Skip to main content

Influence of Preparation Method on SOP Modes in ZnO Doped with CoO Nanoparticles

  • Conference paper
  • First Online:
Book cover Proceedings of the IV Advanced Ceramics and Applications Conference

Abstract

The aim of the present work is to study influence of preparation method on samples characteristics, creation and behavior of surface optical phonons (SOP) modes with change of concentration of doping elements by micro Raman spectroscopy. Nanocrystalline samples of ZnO(Co) were prepared by use of traditional wet chemistry method followed by calcinations and the microwave assisted hydrothermal synthesis. The phase composition of the samples (ZnO, Co3O4, ZnCo2O4) and the mean crystalline size (14–300 nm) were determined using X-ray diffraction measurements. In this paper we report the experimental spectra of Raman scattering (from 100 to 1600 cm−1) for both type of samples. Main characteristic of experimental Raman spectrum are: sharp peak at 436 cm−1 and broad multi phonon structure at ~1150 cm−1, typical for ZnO; sharp peaks at 194, 482, 521, 618 and 691 cm−1 typical for Co3O4 and sharp peaks at 185, 475, 520, 610 and 690 cm−1 typical for ZnCo2O4 nanoparticles. The phonon of registered phase’s exhibit effects connected to phase concentration, while the SOP phonon mode exhibit significant confinement effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Gleize, E. Chikoidze, Y. Dumont, E. Rzepka, O. Gorochov, Resonant Raman scattering in Mn:ZnO dilute magnetic semiconductors. Superlattices Microstruct. 42, 242–245 (2007)

    Article  Google Scholar 

  2. D.F. Wang, S.Y. Park, H.W. Lee, Y.S. Lee, V.D. Lam, Y.P. Lee, Room-temperature ferromagnetism of ZnO/Zn 0.96 Mn 0.04 O core-shell nanowimble. Phys. Stat. Sol. A 204, 4029–4032 (2007)

    Article  Google Scholar 

  3. I. Kuryliszyn-Kudelska, B. Hadžić, D. Sibera, M. Romčević, N. Romčević, U. Narkiewicz, W. Dobrowolski, Dynamic magnetic properties of ZnO nanocrystals incorporating Fe. JALLCOM 509, 3756–3759 (2011)

    Google Scholar 

  4. I. Kuryliszyn-Kudelska, B. Hadžić, D. Sibera, M. Romčević, N. Romčević, U. Narkiewicz, W. Lojkowski, M. Arciszewska, W. Dobrowolski, Magnetic properties of ZnO(Co) nanocrystals. JALLCOM 561, 247–251 (2013)

    Google Scholar 

  5. B. Hadžić, N. Romčević, M. Romčević, I. Kuryliszyn-Kudelska, W. Dobrowolski, R. Wrobel, U. Narkiewicz, D. Sibera, Raman study of surface optical phonons in ZnO(Mn) nanoparticles. JALLCOM 585, 214–219 (2014)

    Google Scholar 

  6. B. Hadžić, N. Romčević, M. Romčević, I. Kuryliszyn-Kudelska, W. Dobrowolski, U. Narkiewicz, D. Sibera, Influence of SOP modes on Raman spectra of ZnO(Fe) nanoparticles. Opt. Mater. 42, 118–123 (2015)

    Article  Google Scholar 

  7. I. Kuryliszyn-Kudelska, B. Hadžić, D. Sibera, L. Kilanski, N. Romčević, M. Romčević, U. Narkiewicz, W. Dobrowolski, Nanocrystalline ZnO doped with Fe2O3-magnetic and structural properties. Acta Phys. Pol., A 119, 689–691 (2011)

    Article  Google Scholar 

  8. Y. Chen, D.M. Bagnall, H. Koh, K. Park, K. Higara, Z. Zhu, T. Yao, Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: growth and characterization. J. Appl. Phys. 84, 3912–3918 (1988)

    Article  Google Scholar 

  9. J. Nemeth, G. Rodriguez-Gattorno, A. Diaz, I. Dekany, Synthesis of ZnO nanoparticles on a clay mineral surface in dimethyl sulfoxide medium. Langmuir 20, 2855–2860 (2004)

    Article  Google Scholar 

  10. J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 4, 173–179 (2005)

    Article  Google Scholar 

  11. C. Sudakar, J.S. Thakur, G. Lawes, R. Naik, V.M. Naik, Ferromagnetism induced by planar nanoscale CuO inclusions in Cu-doped ZnO thin films. Phys. Rev. B 75, 054423–054426 (2007)

    Article  Google Scholar 

  12. T. Dietl, High temperature ferromagnetism and nano-scale phase separations in diluted magnetic semiconductors and oxides. Acta Phys. Pol., A 111, 27–46 (2007)

    Article  Google Scholar 

  13. R. Cuscó, E. Alarcón-Lladó, J. Ibáñez, L. Artús, J. Jiménez, B. Wang, M.J. Callahan, Temperature dependence of Raman scattering in ZnO. Phys. Rev. B 75, 165202–165211 (2007)

    Article  Google Scholar 

  14. Y. Liu, J.L. MacManus-Drisoll, Impurity control in Co-doped ZnO films through modifying cooling atmosphere. Appl. Phys. Lett. 94, 022503 (2009)

    Article  Google Scholar 

  15. J. Xu, W. Ji, X.B. Wang, H. Shu, Z.X. Shen, S.H. Tang, Temperature dependence of the Raman scattering spectra of Zn/ZnO nanoparticles. J. Raman Spectrosc. 29, 613–615 (1998)

    Article  Google Scholar 

  16. H. Zeng, W. Cai, B. Cao, J. Hu, Y. Li, P. Liu, Surface optical phonon Raman scattering in Zn/ZnO core-shell structured nanoparticles. Appl. Phys. Lett. 88, 181905–181913 (2006)

    Article  Google Scholar 

  17. N. Romčević, R. Kostić, B. Hadžić, M. Romčević, I. Kuryliszin-Kudelska, W. Dobrowolski, U. Narkievicz, D. Sibera, Raman scattering from ZnO incorporating Fe nanoparticles: vibrational modes and low-frequency acoustic modes. JALLCOM 507, 386–390 (2010)

    Google Scholar 

  18. M. Millot, J. Gonzalez, I. Molina, B. Salas, Z. Golacki, J.M. Broto, H. Rakoto, M. Gorian, Raman spectroscopy and magnetic properties of bulk ZnO:Co single crystal. JALLCOM 423, 224–227 (2006)

    Google Scholar 

  19. R.P. Wang, G. Xu, P. Jin, Size dependence of electron-phonon coupling in ZnO nanowires. Phys. Rev. B 69, 113303–113304 (2004)

    Article  Google Scholar 

  20. R.Y. Sato-Berrú, A. Vázquez-Olmos, A.L. Fernández-Osorio, S. Sotres-Martínez, Micro-Raman investigation of transition-metal-doped ZnO nanoparticles. J. Raman Spectrosc. 38, 1073–1076 (2007)

    Article  Google Scholar 

  21. P.-M. Chassaing, F. Demangeot, V. Paillard, A. Zwick, N. Combe, C. Pages, M.L. Kahn, A. Maisonnat, B. Chaudret, Surface optical phonons as a probe of organic ligands on ZnO nanoparticles: an investigation using a dielectric continuum model and Raman spectrometry. Phys. Rev. B 77, 153306–153314 (2008)

    Article  Google Scholar 

  22. G. Irmer, Raman scattering of nanoporous semiconductors. J. Raman Spectrosc. 38, 634–646 (2007)

    Article  Google Scholar 

  23. B. Hadžić, N. Romčević, M. Romčević, I. Kuryliszyn-Kudelska, W. Dobrowolski, J. Trajić, D. Timotijević, U. Narkiewicz, D. Sibera, Surface optical phonons in ZnO(Co) nanoparticles: Raman study. JALLCOM 540, 49–56 (2012)

    Google Scholar 

  24. A.L. Patterson, The diffraction of X-rays by small crystalline particles. Phys. Rev. 56, 972–977 (1939)

    Article  MATH  Google Scholar 

  25. A. Ghosh, R.N.P. Choudhary, Phonon assisted photoluminescence and surface optical mode of Zn embedded ZnO nanostructure. J. Phys. D Appl. Phys. 42, 075416–075426 (2009)

    Article  Google Scholar 

  26. F. Friedrich, N.H. Nickel, Resonant Raman scattering in hydrogen and nitrogen doped ZnO. Appl. Phys. Lett. 91, 111903–111913 (2007)

    Article  Google Scholar 

  27. K. Karkkainen, A. Saviola, K. Nikoskinen, Analysis of a three-dimensional dielectric mixture with finite difference method. IEEE Trans Geosci. Remote Sens. 39(5), 1013–1018 (2001)

    Article  Google Scholar 

  28. J.C.M. Garnett, Colours in metal glasses and in metallic films. Trans. R. Soc. CCIII, 385–420 (1904)

    Article  MATH  Google Scholar 

  29. A. Saviola, I. Lindell, Polarizability modeling of heterogenous media, in Dielectric properties of heterogeneous materials, PIER 6 progress in electromagnetic research, ed. by A. Priou (Elsevier, Amsterdam, The Netherlands, 1992), pp. 101–151

    Google Scholar 

  30. D.A.G. Bruggeman, Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. Ann. Phys. 24(5), 636–664 (1935)

    Article  Google Scholar 

  31. J. Saarinen, E.M. Vartiainen, K. Peiponen, On tailoring of nonlinear spectral properties of nanocomposites having Maxwell Garnett of Bruggeman structure. Opt. Rev. 10(2), 111–115 (2003)

    Article  Google Scholar 

  32. X.C. Zeng, D.J. Bergman, P.M. Hui, D. Stroud, Effective-medium theory for nonlinear composites. Phys. Rev. B 38, 10970–10973 (1988)

    Article  Google Scholar 

  33. J.D. Ye, S. Tripathy, F.F. Ren, X.W. Sun, G.Q. Lo, K.L. Teo, Raman-active Fröhlich optical phonon mode in arsenic implanted ZnO. Appl. Phys. Lett. 94, 011913 (2009)

    Article  Google Scholar 

  34. I.M. Tiginyanu, A. Sarua, G. Irmer, J. Monecke, S.M. Hubbard, D. Pavlidis, V. Valiaev, Fröhlich modes in GaN columnar nanostructures. Phys. Rev. B 64, 233317 (2001)

    Article  Google Scholar 

  35. M. Šćepanović, M. Grujić-Brojčin, K. Vojisavljević, S. Bernik, T. Srećković, Raman study of structural disorder in ZnO nanopowders. J. Raman Spectrosc. 41, 914–921 (2010)

    Article  Google Scholar 

  36. H. Idink, V. Srikanth, W.B. White, E.C. Subbarao, Raman study of low temperature phase transitions in Bismuth titanate, Bi4Ti3O12. J. Appl. Phys. 76, 1819–1823 (1994)

    Article  Google Scholar 

  37. N. Ashkenov, B.N. Mbenkum, C. Bundesmann, V. Riede, M. Lorenz, D. Spemann, E.M. Kaidashev, A. Kasic, M. Shubert, M. Grundmann, Infrared dielectric functions and phonon modes of high-quality ZnO films. J. Appl. Phys. 93, 126–133 (2003)

    Article  Google Scholar 

  38. V.G. Hadjiev, M.N. Iliev, I.V. Vegilov, The Raman spectra of Co3O4. J. Phys. C: Solid State Phys. 21, L199–L201 (1988)

    Article  Google Scholar 

  39. C.M. Julien, M. Massot, Raman spectroscopic studies of lithium manganates with spinel structure. J. Phys.: Condens. Matter 15, 3151–3162 (2003)

    Google Scholar 

  40. M. Bouchard, A. Gambardella, Raman microscopy study of synthetic cobalt blue spinels used in the field of art. J. Raman Spectrosc. 41, 1477–1485 (2010)

    Article  Google Scholar 

  41. X. Wang, R. Zheng, Z. Liu, H. Ho, J. Xu, S.P. Ringer, Structural, optical and magnetic properties of Co-doped ZnO nanorods with hidden secondary phases. Nanotechnology 19, 455702 (2008)

    Article  Google Scholar 

  42. O.N. Shebanova, P. Lazor, Raman spectroscopic study of magnetite (FeFe2O4): a new assignment for the vibrational spectrum. J. Solid State Chem. 174, 424–430 (2003)

    Article  Google Scholar 

  43. O.N. Shebanova, P. Lazor, Vibrational modeling of the thermodynamic properties of magnetite (Fe2O4) at high pressure from Raman spectroscopic study. J. Chem. Phys. 119, 6100 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported under Agreement of Scientific Collaboration between Polish Academy of Science and Serbian Academy of Sciences and Arts. The work in Serbia was supported by Serbian Ministry of Education, Science and Technological Development (Project 45003) and in Poland by National Science Center granted under decision No. DEC-2011/01/B/ST5/06602.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Hadžić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Atlantis Press and the author(s)

About this paper

Cite this paper

Hadžić, B., Romčević, M., Trajić, J., Stanišić, G., Timotijević, D. (2017). Influence of Preparation Method on SOP Modes in ZnO Doped with CoO Nanoparticles. In: Lee, B., Gadow, R., Mitic, V. (eds) Proceedings of the IV Advanced Ceramics and Applications Conference. Atlantis Press, Paris. https://doi.org/10.2991/978-94-6239-213-7_17

Download citation

  • DOI: https://doi.org/10.2991/978-94-6239-213-7_17

  • Published:

  • Publisher Name: Atlantis Press, Paris

  • Print ISBN: 978-94-6239-212-0

  • Online ISBN: 978-94-6239-213-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics