Skip to main content

Decision Aid Models and Systems for Humanitarian Logistics. A Survey

Part of the Atlantis Computational Intelligence Systems book series (ATLANTISCIS,volume 7)

Abstract

The number and impact of disasters seems to be increasing in the last decades, and their consequences have to be managed in the best possible way. This paper introduces the main concepts used in emergency and disaster management, and presents a literature review on the decision aid models and systems applied to humanitarian logistics in this context.

Keywords

  • Supply Chain
  • Disaster Management
  • Disaster Response
  • Disaster Recovery
  • Disaster Resilience

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.2991/978-94-91216-74-9_2
  • Chapter length: 28 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-94-91216-74-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.00
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adıvar, B. and Mert, A. (2010). International disaster relief planning with fuzzy credibility, Fuzzy Optim. Decis. Making 9, 4, pp. 413–433.

    Google Scholar 

  2. Aftanas, J.M. (2007). Optimizing the prioritization of natural disaster recovery projects, Master’s thesis, Air Force Institute of Technology, Ohio.

    Google Scholar 

  3. Akkihal, A. R. (2006). Inventory pre-positioning for humanitarian operations, Master’s thesis, Massachusetts Institute of Technology, Massachusetts.

    Google Scholar 

  4. Altay, N. and Green, W. G. (2006). OR/MS research in disaster operations management, Eur. J. Oper. Res. 175, 1, pp. 475–493.

    Google Scholar 

  5. Ang, C. C. (2006). Optimized recovery of damaged electrical power grids, Master’s thesis, Naval Postgraduate School, Monterey.

    Google Scholar 

  6. Angelis, V. D., Mecoli, M., Nikoi, C. and Storchi, G. (2007). Multiperiod integrated routing and scheduling of World Food Programme cargo planes in Angola, Comput. Oper. Res. 34, 6, pp. 1601–1615. November 27, 2012 23:14 Atlantis Press Book - 9.75in x 6.5in book_Vitoriano-Montero 40 Decision Aid Models for Disaster Management and Emergencies.

    Google Scholar 

  7. Apte, A. (2009). Humanitarian logistics: a new field of research and action, Found. Trends Technol. Inf. Oper. Manag. 3, 1, pp. 1–100.

    Google Scholar 

  8. Balasubramanian, S., Mohan, T., Pineiro, R. C., Jain, R., Routray, R. R., Shah, G., Verma, A. and Voruganti, K. (2011). Methods, systems, and computer program products for disaster recovery planning, United States Patent 7945537.

    Google Scholar 

  9. Balcik, B. and Beamon, B. M. (2008). Facility location in humanitarian relief, Int. J. Logist. Res. Appl. 11, 2, pp. 101–121.

    Google Scholar 

  10. Beamon, B. M. and Kotleba, S. A. (2006a). Inventory management support systems for emergency humanitarian relief operations in South Sudan, Int. J. Logist.Manag. 17, 2, pp. 187–212.

    Google Scholar 

  11. Beamon, B. M. and Kotleba, S. A. (2006b). Inventory modelling for complex emergencies in humanitarian relief operations, Int. J. Logist. Res. Appl. 9, 1, pp. 1–18.

    Google Scholar 

  12. Ben-Tal, A., Chung, B. D., Mandala, S. R. and Yao, T. (2011). Robust optimization for emergency logistics planning: risk mitigation in humanitarian relief supply chains, Transp. Res. Part B 45, 8, pp. 1177–1189.

    Google Scholar 

  13. Berkoune, D., Renaud, J., Rekik, M. and Ruiz, A. (2012). Transportation in disaster response operations, Socio-Econ. Plan. Sci. 46, 1, pp. 23–32.

    Google Scholar 

  14. Besiou, M., Pedraza Martinez, A. and Van Wassenhove, L. (2012). The effect of earmarked funding on fleet management for relief and development, Tech. Rep. 2012/10/TOM/ISIC, INSEAD.

    Google Scholar 

  15. Blecken, A., Danne, C., Dangelmaier,W., Rottkemper, B. and Hellingrath, B. (2010). Optimal stock relocation under uncertainty in post-disaster humanitarian operations, in Proceedings of the 43rd Hawaii International Conference on System Sciences (Koloa, Hawaii), pp. 1–10.

    Google Scholar 

  16. Bretschneider, S. and Kimms, A. (2012). Pattern-based evacuation planning for urban areas, Eur. J. Oper. Res. 216, 1, pp. 57–69.

    Google Scholar 

  17. Buzna, L., Peters, K., Ammoser, H., Kühnert, C. and Helbing, D. (2007). Efficient response to cascading disaster spreading, Phys. Rev. Sect. E 75, 5-2, pp. 56107–56108.

    Google Scholar 

  18. Campbell, A. M., Vandenbussche, D. and Hermann, W. (2008). Routing for relief efforts, Transp. Sci. 42, 2, pp. 127–145.

    Google Scholar 

  19. Caunhye, A., Nie, X. and Pokharel, S. (2012). Optimization models in emergency logistics: A literature review, Socio-Econ. Plan. Sci. 46, pp. 4–13.

    Google Scholar 

  20. Chang, S. E. (2010). Urban disaster recovery: a measurement framework and its application to the 1995 Kobe earthquake, Disasters 34, 2, pp. 303–327.

    Google Scholar 

  21. Chao, W., Yuanbin, L. and Xuliang, D. (2011). The research on human–computer interaction of remote disaster-recovery system, in M. Zhou and H. Tan (eds.), Advances in Computer Science and Education Applications. Part II, Communications in Computer and InformationScience, Vol. 202 (Springer, Berlin Heidelberg), pp. 460–466.

    Google Scholar 

  22. Charles, A. (2010). Improving the Design and Management of Agile Supply Chains: Feedback and Application in the Context of Humanitarian Aid, Ph.D. thesis, Université de Toulouse, Toulouse, France.

    Google Scholar 

  23. Chen, A., Zhao, J. and Chen, N. (2009). A recoverability assessment model in emergency management, Tech. Rep. RTO-MP-IST-086-09, NATO Research and Technology Organisation.

    Google Scholar 

  24. Chevin Fleet Solutions (2001). FleetWave, http://www.chevinfleet.com/us/fleet_software_fleetwave_web_based_enterprise_fleet_management_solution.asp, last access: May 7th, 2012.

  25. Chib, A. and Komathi, A. L. E. (2009). Extending the technology-community-management model to disaster recovery: Assessing vulnerability in rural Asia, in Proceedings of the 3 rd International Conference on Information and Communication Technologies and Development (Doha, Qatar), pp. 328–336. November 27, 2012 23:14 Atlantis Press Book - 9.75in x 6.5in book_Vitoriano-Montero Bibliography 41.

    Google Scholar 

  26. Chiu, Y. C. and Zheng, H. (2007). Real-time mobilization decisions for multi-priority emergency response resources and evacuation groups: model formulation and solution, Transp. Res. Part E 43, 6, pp. 710–736.

    Google Scholar 

  27. Cimellaro, G. P., Reinhorn, A. M. and Bruneau, M. (2010). Framework for analytical quantification of disaster resilience, Eng. Struct. 32, 11, pp. 3639–3649.

    Google Scholar 

  28. Coffrin, C., Van Hentenryck, P. and Bent, R. (2011b). Strategic planning for power system restoration, in Proceedings of the International Conference on Vulnerability and Risk Analysis and Management (Hyattsville, Maryland), pp. 1–8.

    Google Scholar 

  29. Coffrin, C., Van Hentenryck, P. and Bent, R. (2011c). Strategic stockpiling of power system supplies for disaster recovery, in Power and Energy Society General Meeting, 2011 IEEE (San Diego, California), pp. 1–8.

    Google Scholar 

  30. Crowther, K. G. and Haimes, Y. Y. (2005). Application of the inoperability input–output model (IIM) for systemic risk assessment and management of interdependent infrastructures, Syst. Eng. 8, 4, pp. 323–341.

    Google Scholar 

  31. de Mel, S., D., M. and Woodruff, C. (2008). Mental health recovery and economic recovery after the tsunami: high-frequency longitudinal evidence from Sri Lankan small business owners, Soc. Sci. Med. 66, 3, pp. 582–595.

    Google Scholar 

  32. Doerner, K. F., Gutjahr, W. J. and Nolz, P. C. (2009). Multi-criteria location planning for public facilities in tsunami-prone coastal areas, OR Spectr. 31, 3, pp. 651–678.

    Google Scholar 

  33. Eiselt, H. A. and Marianov, V. (2012). Mobile phone tower location for survival after natural disasters, Eur. J. Oper. Res. 216, 3, pp. 563–572.

    Google Scholar 

  34. El-Anwar, O., El-Rayes, K. and Elnashai, A. S. (2010). Maximizing the sustainability of integrated housing recovery efforts, J. Constr. Eng. Manag. 136, 7, pp. 794–802.

    Google Scholar 

  35. Fiedrich, F. and Burghardt, P. (2007). Agent-based systems for disaster management, Commun. ACM - Emerg. Response Inf. Syst.: Emerg. Trends Technol. 50, 3, pp. 41–42.

    Google Scholar 

  36. Ghesquiere, F. and Mahul, O. (2007). Sovereign natural disaster insurance for developing countries: A paradigm shift in catastrophe risk financing, World Bank Policy Research 4345, World Bank.

    Google Scholar 

  37. Gibbons, D. E. and Samaddar, S. (2009). The maximal expected coverage relocation problem for emergency vehicles, Decis. Sci. 40, 2, pp. 351–371.

    Google Scholar 

  38. Hale, T. and Moberg, C. R. (2005). Improving supply chain disaster preparedness: a decision process for secure site location, Int. J. Phys. Distrib. Logist. Manag. 35, 3/4, pp. 195–207.

    Google Scholar 

  39. HFOSS Institute (2006). HFOSS, http://dev.hfoss.org/, last access: February 6th, 2012.

  40. HFOSS Institute (2008). Posit, http://posit.hfoss.org/, last access: February 6th, 2012.

  41. HFOSS Institute (2010). Collabbit, http://collabbit.org/about, last access: February 6th, 2012.

  42. Huang, M., Smilowitz, K. and Balcik, B. (2012). Models for relief routing: equity, efficiency and efficacy, Transp. Res. Part E 48, 1, pp. 2–18.

    Google Scholar 

  43. Jin, M. and Ek¸sioˇglu, B. (2010). Optimal routing of vehicles with communication capabilities in disasters, Comput. Manag. Sci. 7, 2, pp. 121–137.

    Google Scholar 

  44. Jotshi, A., Gong, Q. and Batta, R. (2009). Dispatching and routing of emergency vehicles in disaster mitigation using data fusion, Socio-Econ. Plan. Sci. 43, 1, pp. 1–24.

    Google Scholar 

  45. Jung, C., Johnson, M., Trick, M. and Williams, J. (2007). Mathematical models for reconstruction planning in urban areas, Tech. rep., Heinz College, Carnegie Mellon University.

    Google Scholar 

  46. Kaklauskas, A., Amaratunga, D. and Haigh, R. (2009). Knowledge model for post-disaster management, Int. J. Strateg. Prop. Manag. 13, 2, pp. 117–128.

    Google Scholar 

  47. Karlaftis,M. G., Kepaptsoglou, K. L. and Lambropoulos, S. (2007). Fund allocation for transportation network recovery following natural disasters, J. Urban. Plan. Dev. 133, 1, pp. 82–89. November 27, 2012 23:14 Atlantis Press Book - 9.75in x 6.5in book_Vitoriano-Montero 42 Decision Aid Models for Disaster Management and Emergencies.

    Google Scholar 

  48. Kongsomsaksaku, S., Yang, C. and Chen, A. (2005). Shelter location-allocation model for flood evacuation planning, J. East. Asia. Soc. Transp. Stud. 6, pp. 4237–4252.

    Google Scholar 

  49. Kung, H. Y., Chen, C. H. and Ku, H. H. (2012). Designing intelligent disaster prediction models and systems for debris-flow disasters in Taiwan, Expert Syst. Appl. 39, 5, pp. 5838–5856.

    Google Scholar 

  50. Lanka Software Foundation (2004a). SAHANA deployments, http://wiki.sahanafoundation.org/doku.php/deployments:start, last access: February 6th, 2012.

  51. Lanka Software Foundation (2004b). SAHANA products, http://sahanafoundation.org/products/, last access: February 6th, 2012.

  52. Lanka Software Foundation (2004c). SAHANA system, http://sahanafoundation.org/, last access: February 6th, 2012.

  53. Lodree, E. J. and Taskin, S. (2008). An insurance risk management framework for disaster relief and supply chain disruption inventory planning, J. Oper. Res. Soc. 59, 5, pp. 674–684.

    Google Scholar 

  54. Losada, C., Scaparra, M. P. and O’Hanley, J. R. (2012). Optimizing system resilience: A facility protection model with recovery time, Eur. J. Oper. Res. 217, 3, pp. 519 – 530.

    Google Scholar 

  55. Luckey, T. S. (2009). Key stages of disaster recovery planning for time-critical business information technology systems, Master’s thesis, University of Oregon, Oregon.

    Google Scholar 

  56. Matisziw, T. C.,Murray, A. T. and Grubesic, T. H. (2010). Strategic network restoration, Netw. Spat. Econ. 10, pp. 345–361.

    Google Scholar 

  57. Maya, P. and Sörensen, K. (2011). A GRASP metaheuristic to improve accessibility after a disaster, Disaster Relief 33, 3, pp. 525–542.

    Google Scholar 

  58. Médecins Sans Frontières (2006). LogistiX, ftp://support.geneva.msf.org/permanent/LOG/SupplyChainManagement, last access: February 6th, 2012.

  59. Mehlhorn, S., Racer, M., Ivey, S. and Lipinski, M. (2011). A single-objective recovery phase model, Int. J. Inf. Technol. Proj. Manag. 2, 3, pp. 53–71.

    Google Scholar 

  60. Mehlhorn, S. A. (2009). Method for Prioritizing Highway Routes for Reconstruction After a Natural Disaster, Ph.D. thesis, University of Memphis.

    Google Scholar 

  61. Miles, S. B. and Chang, S. E. (2006). Modeling community recovery from earthquakes, Earthq. Spectr. 22, pp. 439–458.

    Google Scholar 

  62. Nagurney, A., Yu, M. and Qiang, Q. (2011). Supply chain network design for critical needs with outsourcing, Pap. Reg. Sci. 90, 1, pp. 123–142.

    Google Scholar 

  63. Natarajarathinam, M., Capar, I. and Narayanan, A. (2009). Managing supply chains in times of crisis: a review of literature and insights, Int. J. Phys. Distrib. Logist. Manag. 39, 7, pp. 535–573.

    Google Scholar 

  64. Nelson, S. C., Harris III, A. F. and Kravets, R. (2007). Event-driven, role-based mobility in disaster recovery networks, in Proceedings of the Second ACM Workshop on Challenged Networks (Montreal, Canada), pp. 27–34.

    Google Scholar 

  65. Nolz, P., Doerner, K., Gutjahr, W. and Hartl, R. (2010a). A bi-objective metaheuristic for disaster relief operation planning, in C. Coello Coello, C. Dhaenens and L. Jourdan (eds.), Advances in Multi-Objective Nature Inspired Computing, Studies in Computational Intelligence, Vol. 272 (Springer, Berlin Heidelberg), pp. 167–187.

    Google Scholar 

  66. Nolz, P. C., Doerner, K. F. and Hartl, R. F. (2010b). Water distribution in disaster relief, Int. J. Phys. Distrib. Logist. Manag. 40, 8/9, pp. 693–708.

    Google Scholar 

  67. Onyango, M. A. (2008). Humanitarian responses to complex emergencies, in Q. K. Heggenhougen (ed.), International Encyclopedia of Public Health (Academic Press, San Diego).

    Google Scholar 

  68. Orabi, W., El-Rayes, K., Senouci, A. B. and Al-Derham, H. (2009). Optimizing postdisaster reconstruction planning for damaged transportation networks, J. Constr. Eng. Manag. 135, 10, pp. 1039–1048. November 27, 2012 23:14 Atlantis Press Book - 9.75in x 6.5in book_Vitoriano-Montero Bibliography 43.

    Google Scholar 

  69. Orabi, W., Senouci, A. B., El-Rayes, K. and Al-Derham, H. (2010). Optimizing resource utilization during the recovery of civil infrastructure systems, J. Manag. Eng. 26, 4, pp. 237–246.

    Google Scholar 

  70. Ortuño, M., Tirado, G. and Vitoriano, B. (2011). A lexicographical goal programming based decision support system for logistics of Humanitarian Aid, TOP 19, pp. 464–479.

    Google Scholar 

  71. Pedraza Martinez, A. and Van Wassenhove, L. N. (2012). Vehicle replacement in the international committee of the red cross, Prod. Oper. Manag. 10.1111/j.1937-5956.2011.01316.x.

  72. Permann, M. R. (2007). Genetic algorithms for agent-based infrastructure interdependency modeling and analysis, in Proceedings of the 2007 Spring Simulation Multiconference, Vol. 2 (Norfolk, Virginia), pp. 169–177.

    Google Scholar 

  73. Qin, J., Xing, Y., Wang, S., Wang, K. and Chaudhry, S. S. (2012). An inter-temporal resource emergency management model, Comput. Oper. Res. 39, 8, pp. 1909–1918.

    Google Scholar 

  74. Quarantelli, E. L. (2006). Catastrophes are different from disasters: some implications for crisis planning and managing drawn from Katrina, http://understandingkatrina.ssrc.org/Quarantelli/, last access: February 20th, 2012.

  75. Rose, A. (2007). Economic resilience to natural and man-made disasters: multidisciplinary origins and contextual dimensions, Environ. Hazard. 7, 4, pp. 383–398.

    Google Scholar 

  76. Rottkemper, B., Fischer, K. and Blecken, A. (2012). A transshipment model for distribution and inventory relocation under uncertainty in humanitarian operations, Socio-Econ. Plan. Sci. 46, 1, pp. 98–109.

    Google Scholar 

  77. Saadatseresht, M., Mansourian, A. and Taleai, M. (2009). Evacuation planning using multiobjective evolutionary optimization approach, Eur. J. Oper. Res. 198, 1, pp. 305–314.

    Google Scholar 

  78. Saleem, K., Luis, S., Deng, Y., Chen, S.-C., Hristidis, V. and Li, T. (2008). Towards a business continuity information network for rapid disaster recovery, in Proceedings of the 2008 International Conference on Digital Government Research (Montreal, Canada), pp. 107–116.

    Google Scholar 

  79. Semsch, E., Jakob, M., Doubek, J. and Pechoucek, M. (2008). Using player models to improve robustness of HTN plans in multi-agent domains, in Proceedings of the 27th Workshop of the UK Planning and Scheduling Special Interest Group (Edinburgh, UK), pp. 1–7.

    Google Scholar 

  80. Sheu, J. B. (2007). An emergency logistics distribution approach for quick response to urgent relief demand in disasters, Transp. Res. Part E 43, 6, pp. 687–709.

    Google Scholar 

  81. Solano, E. (2010). Research brief: Methods for assessing vulnerability of critical infrastructure, Tech. rep., Institute for Homeland Security Solutions.

    Google Scholar 

  82. The Fritz Institute (2003). Humanitarian Logistics Software (HLS), http://www.fritzinstitute.org/prgTech-HLS.htm, last access: February 6th, 2012.

  83. The Fritz Institute (2007). HELIOS, http://www.fritzinstitute.org/prgTech-HELIOS_Overview.htm, last access: February 6th, 2012.

  84. The International Federation of Red Cross (2001). The Disaster Management Information System (DMIS), https://www-secure.ifrc.org/DMISII/Pages/00_Home/login.aspx, last access: February 6th, 2012.

  85. The Pan American Health Organization (1992). The Humanitarian Supply Management System (SUMA), http://www.disaster-info.net/SUMA/english/index.htm, last access: February 6th, 2012.

  86. The Pan American Health Organization (2005). Logistics Support System (LSS), http://www.lssweb.net/, last access: February 6th, 2012.

  87. Tomasini, R. and van Wassenhove, L. (2009). Humanitarian Logistics (Palgrave Macmillan).

    Google Scholar 

  88. Tovia, F. (2007). An emergency logistics response system for natural disasters, Int. J. Logist.: Res. Appl. 10, 3, pp. 173–186. November 27, 2012 23:14 Atlantis Press Book - 9.75in x 6.5in book_Vitoriano-Montero 44 Decision Aid Models for Disaster Management and Emergencies.

    Google Scholar 

  89. Toyasaki, F. and Wakolbinger, T. (2012). Impacts of earmarked private donations for disaster fundraising, A. Oper. Res. 10.1007/s10479-011-1038-5.

  90. Tzeng, G. H., Cheng, H. J. and Huang, T. D. (2007). Multi-objective optimal planning for designing relief delivery systems, Transp. Res. Part E 43, 6, pp. 673–686.

    Google Scholar 

  91. Uchida, K. (2012). A model evaluating effect of disaster warning issuance conditions on “cry wolf syndrome” in the case of a landslide, Eur. J. Oper. Res. 218, 2, pp. 530–537.

    Google Scholar 

  92. Van Hentenryck, P., Bent, R. and Coffrin, C. (2010). Strategic planning for disaster recovery with stochastic last mile distribution, in H. C. Heard, I. V. Borg, N. L. Carter and C. B. Raleigh (eds.), Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, Lecture Notes in Computer Science, Vol. 6140 (Springer, Berlin Heidelberg), pp. 318–333.

    Google Scholar 

  93. Van Wassenhove, L. N. (2006). Humanitarian aid logistics: supply chain management in high gear, J. Oper. Res. Soc. 57, 5, pp. 475–489.

    Google Scholar 

  94. VanWassenhove, L. N. and Pedraza, A. J. (2012). Using or to adapt supply chain management best practices to humanitarian logistics, Intl. Trans. in Op. Res. 19, 1–2, pp. 307–322.

    Google Scholar 

  95. Vitoriano, B., Ortuño, M. T. and Tirado, G. (2009). HADS, a goal programming-based humanitarian aid distribution system, J. Multi-Criteria Decis. Anal. 16, 1-2, pp. 55–64.

    Google Scholar 

  96. Vitoriano, B., Ortuño, M. T., Tirado, G. and Montero, J. (2011). A multi-criteria optimization model for humanitarian aid distribution, J. Glob. Optim. 51, 2, pp. 189–208.

    Google Scholar 

  97. Xu, N., Guikema, S. D., Davidson, R. A., Nozick, L. K., Ça˜gnan, Z. and Vaziri, K. (2007). Optimizing scheduling of post-earthquake electric power restoration tasks, Earthq. Eng. Struct. Dyn. 36, pp. 265–284.

    Google Scholar 

  98. Yi, W. and Kumar, A. (2007). Ant colony optimization for disaster relief operations, Transp. Res. Part E 43, 6, pp. 660–672.

    Google Scholar 

  99. Yi, W. and Özdamar, L. (2007). A dynamic logistics coordination model for evacuation and support in disaster response activities, Eur. J. Oper. Res. 179, pp. 1177–1193.

    Google Scholar 

  100. Zobel, C. W. and Khansa, L. (2011). Characterizing multi-event disaster resilience, Comput. Oper. Res. 10.1016/j.cor.2011.09.024.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Ortuño .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Atlantis Press

About this chapter

Cite this chapter

Ortuño, M.T. et al. (2013). Decision Aid Models and Systems for Humanitarian Logistics. A Survey. In: Vitoriano, B., Montero, J., Ruan, D. (eds) Decision Aid Models for Disaster Management and Emergencies. Atlantis Computational Intelligence Systems, vol 7. Atlantis Press, Paris. https://doi.org/10.2991/978-94-91216-74-9_2

Download citation

  • DOI: https://doi.org/10.2991/978-94-91216-74-9_2

  • Published:

  • Publisher Name: Atlantis Press, Paris

  • Print ISBN: 978-94-91216-73-2

  • Online ISBN: 978-94-91216-74-9

  • eBook Packages: Computer ScienceComputer Science (R0)