Skip to main content

Quaternary Stratigraphy of Whanganui Basin—A Globally Significant Archive

  • Chapter
  • First Online:
Landscape and Quaternary Environmental Change in New Zealand

Part of the book series: Atlantis Advances in Quaternary Science ((AAQS,volume 3))

Abstract

Whanganui Basin is a unique global archive—nowhere else in the world is there yet documented a shallow marine basinal sequence, exposed on land, which spans the entire Quaternary. Slow basin subsidence, coupled with glacio-eustatic sea-level fluctuations, has produced a ca. 2 km-thick basin fill of dominantly shallow marine sediments, representing all odd-numbered (high sea-level) marine isotope stages of the last 2.6 Ma. Furthermore, uplift of the basin margins has resulted in a sequence of marine terraces extending back to almost 0.7 Ma. Loess deposits, up to 0.5 Ma in age, overlie the terraces. Pollen and plant phytolith analyses of terrace cover beds yield a paleovegetation and paleoclimatic record spanning much of the last 0.4 Ma. Proximity to the Taupo Volcanic Zone means that the Whanganui Basin contains many rhyolitic tephras for regional correlations and dating. Richly fossiliferous marine sediments also provide the basis for defining the Haweran, Castlecliffian, Nukumaruan and Mangapanian Stages of the New Zealand geological timescale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott ST (1997) Foraminiferal paleobathymetry and mid-cycle architecture of Mid-Pleistocene depositional sequences, Wanganui Basin, New Zealand. Palaios 12:267-281

    Google Scholar 

  • Abbott ST, Carter RM (1997) Macrofossil associations from Mid-Pleistocene cyclothems, Castlecliff Section, New Zealand: Implications for sequence stratigraphy. Palaios 12:188-210

    Google Scholar 

  • Abbott ST, Carter RM (1999) Stratigraphy of the Castlecliffian type section: 10 mid-Pleistocene sequences from the Wanganui coast, New Zealand NZ J Geol Geophys 42:91-111

    Google Scholar 

  • Alloway BV, Pillans BJ, Carter L et al (2005) Onshore-offshore correlation of Pleistocene rhyolitic eruptions from New Zealand: implications for TVZ eruptive history and paleoenvironmental construction. Quat Sci Rev 24:1601-1622

    Google Scholar 

  • Alloway BV, Pillans BJ, Sandhu AS et al (1993) Revision of the marine chronology in the Wanganui Basin, New Zealand, based on the isothermal plateau fission-track dating of tephra horizons. Sed Geol 82:299-310

    Google Scholar 

  • Bassett MG (1985) Towards a “common language” in stratigraphy. Episodes 8:87-92

    Google Scholar 

  • Berger A, Loutre MF (1991) Insolation values for the climate of the last 10 million years. Quat Sci Rev 10:297-317

    Google Scholar 

  • Berger GW, Pillans BJ, Palmer AS (1992) Dating loess up to 800 ka by thermoluminescence. Geology 20:403-406

    Google Scholar 

  • Beu AG (2001) Local stages to be used for the Wanganui Series (Pliocene-Pleistocene), and their means of definition. NZ J Geol Geophys 44:113-125

    Google Scholar 

  • Beu AG (2004) Marine Mollusca of oxygen isotope stages of the last 2 million years in New Zealand. Part 1: Revised generic positions and recognition of warm-water and cool-water immigrants. J Roy Soc NZ 34:111-265

    Google Scholar 

  • Beu AG (2006) Marine Mollusca of oxygen isotope stages of the last 2 million years in New Zealand. Part 2. Biostratigraphically useful and new Pliocene to Recent bivalves. J Roy Soc NZ 36: 151–338

    Google Scholar 

  • Beu AG (2010) Marine Mollusca of isotope stages of the last 2 million years in New Zealand. Part 3. Gastropoda (Vetigastropoda–Littorinimorpha). J Roy Soc NZ 40: 59–180

    Google Scholar 

  • Beu AG (2011) Marine Mollusca of isotope stages of the last 2 million years in New Zealand. Part 4. Gastropoda (Ptenoglossa, Neogastropoda, Heterobranchia). J Roy Soc NZ 41: 1–153

    Google Scholar 

  • Beu AG (2012) Marine Mollusca of the last 2 million years in New Zealand. Part 5. Summary. J Roy Soc NZ 42: 1–47

    Google Scholar 

  • Beu A, Alloway BV, Cooper RA et al (2004) Chapter 13, Pliocene, Pleistocene, Holocene (Wanganui Series). In: Cooper RA (ed) The New Zealand Geological Timescale. Institute of Geological and Nuclear Sciences, Lower Hutt, pp 197-228

    Google Scholar 

  • Beu AG, Edwards AR (1984) New Zealand Pleistocene and Late Pliocene glacio-eustatic cycles. Palaeogeog, Palaeoclim, Palaeoecol 46:119-142

    Google Scholar 

  • Beu AG, Edwards AR, Pillans BJ (1987) A review of New Zealand Pleistocene stratigraphy, with emphasis on the marine rocks. In: Itihara M, Kamei T (eds) Proceedings of the First International Colloquium on Quaternary Stratigraphy of Asia and Pacific Area, Osaka. Science Council of Japan, Osaka, p 250-269

    Google Scholar 

  • Beu AG, Grant-Taylor TL, Hornibrook NdB (1977) Nukumaruan records of the subantarctic scallop Chlamys delicatula and crab Jacquinotia edwardsii in central Hawke’s Bay. N Z J Geol Geophys 20:217-248

    Google Scholar 

  • Boellstorff JD, Te Punga MT (1977) Fission track age and correlation of middle and lower Pleistocene sequences from Nebraska and New Zealand. NZ J Geol Geophys 20:47-58

    Google Scholar 

  • Bowen DQ, Pillans B, Sykes GA et al (1998) Amino acid geochronology of Pleistocene marine sediments in the Wanganui Basin: a New Zealand framework for correlation and dating. J Geol Soc Lond 155:439-446

    Google Scholar 

  • Briggs RM, Houghton BF, McWilliams M et al (2005) 40Ar/39Ar ages of silicic volcanic rocks in the Tauranga-Kaimai area, New Zealand: dating the transition between volcanism in the Coromandel Arc and the Taupo Volcanic Zone. NZ J Geol Geophys 48:459-469

    Google Scholar 

  • Bussell MR (1986) Palynological evidence for upper Putikian (middle Pleistocene) interglacial and glacial climates at Rangitawa Stream, South Wanganui Basin, New Zealand. NZ J Geol Geophys 29:471-479

    Google Scholar 

  • Bussell MR (1988) Mid and late Holocene pollen diagrams and Polynesian deforestation, Wanganui district, New Zealand. NZ J Bot 26:431-451

    Google Scholar 

  • Bussell MR (1990) Palynology of oxygen istope stage 6 and substage 5e from the cover beds of a marine terrace, Taranaki, New Zealand. Quat Res 34:86-100

    Google Scholar 

  • Bussell MR (1992) Late Pleistocene palynology of terrestrial cover beds at the type section of the Rapanui Terrace, Wanganui, New Zealand. J Roy Soc NZ 22:77-90

    Google Scholar 

  • Bussell MR (1993) A late Pleistocene vegetational and climatic history of part oxygen isotope stage 5, Ararata, south Taranaki, New Zealand. J Roy Soc NZ 23:129-145.

    Google Scholar 

  • Bussell MR, Mildenhall DC (1990) Extinct palynomorphs from middle and late Pleistocene terrestrial sediments, South Wanganui Basin, New Zealand. NZ J Geol Geophys 33:439-447.

    Google Scholar 

  • Bussell MR, Pillans B (1992) Vegetational and climatic history during oxygen isotope stage 9, Wanganui district, New Zealand, and correlation of the Fordell Ash. J Roy Soc NZ 22:41-60.

    Google Scholar 

  • Bussell MR, Pillans B (1997) Vegetational and climatic history during oxygen isotope stage 7 and early stage 6, Taranaki, New Zealand. J Roy Soc NZ 27:419-438

    Google Scholar 

  • Campbell I, B. (1973) Late Pleistocene alluvial pumice deposits in the Wanganui Valley. NZ J Geol Geophys 16:717-721

    Google Scholar 

  • Carter RM (2015) Fleming’s legacy. In: Graham I (ed) Continent on the Move: NZ Geoscience Revealed, 2nd edition. Geoscience Society of New Zealand with GNS Science, Wellington, Geol Soc NZ Misc Pub 141: 278-281

    Google Scholar 

  • Carter RM, Naish TR (1998) A review of Wanganui Basin, New Zealand: global section for shallow marine. Plio-Pleistocene (2.5-0 Ma) cyclostratigraphy. Sed Geol 122:37-52

    Google Scholar 

  • Cooper RA (ed) (2004) The New Zealand Geological Timescale. Institute of Geological and Nuclear Sciences, Lower Hutt

    Google Scholar 

  • Cowie JD (1964a) Aokautere ash in the Manawatu district, New Zealand. NZ J Geol Geophys 7:67-77

    Google Scholar 

  • Cowie JD (1964b) Loess in the Manawatu district, New Zealand. NZ J Geol Geophys 7:389-396

    Google Scholar 

  • Crozier MJ, Pillans BJ (1991) Geomorphic events and landform response in south-eastern Taranaki, New Zealand. Catena 18:471-487

    Google Scholar 

  • Dell RK (2000) Fleming, Charles Alexander. Dictionary of New Zealand Biography. Te Ara – the Encyclopedia of New Zealand, updated 24 September 2013. URL: http://www.TeAra.govt.nz/en/biographies/5f9/fleming-charles-alexander

  • Dickson M, Fleming CA, Grant-Taylor TL (1974) Ngarino Terrace: An addition to the late Pleistocene standard sequence in the Wanganui district. NZ J Geol Geophys 17:789-798

    Google Scholar 

  • Duller GAT (1994) Luminescence dating using feldspars: a test case from southern North Island, New Zealand. Quat Sci Rev 13:423-427

    Google Scholar 

  • Eden DN, Hammond AP (2003) Dust accumulation in the New Zealand region since the last glacial maximum. Quat Sci Rev 22:2037-2052

    Google Scholar 

  • Finlay HJ, Marwick J (1947) New divisions of the New Zealand Upper Cretaceous and Tertiary. NZ J Sci Tech B28:228-236

    Google Scholar 

  • Fleming CA (1944) Molluscan evidence of Pliocene climatic change in New Zealand. Trans Roy Soc NZ 74:207-220

    Google Scholar 

  • Fleming CA (1953) The geology of Wanganui subdivision. NZ Geol Surv Bull 52

    Google Scholar 

  • Fleming CA (ed) (1959) Lexique stratigraphique international. Volume 6, Océanie. Fascicule 4, New Zealand. Centre National de la Recherche Scientifique, Paris

    Google Scholar 

  • Flude S, Storey M (2016) 40Ar/39Ar age of the Rotoiti Breccia and Rotoehu Ash, Okataina Volcanic Complex, New Zealand, and identification of heterogeneously distributed excess 40Ar in supercooled crystals. Quat Geochron 33:13-23

    Google Scholar 

  • Froggatt P, Lowe DJ (1990) A review of late Quaternary silicic and some other tephra formations from New Zealand: their stratigraphy, nomenclature, distribution, volume, and age. NZ J Geol Geophys 33:89-109

    Google Scholar 

  • Froggatt PC, Nelson CS, Carter L et al (1986) An exceptionally large late Quaternary eruption from New Zealand. Nature 319:578-582

    Google Scholar 

  • Gibbard P, Head MJ, Walker M et al (2010) Formal ratification of the Quaternary System/Period and the Pleistocene Series/Epoch with a base at 2.588 Ma. J Quat Sci 25:96-102

    Google Scholar 

  • Goff J, Chague-Goff C, Archer M et al (2012) The Eltanin asteroid impact: possible South Pacific palaeomegatsunami footprint and potential implications for the Pliocene-Pleistocene transition. J Quat Sci 7:660-670

    Google Scholar 

  • Graham IJ, Ditchburn RG, Whitehead NE (2001) Be isotope analysis of a 0-500 ka loess-paleosol sequence from Rangitatau East, New Zealand. Quat Int 76-77:29-42

    Google Scholar 

  • Hogg A, Lowe DJ, Palmer J et al (2012) Revised calendar date for the Taupo eruption derived by 14C wiggle-matching using a New Zealand kauri 14C calibration data set. Holocene 22:439-449

    Google Scholar 

  • Holt KA, Wallace RC, Neall VE et al (2010) Quaternary tephra marker beds and their potential for palaeoenvironmental reconstruction on Chatham Island, east of New Zealand, southwest Pacific Ocean. J Quat Sci 25:1169-1178

    Google Scholar 

  • King WBR, Oakley KP (1949) Definition of the Pliocene-Pleistocene boundary. Nature 163:186-187

    Google Scholar 

  • Kohn BP, Pillans B, and McGlone MS (1992) Zircon fission track age for middle Pleistocene Rangitawa Tephra, New Zealand: Stratigraphic and paleoclimatic significance. Palaeogeog, Palaeoclim, Palaeoecol 95:73-94

    Google Scholar 

  • Kondo R, Childs C, Atkinson I (1994) Opal Phytoliths of New Zealand. Manaaki Whenua Press, Lincoln

    Google Scholar 

  • Lisiecki LE, Raymo ME (2005) A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleocean 20:PA1003

    Google Scholar 

  • Lowe DJ, Tonkin PJ, Palmer J et al (2015) Dusty horizons. In: Graham IJ (ed) A Continent on the Move: New Zealand Geoscience Revealed. Second Edition. Geosci Soc NZ in association with GNS Science, Wellington, pp 286-289

    Google Scholar 

  • Marra MJ, Crozier M, Goff J (2009) Palaeoenvironment and biogeography of a late MIS 3 fossil beetle fauna from South Taranaki, New Zealand. J Quat Sci 24:97-107

    Google Scholar 

  • Matthews NE, Smith C, Costa A et al (2012) Ultra-distal tephra deposits from super-eruptions: Examples from Toba, Indonesia and Taupo Volcanic Zone, New Zealand. Quat Int 258:54-79

    Google Scholar 

  • McGlone MS, Neall VE, Pillans BJ (1984) Inaha Terrace deposits: A late Quaternary terrestrial record in South Taranaki, New Zealand. NZ J Geol Geophys 27:35-49

    Google Scholar 

  • McQueen DR (1953) A fossil flora from the upper Pliocene of Rangitikei Valley. NZ J Sci Tech B35:134-140

    Google Scholar 

  • Mildenhall DC (1975a) Palynology of the Acacia-bearing beds in the Komako district, Pohangina Valley, North Island, New Zealand. NZ J Geol Geophys 18:209-228

    Google Scholar 

  • Mildenhall DC (1975b) New fossil spore from the Pakihikura Pumice (Okehuan; Quaternary), Rangitikei Valley, New Zealand. NZ J Geol Geophys 18:667-674

    Google Scholar 

  • Mildenhall DC (1978) Palynology of the Waipipian and Hautawan stages (Pliocene and Pleistocene), Wanganui, New Zealand (Note). NZ J Geol Geophys 21:775-777

    Google Scholar 

  • Mildenhall DC, Williams DN, Seward D (1977) Ohariu tephra and associated pollen-bearing sediments near Wellington, New Zealand. NZ J Geol Geophys 20:157-164

    Google Scholar 

  • Milne JDG (1973) Mount Curl Tephra, a 230 000-year-old marker bed in New Zealand, and its implications for Quaternary chronology. NZ J Geol Geophys 16:519-532

    Google Scholar 

  • Milne JDG, Smalley IJ (1979) Loess deposits in the southern part of the North Island of New Zealand: an outline stratigraphy. Acta Geologica Scientifica Hungaricae 22:197-204

    Google Scholar 

  • Murray-Wallace CV, Beu AG et al (2000) Palaeoclimatic implications of the occurrence of the arcoid bivalve Anadara trapezia (Deshayes) in the Quaternary of Australasia. Quat Sci Rev 19:559-590

    Google Scholar 

  • Naish T, Kamp PJJ, Alloway BV et al (1996) Integrated tephrochronology and magnetostratigraphy for cyclothemic marine strata, Wanganui Basin: Implications for the Plio-Pleistocene boundary in New Zealand. Quat Int 34-36:29-48

    Google Scholar 

  • Naish T, Kamp PJJ, Pillans B (1997) Recurring global sea-level changes recorded in shelf deposits near the G/M polarity transition, Wanganui Basin, New Zealand: Implications for redefining the Pliocene-Pleistocene boundary. Quat Int 40:61-71

    Google Scholar 

  • Naish TR, Abbott ST, Alloway BV et al (1998) Astronomical calibration of a Southern Hemisphere Plio-Pleistocene reference section, Wanganui Basin, New Zealand. Quat Sci Rev 17:695-710

    Google Scholar 

  • Newnham R, McGlone M, Moar N et al (2013) The vegetation cover of New Zealand at the Last Glacial Maximum. Quat Sci Rev 74:202-214

    Google Scholar 

  • Palmer AS, Pillans B (1996) Record of climatic fluctuations from ca. 500 ka loess deposits and paleosols near Wanganui, New Zealand. Quat Int 34-36:155-162

    Google Scholar 

  • Pillans B (1983) Upper Quaternary marine terrace chronology and deformation, South Taranaki, New Zealand. Geology 11:292-297

    Google Scholar 

  • Pillans B (1985) Drainage initiation by subsurface flow in South Taranaki, New Zealand. Geology 13:262-265

    Google Scholar 

  • Pillans B (1988) Slope evolution on a flight of marine terraces in South Taranaki, New Zealand. Zeitschrift fur Geomorph Supplement N.F. 69: 87-103

    Google Scholar 

  • Pillans B (1990a) Late Quaternary marine terraces, south Taranaki-Wanganui. NZ Geol Surv Misc Ser Map 18

    Google Scholar 

  • Pillans B (1990b) Vertical displacement rates on Quaternary faults, Wanganui Basin. New Zealand. NZ J Geol Geophys 33:271-276

    Google Scholar 

  • Pillans B (1994) Direct marine-terrestrial correlations, Wanganui Basin, New Zealand: the last 1 million years. Quat Sci Rev 13:189-200

    Google Scholar 

  • Pillans B (2013) Quaternary stratigraphy overview. In: Elias SA (ed.). Encyclopedia of Quaternary Science 2nd edition vol 4. Elsevier, Amsterdam, p 189-205

    Google Scholar 

  • Pillans B, Alloway B, Naish T et al (2005) Silicic tephras in Pleistocene shallow-marine sediments of Wanganui Basin, New Zealand. J Roy Soc NZ 35:43-90

    Google Scholar 

  • Pillans B, Gibbard P (2012) The Quaternary Period. In: Gradstein FM, Ogg JG, Schmitz M, Ogg G (eds) The Geologic Time Scale. Elsevier, Amsterdam, p 980-1010

    Google Scholar 

  • Pillans B, Holgate G, McGlone M (1988) Climate and sea level during Oxygen Isotope Stage 7b: On-land evidence from New Zealand. Quat Res 29:176-185

    Google Scholar 

  • Pillans B, Kohn B (1981) Rangitawa Pumice: a widespread(?) Quaternary marker bed in Taranaki-Wanganui. Victoria University of Wellington Geology Department Publication 20: 94-104

    Google Scholar 

  • Pillans B, McGlone M, Palmer A et al (1993) The Last Glacial Maximum in central and southern North Island, New Zealand: a paleoenvironmental reconstruction using the Kawakawa Tephra Formation as a chronostratigraphic marker. Palaeogeog, Palaeoclim, Palaeoecol 101:283-304

    Google Scholar 

  • Pillans B, Naish T (2004) Defining the Quaternary. Quat Sci Rev 23:2271-2282

    Google Scholar 

  • Pillans B, Kohn BP, Berger G et al (1996) Multi-method dating comparison for Mid-Pleistocene Rangitawa Tephra, New Zealand. Quat Sci Rev 15:641-653

    Google Scholar 

  • Pillans BJ, Roberts AP, Wilson GS et al (1994) Magnetostratigraphic, lithostratigraphic and tephrostratigraphic constraints on Lower and Middle Pleistocene sea-level changes, Wanganui Basin, New Zealand. Earth Plan Sci Lett 121:81-98

    Google Scholar 

  • Pillans B, Wright I (1990) 500,000-year paleomagnetic record from New Zealand loess. Quat Res 33:178-187

    Google Scholar 

  • Rio D, Sprovieri R, Castradori D et al (1998) The Gelasian Stage (Upper Pliocene): A new unit of the global standard chronostratigraphic scale. Episodes 21:82-87

    Google Scholar 

  • Saul G, Naish T, Abbott ST et al (1999) Sedimentary cyclicity in the marine Pliocene-Pleistocene of the Wanganui Basin (New Zealand): Sequence stratigraphic motifs characteristic of the past 2.5 m.y. Geol Soc Am Bull 111:524-537

    Google Scholar 

  • Schumm SA (1977) The Fluvial System. John Wiley, New York

    Google Scholar 

  • Seward D (1974a) Some aspects of the sedimentology of the Wanganui Basin, North Island, New Zealand. Dissertation, Victoria University of Wellington, New Zealand

    Google Scholar 

  • Seward D (1974b) Age of New Zealand Pleistocene substages by fission-track dating of glass shards from tephra horizons. Earth Plan Sci Lett 24:242-248

    Google Scholar 

  • Seward D (1976) Tephrostratigraphy of the marine sediments in the Wanganui Basin, New Zealand. NZ J Geol Geophys 19:9-20

    Google Scholar 

  • Seward D (1979) Comparison of zircon and glass fission-track ages from tephra horizons. Geology 7:479-482

    Google Scholar 

  • Shane PAR, Black TM, Alloway BV et al (1996) Early to middle Pleistocene tephrochronology of North Island, New Zealand: implications for volcanism, tectonism and paleoenvironments. Geol Soc Am Bull 108:915-925

    Google Scholar 

  • Stern TA, Quinlan GM, Holt WE (1992) Basin formation behind an active suduction zone: three-dimensional flexure modelling of Wanganui Basin, New Zealand. Basin Res 4:197-215

    Google Scholar 

  • Superior Oil Company (1943). Geology of the Palmerston-Wanganui Basin, “West Side”, North Island, New Zealand, by Feldmeyer AE, Jones BC, Firth CW, Knight J. Typescript and maps filed with Geological Survey, Wellington, New Zealand

    Google Scholar 

  • Te Punga MT (1952) The Geology of Rangitikei Valley. NZ Geol Surv Mem 8

    Google Scholar 

  • Thomson JA (1917) The Hawera Series, or the so-called “drift formation” of Hawera. Trans NZ Inst 49:397-413

    Google Scholar 

  • Vandergoes MJ, Hogg AG, Lowe DJ et al (2013) A revised age for the Kawakawa/Oruanui tephra, a key marker for the Last Glacial Maximum in New Zealand. Quat Sci Rev 74:195-201

    Google Scholar 

  • Wilson CJN (2001) The 26.5 ka Oruanui eruption, New Zealand: an introduction and overview. J Volc Geotherm Res 112:133-174

    Google Scholar 

Download references

Acknowledgments

I would like to pay tribute to the many colleagues and students who have worked with me in Whanganui Basin over more than 40 years. It has been truly a team effort. I also thank David Lowe, Alan Palmer and Alan Beu for their very helpful reviews of the manuscript.

Throughout this chapter I have followed the recommendation of the New Zealand Geographic Board (Ngā Pou Taunaha o Aotearoa) in using the spelling “Whanganui”, rather than ‘Wanganui”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brad Pillans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Atlantis Press and the author(s)

About this chapter

Cite this chapter

Pillans, B. (2017). Quaternary Stratigraphy of Whanganui Basin—A Globally Significant Archive. In: Shulmeister, J. (eds) Landscape and Quaternary Environmental Change in New Zealand. Atlantis Advances in Quaternary Science , vol 3. Atlantis Press, Paris. https://doi.org/10.2991/978-94-6239-237-3_4

Download citation

Publish with us

Policies and ethics