Quaternary Tectonics of New Zealand

Part of the Atlantis Advances in Quaternary Science book series (AAQS, volume 3)


The New Zealand landmass exists because it straddles the active obliquely convergent Pacific-Australia plate boundary, which comprises the opposite-dipping Hikurangi and Fiordland subduction systems linked by the Alpine Fault transform. Changes in the form of the plate boundary along New Zealand are accompanied by variations in the tectonics, sedimentary basins, crustal structure and topography. Quaternary deformation is constrained by structure mapping, growth strata, thermochronology, shallow crustal seismicity, GPS velocities and principal shortening axes, and uplift patterns. The majority of the relative plate motion through New Zealand (>70 %) is accommodated by the Hikurangi subduction thrust, Marlborough Fault System and Alpine Fault. Additional faulting (strike slip, reverse and normal), folding and vertical-axis rotations produce deformation across a plate boundary zone that is 150–450 km wide. The Cenozoic plate boundary formed at least 20 Myr ago, although margin-wide observations suggest that the present rates and kinematics of deformation commenced during the Quaternary. Topography is positively related to rock uplift rates which mainly reflect a combination of geodynamic processes (e.g., collision, subducted sediment under-plating and mantle flow) and fault slip during earthquakes. Contemporary regional-scale topography within the plate boundary zone, where rates of vertical motion are highest, mainly formed in the Quaternary, while elsewhere it may be as old as Late Miocene in age.


  1. Anderson H, Webb T, Jackson JA (1993). Focal mechanisms of large earthquakes in the South Island of New Zealand: implications for the accommodation of Pacific-Australia plate motion. Geophys J Int 115: 1032-1054.Google Scholar
  2. Ansell JH, Bannister SC (1996). Shallow morphology of the subducted Pacific Plate along the Hikurangi margin, New Zealand. Physics Earth Plan Interiors 93: 3-20.Google Scholar
  3. Ballance PF (1976). Evolution of the upper Cenozoic magmatic arc and plate boundary in northern New Zealand. Earth Plan Sci Lett 28: 356-370.Google Scholar
  4. Barnes PM (1996). Active folding of Pleistocene unconformities on the edge of the Australian-Pacific plate boundary zone, offshore North Canterbury, New Zealand. Tectonics 15: 623–640.Google Scholar
  5. Barnes PM (2009). Postglacial (after 20 ka) dextral slip rate of the offshore Alpine fault, New Zealand. Geology 37: 3-6, http://dx.doi.org/10.1130/G24764A.1
  6. Barnes PM, Mercier de Lepinay BM (1997). Rates and mechanics of rapid frontal accretion along the very obliquely convergent southern Hikurangi margin, New Zealand. J Geophys Res 102: 24931-24952.Google Scholar
  7. Barnes PM, Audru JC (1999). Quaternary faulting in the offshore Flaxbourne and Wairarapa Basins, southern Cook Strait, New Zealand. NZ J Geol Geophys 42: 349-367.Google Scholar
  8. Barnes PM, Ghisetti FC (2016). Structure, late Quaternary slip rate and earthquake potential of marine reverse faults along the North Westland deformation front, New Zealand. NZ J Geol Geophys 59: 157-175, DOI:10.1080/00288306.2015.1112816
  9. Barnes PM, Davy B, Sutherland R et al (2002a). Frontal accretion and thrust wedge evolution under very oblique plate convergence: Fiordland Basin, New Zealand. Basin Res 14: 439–466.Google Scholar
  10. Barnes, PM, Nicol A, Harrison A (2002b). Late Cenozoic evolution and earthquake potential of an active listric thrust complex, Hikurangi subduction margin, New Zealand. Geol Soc Am Bull 114: 1379-1405.Google Scholar
  11. Barnes PM, Pondard N (2010). Derivation of direct on‐fault submarine paleoearthquake records from high‐resolution seismic reflection profiles: Wairau Fault, New Zealand. Geochem, Geophysics, Geosystems 11, Q11013, doi:10.1029/2010GC003254.
  12. Barnes PM, Mercier de Lepinay B et al (1998). Strain partitioning in the transition area between oblique subduction and continental collision, Hikurangi margin, New Zealand. Tectonics 17: 534-557.Google Scholar
  13. Barnes PM, Davy B, Sutherland R et al (2002a). Frontal accretion and thrust wedge evolution under very oblique plate convergence: Fiordland Basin, New Zealand. Basin Res 14: 439-466. doi:10.1046/j.1365-2117.2002.00178.x
  14. Barnes PM, Lamarche G, Bialans J, et al. (2010). Tectonic and geological framework for gas hydrates and cold seeps on the Hikurangi subduction margin, New Zealand. Mar Geol 272: 26–48.Google Scholar
  15. Barth NC, Toy VG, Langridge RM, Norris RJ (2012). Scale dependence of oblique plate-boundary partitioning: New insights from LiDAR, central Alpine fault, New Zealand. Lithosphere 4: 435-448. http://dx.doi.org/10.1130/L201.1.
  16. Barth NC, Kulhanek DK, Beu AG et al (2014). New c. 270 kyr strike-slip and uplift rates for the southern Alpine Fault and implications for the New Zealand plate boundary. J Struct Geol 64: 39-52.Google Scholar
  17. Batt GE, Braun J (1999). The tectonic evolution of the Southern Alps, New Zealand: Insights from fully thermally coupled dynamical modelling. Geophys J Int 136: 403–420, doi:10.1046/j.1365-246X.1999.00730.x.
  18. Batt GE, Baldwin SL, Cottam MA et al (2004). Cenozoic plate boundary evolution in the South Island of New Zealand: new thermochronological constraints. Tectonics 23: http://dx.doi.org/10.1029/ 2003TC001527.
  19. Beanland, S. (1995). The North Island dextral fault belt, Hikurangi subduction margin, New Zealand, Unpublished Ph.D. thesis, Victoria Univ. of Wellington, Wellington New Zealand.Google Scholar
  20. Beanland S, Haines J (1998). The kinematics of active deformation in the North Island, New Zealand, determined from geological strain rates. NZ J Geol Geophys 41: 311–323, doi:10.1080/00288306.1998.9514813.
  21. Beanland S, Melhuish A, Nicol A et al (1998). Structure and deformation history of the inner forearc region, Hikurangi subduction margin New Zealand. NZ J Geol Geophys 41: 325-342.Google Scholar
  22. Beavan RJ, Haines J (2001). Contemporary horizontal velocity and strain rate fields of the Pacific-Australian plate boundary zone through New Zealand. J Geophys Res 106: 741-770.Google Scholar
  23. Beavan RJ, Tregoning P, Bevis M et al (2002). Motion and rigidity of the Pacific Plate and implications for plate boundary deformation. J Geophys Res 107(B10): doi:10.1029/2001JB000282.
  24. Beavan J, Ellis S, Wallace L et al (2007). Kinematic constraints from GPS on oblique convergence of the Pacific and Australian Plates, central South Island, New Zealand, in “A Continental Plate Boundary: Tectonics at South Island, New Zealand”. Geophys. Monogr. Ser., vol. 175, edited by D. Okaya, T. Stern, and F. Davey, pp. 75–94, AGU, Washington, D. C., doi:10.1029/175GM05.
  25. Beavan RJ, Denys P, Denham M et al (2010). Distribution of present-day vertical deformation across the Southern Alps, New Zealand, from 10 years of GPS data. Geophys Res Lett 37: L16305.Google Scholar
  26. Beavan J, Fielding E, Motagh M et al (2011). Fault Location and Slip Distribution of the 22 February 2011 MW 6.2 Christchurch, New Zealand, Earthquake from Geodetic Data. Seism Res Lett 82: 789-799, doi:10.1785/gssrl.82.6.789.
  27. Beavan J, Wallace LM, Palmer N et al (2016). New Zealand GPS velocity field: 1995–2013. NZ J Geol Geophys 59: 5-14, DOI:10.1080/00288306.2015.1112817
  28. Begg JG, Johnston MR (2000). Geology of the Wellington Area. Institute of Geological and Nuclear Sciences 1:250,000 Geological Map 10.Google Scholar
  29. Bennett ER, Youngson JH, Jackson JA et al (2005). Growth of South Rough Ridge, Central Otago, New Zealand: using in situ cosmogenic isotopes and geomorphology to study an active blind reverse fault. J Geophys Res 110: B020404, doi:10.1029/2004JB003184.
  30. Berryman K, Marden M, Palmer A et al (2009). Holocene rupture of the Repongaere fault, Gisborne: Implications for Raukumara Peninsula deformation and impact on the Waipaoa Sedimentary System, NZ J Geol Geophys 52: 335-347, DOI:10.1080/00288306.2009.9518462.
  31. Berryman K, Cochran UA, Clark KJ et al (2012). Major Earthquakes Occur Regularly on an Isolated Plate Boundary Fault. Science 336: 1690 (2012); doi:10.1126/science.1218959.
  32. Bradshaw JD (1989). Cretaceous geotectonic patterns in the New Zealand region. Tectonics 8: 803-820.Google Scholar
  33. Brothers RN (1984). Subduction regression and oceanward migration of volcanism, North Island, New Zealand. Nature 309: 698–700.Google Scholar
  34. Browne GH (1992). The northeastern portion of the Clarence Fault: Tectonic implications for late Neogene evolution of Marlborough, New Zealand. NZ J Geol Geophys 35: 437–445, doi:10.1080/00288306. 1992.9514538.Google Scholar
  35. Bull WB, Cooper AF (1986). Uplifted marine terraces along the Alpine fault, New Zealand. Science 234: 1225-1228.Google Scholar
  36. Cande SC, Stock JM (2004). Pacific-Antarctic-Australia motion and the formation of the Macquarie Plate. Geophys J Int 157: 399-414.Google Scholar
  37. Cashman SM, Kelsey HM; Erdman CF et al. (1992). Strain partitioning between structural domains in the forearc of the Hikurangi subduction zone, New Zealand. Tectonics 11: 242-257.Google Scholar
  38. Clark K, Berryman K, Litchfield N et al (2010). Evaluating the coastal deformation mechanisms of the Raukumara Peninsula, northern Hikurangi subduction margin, New Zealand and insights into forearc uplift processes, NZ J Geol Geophys 53:4, 341-358, DOI:10.1080/00288306.2010.520324
  39. Clark KJ, Hayward BW, Cochran UA et al (2015). Evidence for past subduction earthquakes at a plate boundary with widespread upper plate faulting: southern Hikurangi margin, New Zealand. Bull Seism Soc Am 105:doi:10.1785/0120140291
  40. Cochran UA, Berryman KR, Zachariasen J et al (2006). Paleoecological insights into subduction zone earthquake occurrence, eastern North Island, New Zealand. Geol Soc Am Bull 118:1051-1074.Google Scholar
  41. Cooper AF, Barreiro BA, Kimbrough DLet al (1987). Lamprophyre dyke intrusion and the age of the Alpine Fault, New Zealand. Geology 15: 941–944.Google Scholar
  42. Cowan HA (1990). Late Quaternary displacements on the Hope Fault at Glynn Wye, North Canterbury. NZ J Geol Geophys 33: 285–293.Google Scholar
  43. Cox SC, Sutherland R (2007). Regional geological framework of South Island, New Zealand, and its significance for understanding the active plate boundary. In: A continental Plate Boundary: Tectonics at South Island, New Zealand. Geophysical Monograph, 175 (eds Okaya, D.A., Stern, T.A., Davey, F.J.), 19-46. American Geophysical Union, Washington, DC.Google Scholar
  44. Cox SC, Stirling MW, Herma F et al (2012). Potentially active faults in the rapidly eroding landscape adjacent to the Alpine Fault, central Southern Alps, New Zealand. Tectonics 31: TC2011, doi:10.1029/2011TC003038, 2012
  45. Craw D, Upton P, Burridge CP et al (2015). Rapid biological speciation driven by tectonic evolution in New Zealand. Nat Geosci, 9: 140-145 doi:10.1038/NGEO2618.
  46. Darby D, Beanland S (1992). Possible source models for the 1855 Wairarapa earthquake, New Zealand. J Geophys Res 97: 12375-12389.Google Scholar
  47. Davy B, Hoernle K, Werner R (2008). Hikurangi Plateau: crustal structure, rifted formation, and Gondwana subduction history. Geochem, Geophys, Geosystems 9: Q07004, http://dx.doi.org/10.1029/2007GC001855
  48. DeMets C, Gordon RG, Argus DF (2010). Geologically current plate motions. Geophysic J Int 181: 1-80.Google Scholar
  49. Dimitrova LL, Wallace LM, Haines AJ et al (2016). High-resolution view of active tectonic deformation along the Hikurangi subduction margin and the Taupo Volcanic Zone, New Zealand. NZ J Geol Geophys 59: 43-57.Google Scholar
  50. Downes GL, Dowrick DJ (2015). Atlas of isoseismal maps of New Zealand earthquakes, 1843-2003, 2nd Edition. Institute of Geological & Nuclear Sciences monograph 25. Lower Hutt: Institute of Geological & Nuclear Sciences.Google Scholar
  51. Eberhart-Phillips D, Chadwick M (2002). Three-dimensional attenuation model of the shallow Hikurangi subduction zone in the Raukumara Peninsula, New Zealand. J Geophys Res 107: 10.1029/2000JB000046.
  52. Eberhart-Phillips D, Bannister S (2010). 3-D imaging of Marlborough, New Zealand, subducted plate and strike-slip fault systems. Geophys J Int 182: 73–96, doi:10.1111/j.1365-246X.2010.04621.x.
  53. Edbrooke SW, Heron DW, Forsyth PJ, Jongens R (compilers) (2015) Geology Map of New Zealand 1:1 000 000. GNS Science Map 2. Lower Hutt, New Zealand, GNS Science.Google Scholar
  54. Furlong KP, Kamp PJJ (2009). The lithospheric geodynamics of plate boundary transpression in New Zealand: Initiating and emplacing subduction along the Hikurangi margin, and the tectonic evolution of the Alpine Fault system. Tectonophysics 474: 449–462, doi:10.1016/j.tecto.2009.04.023.
  55. Ghani MA (1978). Late Cenozoic vertical crustal movements in the central part of New Zealand. NZ J Geol Geophys 21: 117– 125.Google Scholar
  56. Ghisetti F, Sibson RH (2006). Accommodation of compressional inversion in northwestern South Island (New Zealand): old faults versus new. J Struct Geol 28: 1994–2010.Google Scholar
  57. Ghisetti FC, Gorman AR, Sibson RH (2007). Surface breakthrough of a basement fault by repeated seismic slip episodes: The Ostler Fault, South Island, New Zealand. Tectonics 26: TC6004, doi:10.1029/2007TC002146.
  58. Ghisetti F, Barnes PM, Sibson RH (2014). Deformation of the top basement unconformity west of the Alpine Fault (South Island, New Zealand): seismotectonic implications. NZ J Geol Geophys http://dx.doi.org/10.1080/00288306.2013.876433.
  59. Ghisetti F, Sibson RH, Hamling I (2016). Deformed Neogene basins, active faulting and topography in Westland: Distributed crustal mobility west of the Alpine Fault transpressive plate boundary (South Island, New Zealand). Tectonophysics (in press).Google Scholar
  60. Giba M, Nicol A, Walsh JJ (2010). Evolution of faulting and volcanism in the Taranaki Basin, New Zealand, and its implications for Hikurangi subduction. Tectonics 29: TC4020, doi:10.1029/2009TC002634.
  61. Grapes R, Little T, Downes G (1998). Rupturing of the Awatere Fault During the 1848 October 16 Marlborough Earthquake, New Zealand: Historical and Present Day Evidence. NZ J Geol Geophys 41: 387–399.Google Scholar
  62. Grapes RH, Holgate G (2014). Earthquake clustering and possible fault interactions across Cook Strait, New Zealand, during the 1848 and 1855 earthquakes. NZ J Geol Geophys 57: 312-330, DOI:10.1080/00288306.2014.907579.
  63. Herman F, Cox SC, Kamp PJJ (2009). Low-temperature thermochronology and thermokinematic modeling of deformation, exhumation, and development of topography in the central Southern Alps, New Zealand. Tectonics 28: http://dx.doi.org/10.1029/2008TC002367.
  64. Holt WE, Stern TA (1994). Subduction, platform subsidence, and foreland thrust loading: the late Tertiary development of Taranaki Basin New Zealand. Tectonics 13: 1068-1092.Google Scholar
  65. Holt WE, Haines AJ (1995). The kinematics of northern South Island, New Zealand, determined from geological strain rates. J Geophys Res 100: 17,991–18,010.Google Scholar
  66. House MA, Gurnis M, Kamp PJJ et al (2002). Uplift in the Fiordland Region, New Zealand: Implications for incipient subduction. Science 297: 2038–2041.Google Scholar
  67. Howard M, Nicol A, Campbell J et al (2005). Holocene paleoearthquakes on the strike-slip Porters Pass Fault, Canterbury, New Zealand. NZ J Geol Geophys 48: 59–74, doi:10.1080/00288306.2005.9515098.
  68. Howarth JD, Fitzsimons SJ, Norris RJ et al (2014). Lake sediments record high intensity shaking that provides insight into the location and rupture length of large earthquakes on the Alpine Fault, New Zealand. Earth Plan Sci Lett 403: 340-351.Google Scholar
  69. Jackson J, Norris R, Youngson J (1996). The structural evolution of active fault and fold systems in central Otago, New Zealand: evidence revealed by drainage patterns. J Struct Geol 18: 217 to 234.Google Scholar
  70. Kamp PJJ (1986). The mid-Cenozoic Challenger rift system of western New Zealand and its implications for the age of Alpine Fault inception. Geol Soc Am Bull 97: 255–281.Google Scholar
  71. Kamp PJJ (1987). Age and origin of the New Zealand orocline in relation to Alpine Fault movement. J Geol Soc London 144: 641-652.Google Scholar
  72. Kelsey HM, Cashman SM, Beanland S et al (1995). Structural evolution along the inner forearc of the obliquely convergent Hikurangi margin, New Zealand. Tectonics 14: 1-18.Google Scholar
  73. Kim KJ, Sutherland R (2003). Uplift rate and landscape development in southwest Fiordland, New Zealand, determined using 10Be and 26Al exposure dating of marine terraces. Geochim Cosmochim Acta 68: 2313-2319.Google Scholar
  74. King PR, Thrasher GP (1996). Cretaceous-Cenozoic geology and petroleum systems of the Taranaki Basin, New Zealand, Institute of Geological & Nuclear Sciences Monograph 13, 243 pp., Institute of Geological & Nuclear Sciences, Lower Hutt, New Zealand.Google Scholar
  75. Koons PO, Norris RJ, Craw D et al (2003). Influence of exhumation on the structural evolution of transpressional plate boundaries: an example from the Southern Alps, New Zealand. Geology 31: 3-6.Google Scholar
  76. Lamarche G, Proust J-N, Nodder SD (2005). Long-term slip rates and fault interactions under low contractional strain, Wanganui Basin, New Zealand. Tectonics 24: TC4004, doi:10.1029/2004TC001699.
  77. Lamb S (2012). Cenozoic tectonic evolution of the New Zealand plate-boundary zone: a paleomagnetic perspective. Tectonophysics 509: 135-164.Google Scholar
  78. Lamb SH, Bibby HM (1989). The last 25 Ma of rotational deformation in part of the New Zealand plate boundary zone. J Struct Geol 11: 473-492.Google Scholar
  79. Landis CA, Campbell HJ, Begg JG et al (2008). The Waipounamu erosion surface: questioning the antiquity of the New Zealand land surface and terrestrial fauna and flora. Geolog Mag 145: 173–197.Google Scholar
  80. Langridge RC, Hill N, Pere V et al (2003). Paleoseismology and slip rate of the Conway segment of the Hope Fault at Greenburn Sream, South Island, New Zealand. Annals Geophys 46: 1119-1140.Google Scholar
  81. Langridge R, Berryman K (2005). Morphology and slip rate of the Hurunui section of the Hope Fault, South Island, New Zealand. NZ J Geol Geophys 48: 43-57.Google Scholar
  82. Langridge R, Villamor P, Basili R et al (2010). Revised slip rates for the Alpine fault at Inchbonnie: Implications for plate boundary kinematics of South Island, New Zealand. Lithosphere 2: 139-152.Google Scholar
  83. Langridge RM, Ries WF, Litchfield NJ et al (2016). The New Zealand Active Faults Database. NZ J Geol Geophys 59: 86-96. DOI:10.1080/00288306.2015.1112818.
  84. Li C, van der Hilst RD, Engdahl ER et al (2008). A new global model for P wave speed variations in Earth’s mantle. Geochemistry, Geophysics, Geosystems 9(5): Q05018, http://dx.doi.org/ 10.1029/2007GC001806.
  85. Litchfield N, Campbell JK, Nicol A (2003). Recognition of active reverse faults and folds in North Canterbury, New Zealand, using structural mapping and geomorphic analysis. New Zealand Journal of Geology and Geophysics 46: 563-579.Google Scholar
  86. Litchfield N, Ellis S, Berryman K et al (2007). Insights into subduction related uplift along the Hikurangi Margin, New Zealand, using numerical modeling. J Geophysl Res (Earth Surf) 112: F02021, doi:10.1029/2006JF000535.
  87. Litchfield NJ, Wilson KJ, Berryman KRet al (2010). Coastal uplift mechanisms at Pakarae River mouth: constraints from a combined Holocene fluvial and marine terrace dataset. Mar Geol 270: 72-83, doi:10.1016/j.margeo.2009.10.003
  88. Litchfield NJ, Van Dissen R, Sutherland R et al (2014). A model of active faulting in New Zealand. NZ JGeolGeophys 57: 32-56, doi:10.1080/00288306.2013.854256.
  89. Little TA, Roberts AP (1997). Distribution and mechanism of Neogene to present-day vertical axis rotations, Pacific-Australian plate boundary zone, South Island, New Zealand. J Geophys Res 102: 20,447–20,468.Google Scholar
  90. Little TA, Jones A (1998). Seven million years of strike-slip and related off-fault deformation, northeastern Malborough fault system, South Island, New Zealand. Tectonics 17: 285-302.Google Scholar
  91. Little TA, Grapes R, Berger GW (1998). Late Quaternary strike-slip on the eastern part of the Awatere fault, South Island, New Zealand. Geol SocAm Bull 110: 127–148, doi:10.1130/0016-7606(1998) 110<0127:LQSSOT>2.3.CO;2.
  92. Little TA, Van Dissen R, Schermer Eet al (2009). Late Holocene surface ruptures on the southern Wairarapa fault, New Zealand: Link between earthquakes and the uplifting of beach ridges on a rocky coast. Lithosphere 1: 4–28, doi:10.1130/L7.1.
  93. Little TA, Van Dissen RJ, Rieser U, (2010). Coseismic strike slip at a point during the last four earthquakes on the Wellington Fault near Wellington, New Zealand. J Geophys Res 115: B05403, doi:10.1029/2009JB006589.
  94. Mason DPM, Little TA (2006). Refined slip distribution and moment magnitude of the 1848 earthquake, Awatere Fault, New Zealand. NZ J Geol Geophys 49: 375–382.Google Scholar
  95. McSaveney MJ, Graham IJ, Begg JG et al (2006). Late Holocene uplift of beach ridges at Turakirae Head, south Wellington coast, New Zealand. NZ J Geol Geophys 49: 337-358.Google Scholar
  96. Mortimer N (2004). New Zealand’s geological foundations. Gondwana Res 7: 261–272.Google Scholar
  97. Mortimer N (2014). The oroclinal bend in the South Island, New Zealand. J Structural Geol 64: 32-38. http://dx.doi.org/10.1016/j.jsg.2013.08.011
  98. Mountjoy JJ, Barnes PM (2011). Active upper plate thrust faulting in regions of low plate interface coupling, repeated slow slip events, and coastal uplift: example from the Hikurangi Margin, New Zealand. Geochem, Geophys, Geosystems 12: Q01005. doi:10.1029/2010GC003326
  99. Mouslopoulou V, Nicol A, Little TA (2007). Displacement transfer between intersecting regional strike-slip and extensional fault systems. J Structural Geol 29: 100-116.Google Scholar
  100. Mouslopoulou V, Walsh JJ, Nicol A (2009). Fault displacement rates on a range of timescales. Earth Plan Sci Lett 278: 186-197.Google Scholar
  101. Mouslopoulou V, Nicol A, Begg J et al (2015). Clusters of mega-earthquakes on upper plate faults control the Eastern Mediterranean hazard. Geophys Res Lett DOI:10.1002/2015GL066371.
  102. Nicol A (2011). Landscape history of the Marlborough Sounds, New Zealand. New Zealand NZ J Geol Geophys 54: 195-208.Google Scholar
  103. Nicol A, Van Dissen R (2002). Up-dip partitioning of displacement components on the oblique-slip Clarence Fault, New Zealand. J Struct Geol 24: 1521–1535, doi:10.1016/S0191-8141(01)00141-9.
  104. Nicol A, Beavan J (2003). Shortening of an overriding plate and its implications for slip on a subduction thrust, central Hikurangi Margin, New Zealand. Tectonics 22(6): 1070, doi:10.1029/2003TC001521.
  105. Nicol A, Wallace LM (2007). Temporal stability of deformation rates: comparison of geological and geodetic observations, Hikurangi subduction margin, New Zealand. Earth Plan Sci Lett 258: 397-413, doi:10.1016/j.epsl.2007.03.039
  106. Nicol A, Alloway BV, Tonkin PJ (1994). Rates of deformation, uplift and landscape development associated with active folding in the Waipara area of North Canterbury, New Zealand. Tectonics 13: 1321-1344.Google Scholar
  107. Nicol A, Van Dissen RJ, Vella P et al (2002). Growth of contractional structures during the last 10 m.y. at the southern end of the emergent Hikurangi forearc basin, New Zealand, NZ J Geol Geophys 45: 365-385.Google Scholar
  108. Nicol A, Mazengarb C, Chanier F et al (2007). Tectonic evolution of the active Hikurangi subduction margin, New Zealand, since the Oligocene. Tectonics 26: TC4002, doi:10.1029/2006TC002090.
  109. Nicol A, Walsh JJ, Mouslopoulou V et al (2009). Earthquake histories and an explanation for Holocene acceleration of fault displacement rates. Geology 37 (10): 911–914; doi:10.1130/G25765A.
  110. Nicol A, Robinson R, Van Dissen R, Harvison A (2016a). Variability of recurrence interval and single-event slip for surface-rupturing earthquakes in New Zealand. NZ J Geol Geophys 59: 97-116. http://dx.doi.org/10.1080/00288306.2015.1127822
  111. Nicol A, Van Dissen, R, Stirling M, Gerstenberger M (2016b). Completeness of the paleoseismic active fault record in New Zealand. Seism Res Lett. 87(6): doi:10.1785/0220160088.
  112. Norris RJ, Cooper AF (1995). Origin of small-scale segmentation and transpressional thrusting along the Alpine fault, New Zealand. Geol Soc Am Bull 107: 231-240.Google Scholar
  113. Norris RJ, Cooper AF (2001). Late Quaternary slip rates and slip partitioning on the Alpine Fault, New Zealand. J Struct Geol 23: 507-520.Google Scholar
  114. Norris RJ, Cooper AF (2007). The Alpine Fault, New Zealand: Surface geology and field relationships, in A Continental Plate Boundary: Tectonics at South Island, New Zealand, Geophys. Monogr. Ser., vol. 175, Okaya D, Stern T, and Davey F, (eds) 157–175, AGU, Washington, D. C., doi:10.1029/175GM09.
  115. Norris RJ, Toy VG (2014). Continental transforms: A view from the Alpine Fault. J Struct Geol 64: 3-31, http://dx.doi.org/10.1016/j.jsg.2014.03.003
  116. Norris RJ, Koons PO, Cooper AF (1990). The obliquely-convergent plate boundary in the South Island of New Zealand: implications for ancient collision zones. J Struct Geol12: 715-725.Google Scholar
  117. Ota Y, Pillans B, Berryman K et al (1996). Pleistocene coastal terraces of Kaikoura Peninsula and the Marlborough coast, South Island, New Zealand, NZ J Geol Geophys 39: 51-73, DOI:10.1080/00288306.1996.9514694.
  118. Pillans B (1986). A late quaternary uplift map for North Island, New Zealand. Roy Soc NZ Bull 24: 409-417.Google Scholar
  119. Pillans B, Pullar WA, Selby MJ et al (1992). The age and development of the New Zealand landscape. In: Landforms of New Zealand, Soons, JM & Selby, MJ (eds) Longman Paul.Google Scholar
  120. Pettinga JR (2004). Three-stage massive gravitational collapse of the emergent imbricate frontal wedge, Hikurangi Subduction Zone, New Zealand. NZ J Geol Geophys, 47: 399-414.Google Scholar
  121. Pondard N, Barnes PM (2010). Structure and paleoearthquake records of active submarine faults, Cook Strait, New Zealand: Implications for fault interactions, stress loading, and seismic hazard. J Geophys Res 115 (B12320): doi:10.1029/2010JB007781.
  122. Pulford A, Stern T (2004). Pliocene exhumation and landscape evolution of central North Island: The role of the upper mantle. J Geophys Res 109: F01016, http://dx.doi.org/10.1029/2003JF000046.
  123. Rait G, Chanier F, Waters DW (1991). Landward- and seaward-directed thrusting accompanying the onset of subduction beneath New Zealand. Geology 19: 230-233.Google Scholar
  124. Randall K, Lamb S, Mac Niocaill C (2011). Large tectonic rotations in a wide zone of Neogene distributed dextral shear, northeastern South Island, New Zealand. Tectonophysics 509: 165–180.Google Scholar
  125. Rattenbury MS, Cooper RA, Johnston MR (1998). Geology of the Nelson area, Institute of Geological and Nuclear Sciences, map, scale 1:250,000, geological map 9, 67 pages + folded map.Google Scholar
  126. Reilly C, Nicol A, Walsh JJ et al (2015). Evolution of faulting and plate boundary deformation in the Southern Taranaki Basin, New Zealand. Tectonophysics 651: 1-18, DOI:10.1016/j.tecto.2015.02.009
  127. Reyners M (2013). The central role of the Hikurangi Plateau in the Cenozoic tectonics of New Zealand and the Southwest Pacific. Earth Plan Sci Lett 361: 460–468, http://dx.doi.org/10.1016/j.epsl.2012.11.010.
  128. Reyners M, Robinson R, McGinty P (1997). Plate coupling in the northern South Island and southernmost North Island, New Zealand, as illuminated by earthquake focal mechanisms. J Geophys Res 102: 8331-8363.Google Scholar
  129. Reyners M, Robinson R, Pancha A et al (2002). Stresses and strains in a twisted subduction zone — Fiordland, New Zealand. Geophys J Int 148: 637–648.Google Scholar
  130. Reyners ME, Eberhart-Phillips D et al (2006). Imaging subduction from the trench to 300 km depth beneath the central North Island, New Zealand, with Vp and Vp/Vs. Geophys J Int 165: 565-583.Google Scholar
  131. Rodgers DW, Little TA (2006). World’s largest coseismic strike-slip offset: The 1855 rupture of the Wairarapa Fault, New Zealand, and implications for displacement/length scaling of continental earthquakes. J Geophys Res 111: B12408, doi:10.1029/2005JB004065.
  132. Rowland JR, Sibson RH (2001). Extensional fault kinematics within the Taupo Volcanic Zone, New Zealand: Soft-linked segmentation of a continental rift system. NZ J Geol Geophys 44: 271-283.Google Scholar
  133. Sadler PM (1981). Sediment accumulation rates and the completeness of stratigraphic sections. J Geol 89: 569–584, doi:10.1086/628623.
  134. Sandwell DT, Müller RD, Smith WHF et al (2014). New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science 346: 65-67, doi:10.1126/science.1258213, 2014.
  135. Shane PAR, Black TM, Alloway BV (1996). Early to middle Pleistocene tephrochronology of North Island, New Zealand: Implications for volcanism, tectonism, and paleoenvironments. Geol Soc Am Bull 108: 915-925.Google Scholar
  136. Sibson RH, White SH, Atkinson BK (1979). Fault rock distribution and structure within the Alpine Fault Zone: a preliminary account. In: Walcott, R.I., Cresswell, M.M. (Eds.), The Origin of the Southern Alps. Roy Soc NZ Bull 18: 55-65.Google Scholar
  137. Simpson GDH, Cooper AF, Norris RJ (1994). Late Quaternary evolution of the Alpine fault zone at Paringa, South Westland. New Zealand. NZ J Geol Geophys 37: 49-58.Google Scholar
  138. Stagpoole V, Nicol A (2008). Regional structure and kinematic history of a large subduction back thrust; Taranaki Fault, New Zealand. J Geophys Res (Earth Surf) 113: B01403, doi:10.1029/2007JB005170, 2008.
  139. Stern TA, Quinlan GM, Holt WE (1992). Basin formation behind an active subduction zone: Three-dimensional flexural modelling of Wanganui Basin, New Zealand. Basin Res 4: 197– 214.Google Scholar
  140. Stern T, Molnar P, Okaya D et al (2000). Teleseismic P wave delays and modes of shortening the mantle lithosphere beneath South Island, New Zealand. J Geophys Res: Solid Earth 105: 21615-21631Google Scholar
  141. Stern TA, Stratford WR, Salmon ML (2006). Subduction evolution and mantle dynamics at a continental margin: Central North Island, New Zealand. Rev Geophys 44: RG4002 10.1029/2005RG000171.
  142. Stirling M, McVerry G., Gerstenberger M et al (2012). National Seismic Hazard Model for New Zealand: 2010 Update. Bull Seism Soc Am 102: 1514–1542, doi:10.1785/0120110170.
  143. Stock J, Molnar P (1982). Uncertainties in the relative positions of the Australia, Antarctica, Lord Howe, and Pacific plates since the Late Cretaceous. J Geophys Res 87: 4697-4714.Google Scholar
  144. Seebeck H, Nicol A, Giba M et al (2014a). Geometry of the subducting Pacific plate since 20 Ma, Hikurangi margin, New Zealand. J Geol Soc London 171: 131-143. doi.org/10.1144/jgs2012-145.
  145. Seebeck H, Nicol A, Villamor P et al (2014b). Structure and kinematics of the Taupo Rift, New Zealand. Tectonics 33: doi:10.1002/2014TC003569.
  146. Sutherland R (1999). Cenozoic bending of New Zealand basement terranes and Alpine Fault displacement: a brief review. NZ J Geol Geophys 42: 295-301.Google Scholar
  147. Timm C, Hoernle K, Werner R et al (2010). Temporal and geochemical evolution of the Cenozoic intraplate volcanism of Zealandia. Earth-Sci Rev 98: 38-64.Google Scholar
  148. Tippett JM, Kamp PJJ (1993). Fission track analysis of the Late Cenozoic vertical kinematics of continental Pacific crust, South Island, New Zealand. J Geophys Res 98: 16119-16148.Google Scholar
  149. Townend J, Sherburn S, Arnold R (2012). Three-dimensional variations in present-day tectonic stress along the Australia–Pacific plate boundary in New Zealand. Earth Plan Sci Lett 353: 47-59.Google Scholar
  150. Van Dissen R, Yeats R (1991). Hope Fault, Jordan Thrust, and uplift of the Seaward Kaikoura Range, New Zealand. Geology 19: 363-369.Google Scholar
  151. Van Dissen R, Berryman KR (1996). Surface rupture earthquakes over the last 1000 years in the Wellington region, New Zealand, and implications for ground shaking hazard. Jf Geophysical Res 101: 5999–6019.Google Scholar
  152. Van Dissen R, Nicol A. (2009). Mid-Holocene paleoseismicity of the eastern Clarence Fault, Marlborough, New Zealand. NZ J Geol Geophys 52: 195–208, doi:10.1080/00288300909509886.
  153. Villamor P, Berryman KR (2001). A late Quaternary extension rate in the Taupo Volcanic Zone, New Zealand, derived from fault slip data. NZ J Geol Geophys 44: 243–269.Google Scholar
  154. Walcott RI (1978). Present tectonics and late Cenozoic evolution of New Zealand. Geophys J Roy Astron Soc 52: 137-164.Google Scholar
  155. Walcott RI (1984). The kinematics of the plate boundary zone through New Zealand: A comparison of short- and long-term deformations. Geophys J Roy Astron Soc 79: 613–633.Google Scholar
  156. Walcott RI (1987). Geodetic strain and the deformational history of the North Island of New Zealand during the late Cainozoic. Philosophical Transactions of the Royal Society of London A321: 163-181.Google Scholar
  157. Walcott RI (1989). Paleomagnetically observed rotations along the Hikurangi margin of New Zealand, in Paleomagnetic rotations and continental deformation, Kissel C, Laj C, (eds) Kluwer Academic Publishers, Dordrecht, p. 459-471.Google Scholar
  158. Walcott RI (1998). Modes of oblique compression: late Cenozoic tectonics of the South Island, New Zealand. Rev Geophys 36: 1-26.Google Scholar
  159. Wallace L, Beavan J, McCaffrey R et al (2004). Subduction zone coupling and tectonic block rotations in the North Island, New Zealand. J Geophys Res 109(B12): doi:10.1029/2004JB003241.
  160. Wallace LM, Beavan J, McCaffrey R et al (2007). Balancing the plate motion budget in the South Island, New Zealand using GPS, geological and seismological data. Geophys J Int 168: 332-352.Google Scholar
  161. Wallace LM, Ellis S, Mann P (2009a). Collisional model for rapid fore-arc block rotations, arc curvature, and episodic back-arc rifting in subduction settings. Geochem, Geophys, Geosystems 10: Q05001, doi:10.1029/2008GC002220.
  162. Wallace LM, Reyners M, Cochran U et al (2009b). Characterizing the seismogenic zone of a major plate boundary subduction thrust: Hikurangi Margin, New Zealand. Geochemistry, Geophysics, Geosystems, 10(10), Q10006, doi:10.1029/2009GC002610.
  163. Wallace LM, Barnes P, Beavan J et al (2012). The kinematics of a transition from subduction to strike-slip: an example from the central New Zealand plate boundary. J Geophys Res 117: B02405. http://dx.doi.org/10.1029/2011JB008640.
  164. Webb TH, Anderson HA (1998). Focal mechanisms of large earthquakes in the North Island of New Zealand: Slip partitioning at an oblique active margin. Geophys J Int 134: 40–86, doi:10.1046/j.1365-246x.1998. 00531.x.
  165. Weldon R, Scharer K, Fumal T et al (2004). Wrightwood and the earthquake cycle: What a long recurrence record tells us about how faults work: GSA Today 14: doi:10.1130/1052-5173(2004)014<4:WATECW>2.0.CO;2
  166. Wellman HW (1956). Structural Outline of New Zealand. In: DSIR Bulletin 121. Department of Scientific and Industrial Research, Wellington, 36.Google Scholar
  167. Wellman HW (1979). An uplift map for the South Island of New Zealand, and a model for the uplift of the Southern Alps. Roy Soc NZ Bull 18: 13-20.Google Scholar
  168. Wells A, Goff J (2007). Coastal dunes in Westland, New Zealand, provide a record of paleoseismic activity on the Alpine fault. Geology 35: 731-734; doi:10.1130/G23554A.1.
  169. Wilson CJN, Houghton BF, McWilliams MO et al (1995). Volcanic and structural evolution of the Taupo Volcanic Zone, New Zealand: a review. J Volc Geotherm Res 68: 1-28.Google Scholar
  170. Wood RA, Pettinga JR, Bannister S et al (1994). Structure of the Hanmer strike-slip basin, Hope fault, New Zealand. Geol Soc Am Bull 106, 1459–1473, doi:10.1130/0016-7606(1994)106<1459:SOTHSS>2.3.CO;2.
  171. Yetton MD (2002). Paleoseismic investigation of the North and West Wairau sections of the Alpine Fault, South Island, New Zealand. EQC Research Report 99/353, 80.Google Scholar
  172. Zachariasen J, Berryman K., Langridge R et al (2006). Timing of late Holocene surface rupture of the Wairau Fault, Marlborough, New Zealand. NZ J Geol Geophys 49: 159–174, doi:10.1080/00288306.2006.9515156.

Copyright information

© Atlantis Press and the author(s) 2017

Authors and Affiliations

  1. 1.Department of Geological SciencesUniversity of CanterburyChristchurchNew Zealand
  2. 2.GNS ScienceLower HuttNew Zealand

Personalised recommendations