P. and S. Jaakkola, 1993. The effect of the forage preservation method and the proportion of concentrate on digestion of cell wall carbohydrates and rumen digesta pool size in cattle. Grass and Forage Science 48: 155–165.CrossRefGoogle Scholar
  11. Huhtanen, P., S. Jakkola and U. Kukkonen, 1995. Ruminal plant cell wall digestibility estimated from digestion and passage kinetics utilizing mathematical models. Animal Feed Science and Technology 52: 159–173.CrossRefGoogle Scholar
  12. Huhtanen, P. and U. Kukkonen, 1995. Comparison of methods, markers, sampling sites and models for estimating digesta passage kinetics in cattle fed at two levels of intake. Animal Feed Science and Technology 52: 141–158.CrossRefGoogle Scholar
  13. Hvelplund, T., 1985. Digestibility of rumen microbial protein and undegraded dietary protein estimated in the small intestine of sheep and by the in sacco procedure. Acta Agriculturae Scandinavica Supplement 25: 132–144.Google Scholar
  14. Hvelplund, T. and J. Madsen, 1985. Amino acid passage to the small intestine in dairy cows compared with estimates of microbial protein and undegraded protein from analysis on the feed. Acta Agriculturae Scandinavica Supplement 25: 21–36.Google Scholar
  15. Khalili, H. and P. Huhtanen, 1991. Sucrose supplementation in cattle given grass silage based diet. 2. Digestion of cell wall carbohydrates. Animal Feed Science and Technology 33: 262–273.Google Scholar
  16. Larsen, M., T.G. Madsen, M.R. Weisbjerg, T. Hvelplund and J. Madsen, 2000. Endogenous amino acid flowin the duodenum of dairy cows. Acta Agriculturae Scandinavica, section A: Animal Science 50: 161–173.CrossRefGoogle Scholar
  17. Lechener-Doll, M., M. Kaske and W.V. Engelhardt, 1991. Factors affecting the mean retention time of particles in the forestomach of ruminants and camelids. In: T. Tsuda, Y. Sasaki and R. Kawashima (eds.). Physiological aspects of digestion and metabolism in ruminants. Academic Press, San Diego, CA, USA, pp. 455–482.CrossRefGoogle Scholar
  18. Lindberg, J.E., 1981. The effect basal diet on the ruminal degradation of dry matter, nitrogenous compounds and cell walls in nylon bags. Swedish Journal of Agricultural Research. 11: 159–169.Google Scholar
  19. Lund, P, 2002. The effect of forage type on passage kinetics and digestibility of fibrein dairy cows. Ph.D. thesis, The Royal Veterinary and Agricultural University, Copenhagen, Denmark. 169 pp.Google Scholar
  20. Mason, V.C. and F. White, 1971. The digestion of bacterial mucopeptide constituents in sheep. I. The metabolism of 2,6 diaminopimelic acid. The Journal of Agricultural Science, Cambridge 77: 91–98.CrossRefGoogle Scholar
  21. Minde, A. and A.J. Rygh, 1997. Metoder for å bestemme nedbrytingshastighet, passasjehastighet og vomfordøyelighet av NDF hos mjølkeku. Hovedoppgave ved Institutt for husdyrfag, Norges landbrukshøgskole, Norway. 118 pp. (In Norwegian).Google Scholar
  22. Mould, F.L., E.R. Ørskow and S.O. Mann, 1983. Associative effects of mixed feeds. I. Effects of type and level of supplementation and the influenceof rumen fluidpH on cellulolysis in vivo and dry matter digestion of various roughage. Animal Feed Science and Technology 10: 15–30.CrossRefGoogle Scholar
  23. Mydland, L.T, 2005. Molecular and chemical characterization of the rumen microbiota and quantificationof rumen microbial protein synthesis. Ph.D. Thesis. Norwegian University of Life Sciences, Aas, Norway. 155 pp.Google Scholar
  24. NRC (National Research Council), 1985. Ruminal nitrogen usage. National Academy Press, Washington DC, USA. 138 pp.Google Scholar
  25. NRC, 2001. Nutrient requirements of dairy cattle. Seventh revised edition, National Academy press, Washington, DC, USA. 408 pp.Google Scholar
  26. Ørskov, E.R. and I. McDonald, 1979. The estimation of protein degradability in the rumen from measurements adjusted for rate of passage. Journal of Agricultural Science 92: 499–503.CrossRefGoogle Scholar
  27. Ørskov, E.R. and N.A. MacLeod, 1982. The flowof N from the rumen of cows and steers maintained by intraruminal infusion of volatile fatty acids. Proceedings of the Nutrition Society. 41:76A.Google Scholar
  28. Prestløkken, E., 1999. Protein value of expander-treated barley and oats for ruminants. Ph.D. thesis, Agricultural University of Norway, Aas, Norway. 137 pp.Google Scholar
  29. Robinson, P.H., S. Tamminga and A.M. Van Vuuren, 1987a. Influenceof the declining level of feed intake and varying the proportion of starch in the concentrate on milk production and whole tract digestibility in dairy cows. Livestock Production Science 17: 19–35.CrossRefGoogle Scholar
  30. Robinson, P.H., S. Tamminga and A.M. Van Vuuren, 1987b. Influenceof the declining level of feed intake and varying the proportion of starch in the concentrate on rumen digesta quantity, composition and kinetics of ingesta turnover in dairy cows. Livestock Production Science 17: 37–62.CrossRefGoogle Scholar
  31. Robinson, P.H., S. Tamminga and A.M. Van Vuuren, 1987c. Influenceof the declining level of feed intake and varying the proportion of starch in the concentrate on rumen fermentation in dairy cows. Livestock Production Science 17: 173–189.Google Scholar
  32. Rygh, G.K., 1997. Virkning av nitrogenkilde I kraftfôret på kjemisk sammensetting av vommikrober og syntesen av protein og aminosyrer I voma hos melkekyr. Hovedoppgave Norges landbrukshøgskole, Norway. 122 pp. (In Norwegian).Google Scholar
  33. Sauvant, D., J. Dijkstra and D. Mertens, 1995. Optimization of ruminal digestion: a modelling approach. In: Journet, M., E. Grenet, M.H. Farce, M. Theriez, C. Demarkquilly (eds.). Recent developments in the nutrition of herbivores. Proceedings of IVth International Symposium on the Nutrition of Herbivores, Clermont-Ferrand, France. September 11-15, 1995. INRA Paris Cedex, France. pp 143–165.Google Scholar
  34. Selmer-Olsen, I., 1996. Microbial protein synthesis in the rumen of cows fed extensively or restricted fermented grass silage. Proc. XIth Int. Silage Conference, Aberystwyth, UK, pp. 226–227.Google Scholar
  35. Stensig, T., 1996. Digestion and passage kinetics of forage fibrein dairy cows. Ph.D. thesis, The Royal Veterinary and Agricultural University, Copenhagen, Denmark. 139 pp.Google Scholar
  36. Stensig, T. and P. Robinson, 1997. Digestion and passage kinetics of forage fiberin dairy cows as affected by fiber-free concentrate in the diet. Journal of Dairy Science. 80: 1339–1352.PubMedCrossRefGoogle Scholar
  37. Stensig, T., M.R. Weisbjerg and T. Hvelplund, 1998. Evaluation of different methods for the determination of digestion and passage rates of fibrein the rumen of dairy cows. Acta Agriculturae Scandinavica, Section A - Animal Science 48: 141–154.CrossRefGoogle Scholar
  38. Stern, M.D., G.A. Varga, J.H. Clark, J.L. Firkins, J.T. Huber and D.L. Palmquist, 1994. Evaluation of chemical and physical properties of feed that affect protein metabolism in the rumen. Journal of Dairy Science 77: 2762–2786.PubMedCrossRefGoogle Scholar
  39. Storm, E., D.S. Brown and E.R. Ørskov, 1983. The nutritive value of rumen micro-organisms in ruminants. 3. The digestion of microbial amino acids and nucleic acids in, and losses of endogenous nitrogen from, the small intestine of sheep. British Journal of Nutrition 50: 479–485.PubMedCrossRefGoogle Scholar
  40. Tas, M.V., R.A. Evans and R.F.E. Axford, 1981. The digestibility of amino acids in the small intestine in sheep. British Journal of Nutrition 45: 167–174.PubMedCrossRefGoogle Scholar
  41. Van Bruchem, J., S.M.G. Rouwers, G.A. Bangma, S.C.W. Lammers-Wienhoven and P.W.M. Van Adrichem, 1985a. Digestion of proteins f varying degradability in sheep. 2. Amount and composition of the protein entering the small intestine. Netherlands Journal of Agricultural Science 33: 273–284.Google Scholar
  42. Van Bruchem, J., L.J.G.M. Bongers, J.D. Van Walsem, W. Onck and P.W.M. Van Adrichem, 1985b. Digestion of proteins f varying degradability in sheep. 3. Apparent and true digestibility in the small intestine and ileal endogenous flow of N and amino acids. Netherlands Journal of Agricultural Science 33: 285–295.Google Scholar
  43. Van Es, A.J.H., 1978. Feed evaluation for ruminants. 1. The systems in use from May 1977 onwards in the Netherlands. Livestock Production Science 5: 331–345.CrossRefGoogle Scholar
  44. Van Soest, P.J., 1994. Nutritional ecology of the ruminant (second edition). Cornell University Press, Ithaca, NY, USA. 476 pp.Google Scholar
  45. Voelker, J.A. and M.S. Allen, 2003. Pelleted beet pulp substituted for high-moisture corn: 2. Effects on digestion and rumen digestion kinetics in lactating dairy cows. Journal of Dairy Science 86: 3553–3561.PubMedCrossRefGoogle Scholar
  46. Voigt, J., J. Van Bruchem, S.C.W. Lammers-Wienhoven, L.J.G.M. Bongers, U. Schonhusen, G.W. Valkenburg, J.J.M.H. Ketelaars and S. Tamminga, 1993. Flow of endogenous protein along the gastrointestinal tract of sheep fed on whole grass hay and hay-concentrate diets. Proceedings of the Society of Nutrition Physiology 1: 63.Google Scholar
  47. Volden, H., 1999. Effects of level of feeding and ruminally undegraded protein on ruminal bacterial protein synthesis, escape of dietary protein, intestinal amino acid profile,and performance of dairy cows. Journal of Animal Science 77: 1905–1918.PubMedGoogle Scholar
  48. Volden, H. and O.M. Harstad, 1998a. Chemical composition of bacteria harvested from the rumen of dairy cows fed three diets differing in protein content and rumen protein degradability at two levels of intake. Acta Agriculturae Scandinavica, Section A - Animal Science 48: 202–209.CrossRefGoogle Scholar
  49. Volden, H. and O.M. Harstad, 1998b. Amino acid composition of bacteria harvested from the rumen of dairy cows fed three diets differing in protein content and rumen protein degradability at two levels of intake. Acta Agriculturae Scandinavica, Section A - Animal Science 48: 210–215.CrossRefGoogle Scholar
  50. Volden, H., L.T. Mydland and O.M. Harstad, 1999a. Chemical composition of protozoal and bacterial fractions isolated from ruminal contents of dairy cows fed diets differing in dietary nitrogen supplementation. Acta Agriculturae Scandinavica, Section A - Animal Science 49: 235–244.CrossRefGoogle Scholar
  51. Volden, H., O.M. Harstad and L.T. Mydland, 1999b. Amino acid content and profile protozoal and bacterial fractions isolated from ruminal contents of lactating dairy cows fed diets differing in nitrogen supplementation. Acta Agriculturae Scandinavica, Section A - Animal Science 49: 245–250.CrossRefGoogle Scholar
  52. Weisbjerg, M.R., T. Hvelplund and C.F. Børsting, 1992. Digestibility of fatty acids in the gastrointestinal tract of dairy cows fed with tallow or saturated fats rich in stearic acid or palmitic acid. Acta Agriculturae Scandinavica, Section A - Animal Science 42: 115–120.CrossRefGoogle Scholar
  53. Weisbjerg, M., T. Hvelplund, V.F. Kristensen and T. Stensig, 1998. The requirement for rumen degradable protein and the potential for nitrogen recycling to the rumen in dairy cows. Proceedings of the 25th ScientificConference AICC-Arusha, August 5-7. TSAP Conferences Series 25: 110–118.Google Scholar
  54. Weisbjerg, M.R., H. Gado, T. Hvelplund and B.B. Jensen, 1999. The effect of easily fermentable carbohydrates and pH on fibredigestibility and VFA pattern in an in vitro continuous culture system. South African Journal of Animal Science ISRP. 29: 112–113.Google Scholar

Copyright information

© Wageningen Academic Publishers 2011

Authors and Affiliations

  1. 1.TINE and the Norwegian University of Life SciencesAkershusNorway

Personalised recommendations