Alkaline Nanoparticles for the Deacidification and pH Control of Books and Manuscripts

  • Piero Baglioni
  • David Chelazzi
  • Rodorico Giorgi
  • Huiping Xing
  • Giovanna Poggi
Chapter

Abstract

Manuscripts and books are susceptible to fast degradation owing to the presence of detrimental components used in the papermaking techniques, and to the action of environmental pollutants. As a result, the acidity of documents increases, promoting the acid-catalyzed depolymerization of cellulose. The latter process strongly reduces the mechanical properties of paper, reducing its long-term resistance to natural aging. The presence of inks concurs to degradation, making the conservation of manuscripts particularly demanding. In this chapter, the use of dispersions of alkaline earth metal hydroxide nanoparticles will be discussed as a method for counteracting the degradation of paper. These systems have proven efficient for the deacidification of cellulose-based artifacts, providing a mild alkaline buffer and maintaining a stable neutral environment. The palette of formulations nowadays available to conservators includes systems designed for the treatment of manuscripts featuring metal gall inks and modern industrial inks.

References

  1. Afsharpour M, Hadadi M (2014) Titanium dioxide thin film: environmental control for preservation of paper-art-works. J Cult Herit 15:569–574. doi:10.1016/j.culher.2013.10.008 CrossRefGoogle Scholar
  2. Altaner CM, Thomas LH, Fernandes AN, Jarvis MC (2014) How cellulose stretches: synergism between covalent and hydrogen bonding. Biomacromolecules 15:791–798. http://pubs.acs.org/doi/pdf/10.1021/bm401616n)
  3. Ambrosi M, Dei L, Giorgi R, Neto C, Baglioni P (2001) Stable dispersions of Ca(OH)2 in aliphatic alcohols: properties and application in cultural heritage conservation. In: Koutsoukos PG (ed) Trends in colloid and interface science XV. Springer, Berlin, pp 68–72CrossRefGoogle Scholar
  4. ASTM D788-97 (2002) Standard test methods for hydrogen ion concentration (pH) of paper extracts (hot-extraction and cold-extraction procedures)Google Scholar
  5. Atalla RH, Vanderhart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285. doi:10.1126/science.223.4633.283 CrossRefGoogle Scholar
  6. Baglioni P, Chelazzi D, Giorgi R, Poggi G (2012) Nanoparticles for the conservation of cultural heritage: paper and wood. In: Somasundaran P (ed) Encyclopedia of surface and colloid science, 2nd edn. Taylor & Francis, New York, pp 1–16Google Scholar
  7. Baglioni P, Chelazzi D, Giorgi R, Poggi G (2013) Colloid and materials science for the conservation of cultural heritage: cleaning, consolidation, and deacidification. Langmuir 29:5110–5122Google Scholar
  8. Baglioni P, Chelazzi D, Giorgi R (2015) Nanotechnologies in the conservation of cultural heritage—a compendium of materials and techniquesGoogle Scholar
  9. Banait NS, Jencks WP (1991) Reactions of anionic nucleophiles with alpha-D-glucopyranosyl fluoride in aqueous solution through a concerted, ANDN (SN2) mechanism. J Am Chem Soc 113:7951–7958. doi:10.1021/ja00021a021 CrossRefGoogle Scholar
  10. Barrow WJ, Sproull RC (1959) Permanence in book papers: investigation of deterioration in modern papers suggests a practical basis for remedy. Science 80–129:1075–1084. doi:10.1126/science.129.3356.1075
  11. Baty JW, Maitland CL, Minter W, Hubbe MA, Jordan-Mowery SK (2010) Deacidification for the conservation and preservation of paper-based works: a review. BioResources 5:1955–2023Google Scholar
  12. Bégin P, Deschâtelets S, Grattan D, Gurnagul N, Iraci J, Kaminska E, Woods D, Zou X (1998) The impact of Lignin on paper permanence. A comprehensive study of the ageing behaviour of handsheets and commercial paper samples. Restaurator 19:135–154. doi:10.1515/rest.1998.19.3.135 Google Scholar
  13. Bicchieri M, Brusa P (1997) The bleaching of paper by reduction with the borane tert-butylamine complex. Restaurator 18:1–11. doi:10.1515/rest.1997.18.1.1 Google Scholar
  14. Bicchieri M, Bella M, Semetilli F (1999) A quantitative measure of borane tert-butylamine complex effectiveness in carbonyl reduction of aged papers. Restaurator 20:22–29. doi:10.1515/rest.1999.20.1.22 Google Scholar
  15. Bicchieri M, Sementilli FM, Sodo A (2000) Application of seven borane complexes in paper conservation. Restaurator 21:213–228. doi:10.1515/REST.2000.213 Google Scholar
  16. Blüher A, Grossenbacher G (eds) (2006) Save paper! mass deacidification, today’s experiences, tomorrow’s perspectives: paper given at the international conference, 15–17 Feb 2006. Swiss National Library, BernGoogle Scholar
  17. Boone T, Kidder L, Russick S (1998) Bookkeeper® for spray use in single item treatments, 17Google Scholar
  18. Botti L, Mantovani O, Ruggiero D (2005) Calcium Phytate in the Treatment of Corrosion Caused by Iron Gall Inks: Effects on Paper. Restaurator 26:44–62. doi: 10.1515/REST.2005.44
  19. Bronzato M, Calvini P, Federici C, Bogialli S, Favaro G, Meneghetti M, Mba M, Brustolon M, Zoleo A (2013) Degradation products from naturally aged paper leaves of a 16th-century-printed book: a spectrochemical study. Chemistry 19:9569–9577. doi:10.1002/chem.201300756 CrossRefGoogle Scholar
  20. Bukovský V (2000) The influence of light on ageing of newsprint paper. Restaurator 21:55–76. doi:10.1515/REST.2000.55 Google Scholar
  21. Calvini P (2005) The influence of levelling-off degree of polymerisation on the kinetics of cellulose degradation. Cellulose 12:445–447. doi:10.1007/s10570-005-2206-z CrossRefGoogle Scholar
  22. Calvini P (2014) On the meaning of the Emsley, Ding & Wang and Calvini equations applied to the degradation of cellulose. Cellulose 21:1127–1134. doi:10.1007/s10570-014-0224-4 CrossRefGoogle Scholar
  23. Calvini P, Gorassini G (2012) Surface and bulk reactions of cellulose oxidation by periodate. A simple kinetic model. Cellulose 19:1107–1114Google Scholar
  24. Calvini P, Grosso V, Hey M, Rossi L, Santucci L (1988) Deacidification of paper—a More fundamental approach. Pap Conserv 12:35–39. doi:10.1080/03094227.1988.9638560 CrossRefGoogle Scholar
  25. Calvini P, Gorassini A, Merlani AL (2007) Autocatalytic degradation of cellulose paper in sealed vessels. Restaurator 28:47–54Google Scholar
  26. Calvini P, Gorassini A, Merlani AL (2008) On the kinetics of cellulose degradation: looking beyond the pseudo zero order rate equation. Cellulose 15:193–203. doi:10.1007/s10570-007-9162-8 CrossRefGoogle Scholar
  27. Carter HA (1989) Chemistry in the comics: part 3. The acidity of paper. J Chem Educ 66:883. doi:10.1021/ed066p883 CrossRefGoogle Scholar
  28. Carter H, Bégin P, Grattan D (2000) Migration of volatile compounds through stacked sheets of paper during accelerated ageing—part 1: acid migration at 90°. C Restaurator. doi:10.1515/REST.2000.77 Google Scholar
  29. Chamberlain D (2007) Anion mediation of aluminium-catalysed degradation of paper. Polym Degrad Stab 92:1417–1420. doi:10.1016/j.polymdegradstab.2007.04.006 CrossRefGoogle Scholar
  30. Coughlan MP (1991) Mechanisms of cellulose degradation by fungi and bacteria. Anim Feed Sci Technol 32:77–100. doi:10.1016/0377-8401(91)90012-H CrossRefGoogle Scholar
  31. Dobrodskaya TV, Egoyants PA, Ikonnikov VK, Romashenkova ND, Sirotin SA, Dobrusina SA, Podgornaya NI (2004) Treatment of paper with basic agents in alcohols and supercritical carbon dioxide to neutralize acid and prolong storage time. Russ J Appl Chem 77:2017–2021. doi:10.1007/s11167-005-0211-5 CrossRefGoogle Scholar
  32. Dufour J, Havermans JBGA (2001) Study of the photo-oxidation of mass-deacidified papers. Restaurator. doi:10.1515/REST.2001.20 Google Scholar
  33. Dupont (2002) The role of gelatine/alum sizing in the degradation of paper: a study by size exclusion chromatography in lithium chloride/N,N-dimethylacetamide using multiangle light scattering detection. In: Daniels V, Donnithorne A, Smith P (eds) Preprint of IIC Baltimore congress 2002, works of art on paper, books, documents and photographs: techniques and conservation. International Institute for Conservation, Baltimore, pp 59–64Google Scholar
  34. Feller (1994) Accelerated ageing in conservation science. Getty Conservation Institute, Los AngelesGoogle Scholar
  35. Fengel D, Wegener G (1984) Wood: chemistry, ultrastructure, reactions. Walter De Gruyter, BerlinGoogle Scholar
  36. Franceschi E, Palazzi D, Pedemonte E (2001) Thermoanalytical contribution to the study on paper degradation. characterisation of oxidised paper. J Therm Anal Calorim 66:349–358CrossRefGoogle Scholar
  37. Fratini E, Page MG, Giorgi R, Cölfen H, Baglioni P, Demé B, Zemb T (2007) Competitive surface adsorption of solvent molecules and compactness of agglomeration in calcium hydroxide nanoparticles. Langmuir 23:2330–2338. doi:10.1021/la062023i CrossRefGoogle Scholar
  38. Gabrowsky E, Morrison I (1983) Particle size distributions from analysis of quasi-elastic light scattering data. In: Dahneke BE (ed) Wiley-Interscience, New YorkGoogle Scholar
  39. Giorgi R, Dei L, Ceccato M, Schettino C, Baglioni P (2002a) Nanotechnologies for conservation of cultural heritage: paper and canvas deacidification. Langmuir 18:8198–8203. doi:10.1021/la025964d CrossRefGoogle Scholar
  40. Giorgi R, Dei L, Schettino C, Baglioni P (2002b) A new method for paper deacidification based on calcium hydroxide dispersed in nonaqueous media. In: Daniels V, Donnithorne A, Smith P (eds) Preprint of IIC Baltimore congress 2002, works of art on paper, books, documents and photographs: techniques and conservation. International Institute for Conservation, Baltimore, pp 69–73Google Scholar
  41. Giorgi R, Bozzi C, Dei L, Gabbiani C, Ninham BW, Baglioni P (2005) Nanoparticles of Mg(OH)2: synthesis and application to paper conservation. Langmuir 21:8495–8501. doi:10.1021/la050564m CrossRefGoogle Scholar
  42. Glasser WG, Atalla RH, Blackwell J, Malcolm Brown R, Burchard W, French AD, Klemm DO, Nishiyama Y (2012) About the structure of cellulose: debating the Lindman hypothesis. Cellulose 19:589–598. doi:10.1007/s10570-012-9691-7 CrossRefGoogle Scholar
  43. Grøntoft T, Odlyha M, Mottner P, Dahlin E, Lopez-Aparicio S, Jakiela S, Scharff M, Andrade G, Obarzanowski M, Ryhl-Svendsen M, Thickett D, Hackney S, Wadum J (2010) Pollution monitoring by dosimetry and passive diffusion sampling for evaluation of environmental conditions for paintings in microclimate frames. J Cult Herit 11:411–419. doi:10.1016/j.culher.2010.02.004 CrossRefGoogle Scholar
  44. Harris JF (1975) Acid hydrolysis and dehydration reactions for utilizing plant carbohydrates. Appl Polym Symp 28:131Google Scholar
  45. Hassan PA, Rana S, Verma G (2015) Making sense of brownian motion: colloid characterization by dynamic light scattering. Langmuir 31:3–12. doi:10.1021/la501789z CrossRefGoogle Scholar
  46. Henniges U, Reibke R, Banik G, Huhsmann E, Hähner U, Prohaska T, Potthast A (2008) Iron gall ink-induced corrosion of cellulose: aging, degradation and stabilization. Part 2: application on historic sample material. Cellulose 15:861–870. doi:10.1007/s10570-008-9238-0 CrossRefGoogle Scholar
  47. Hunter RJ (1981) Zeta Potential in Colloid Science. Elsevier, LondonGoogle Scholar
  48. Kolar J (1997) Mechanism of autoxidative degradation of cellulose. Restaurator 18:163–176. doi:10.1515/rest.1997.18.4.163 Google Scholar
  49. Kolar J, Strlič M, Budnar M, Malesič J, Šelih VS, Simčič J (2003) Stabilisation of corrosive iron gall inks. Acta Chim Slov 50:763–770Google Scholar
  50. Kolar J, Šala M, Strlič M, Šelih VS (2005) Stabilisation of Paper Containing Iron-Gall Ink with Current Aqueous Processes. Restaurator 26:181–189. doi: 10.1515/rest.2005.26.3.181
  51. Kolar J, Možir A, Strlič M, de Bruin G, Pihlar B, Steemers T (2007) Stabilisation of iron gall ink: aqueous treatment with magnesium phytate. e-Preservation Sci 4:19–24Google Scholar
  52. Kolar J, Možir A, Balažic A, Strlič M, Ceres G, Conte V, Mirruzzo V, Steemers T, de Bruin G (2008) New antioxidants for treatment of transition metal containing inks and pigments. Restaurator 29:184–198. doi:10.1515/rest.2008.013 Google Scholar
  53. Lopez-Aparicio S, Grøntoft T, Odlyha M, Dahlin E, Mottner P, Thickett D, Ryhl-Svendsen M, Schmidbauer N, Scharff M (2010) Measurement of organic and inorganic pollutants in microclimate frames for paintings. e-Preservation Sci 7:59–70Google Scholar
  54. Lucarelli F, Mandò PA (1996) Recent applications to the study of ancient inks with the Florence external-PIXE facility. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 109–110:644–652. doi:10.1016/0168-583X(95)00985-X CrossRefGoogle Scholar
  55. Luckham PF (2004) Manipulating forces between surfaces: applications in colloid science and biophysics. Adv Colloid Interface Sci 111:29–47. doi:10.1016/j.cis.2004.07.008 CrossRefGoogle Scholar
  56. Lundgaard LE, Hansen W, Linhjell D, Painter TJ (2004) Aging of oil-impregnated paper in power transformers. Power Deliv IEEE Trans 19:230–239CrossRefGoogle Scholar
  57. Malesič J, Kolar J, Strlič M (2002) Effect of pH and carbonyls on the degradation of alkaline paper factors affecting ageing of alkaline paper. Restaurator 23:145–153. doi:10.1515/REST.2002.145 Google Scholar
  58. Malešič J, Strlič M, Kolar J, Polanc S (2005a) The influence of halide and pseudo-halide antioxidants in Fenton-like reaction systems containing copper(II) ions. J Mol Catal A: Chem 241:126–132. doi:10.1016/j.molcata.2005.06.047 CrossRefGoogle Scholar
  59. Malešič J, Kolar J, Strlič M, Polanc S (2005b) The use of halides for stabilisation of iron gall ink containing paper—the pronounced effect of cation. e-Preservation Sci 2:13–18Google Scholar
  60. Marqusee JA, Ross J (1983) Kinetics of phase transitions: theory of Ostwald ripening. J Chem Phys 79:373–378. doi:10.1063/1.445532 CrossRefGoogle Scholar
  61. McKellar JF, Allen NS (1979) Photochemistry of man-made polymers. Elsevier, LondonGoogle Scholar
  62. Medronho B, Romano A, Miguel MG, Stigsson L, Lindman B (2012) Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19:581–587. doi:10.1007/s10570-011-9644-6 CrossRefGoogle Scholar
  63. Meyer KH, Misch L (1937) Positions des atomes dans le nouveau modele spatial de la cellulose. Helv Chim Acta 20:232–244. doi:10.1002/hlca.19370200134 CrossRefGoogle Scholar
  64. Neevel JG (1995) Phytate: a potential conservation agent for the treatment of ink corrosion caused by Irongall Inks. Restaurator 16:143–160. doi:10.1515/rest.1995.16.3.143 Google Scholar
  65. Neevel JG (2000) (Im)possibilities of the phytate treatment. In: Brown JE (ed) Newcastle upon Tyne. The University of Northumbria, pp 127–134Google Scholar
  66. Neevel JG, Mensch CTJ, Cornelis TJ (1999) The behaviour of iron and sulphuric acid during iron gall ink corrosion. In: Bridgland J (ed) ICOM committee for conservation triennial meeting. James and James, London, pp 528–533Google Scholar
  67. Nisizawa K (1973) Mode of action of cellulases. J Ferment Technol 51:267–304Google Scholar
  68. Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10. doi:10.1186/1754-6834-3-10 CrossRefGoogle Scholar
  69. Pauk S (1996) Bookkeeper mass deacidification process—some effects on 20th-century library material. Abbey Newsl 20:50–53Google Scholar
  70. Persson H, Türk M, Nyman M, Sandberg A-S (1998) Binding of Cu2+, Zn2+, and Cd2+ to Inositol Tri-, Tetra-, Penta-, and Hexaphosphates. J Agric Food Chem 46:3194–3200. doi: 10.1021/jf971055w
  71. Poggi G, Giorgi R, Toccafondi N, Katzur V, Baglioni P (2010) Hydroxide nanoparticles for deacidification and concomitant inhibition of iron-gall ink corrosion of paper. Langmuir 26:19084–19090. doi:10.1021/la1030944 CrossRefGoogle Scholar
  72. Poggi G, Toccafondi N, Melita LN, Knowles JC, Bozec L, Giorgi R, Baglioni P (2014) Calcium hydroxide nanoparticles for the conservation of cultural heritage: new formulations for the deacidification of cellulose-based artifacts. Appl Phys A 114:685–693. doi:10.1007/s00339-013-8172-7 CrossRefGoogle Scholar
  73. Poggi G, Sistach MC, Marin E, Garcia JF, Giorgi R, Baglioni P (2015) The GEOLNAN, a combined deacidification and reinforcement treatment for metal gall ink manuscriptsGoogle Scholar
  74. Potthast A, Henniges U, Banik G (2008) Iron gall ink-induced corrosion of cellulose: aging, degradation and stabilization. Part 1: model paper studies. Cellulose 15:849–859. doi: 10.1007/s10570-008-9237-1
  75. Pyrz WD, Buttrey DJ (2008) Particle size determination using TEM: a discussion of image acquisition and analysis for the novice microscopist. Langmuir 24:11350–11360. doi:10.1021/la801367j CrossRefGoogle Scholar
  76. Rydholm S (1965) Pulping processes. Interscience Publisher, New YorkGoogle Scholar
  77. Sandu ICA, Brebu M, Luca C, Sandu I, Vasile C (2003) Thermogravimetric study on the ageing of lime wood supports of old paintings. Polym Degrad Stab 80:83–91. doi:10.1016/S0141-3910(02)00386-5 CrossRefGoogle Scholar
  78. Sanna C, Sodo A, Laguzzi G, Mancini G, Bicchieri M (2009) Tert-butyl amine borane complex: an unusual application of a reducing agent on model molecules of cellulose based materials. J Cult Herit 10:356–361. doi:10.1016/j.culher.2008.10.008 CrossRefGoogle Scholar
  79. Santucci L, Zappalà MP (2001) Cellulose viscometric oxidometry. Restaurator 22:51–65. doi:10.1515/REST.2001.51 Google Scholar
  80. Šelih VS, Strlič M, Kolar J, Pihlar B (2007) The role of transition metals in oxidative degradation of cellulose. Polym Degrad Stab 92:1476–1481. doi:10.1016/j.polymdegradstab.2007.05.006 CrossRefGoogle Scholar
  81. Sequeira S, Casanova C, Cabrita EJ (2006) Deacidification of paper using dispersions of Ca(OH)2 nanoparticles in isopropanol. Study of efficiency. J Cult Herit 7:264–272. doi:10.1016/j.culher.2006.04.004 CrossRefGoogle Scholar
  82. Shanani CJ, Harrison G (2002) Spontaneous formation of acids in the natural aging of paper. In: Daniels V, Donnithorne A, Smith P (eds) Works of art on paper: books, documents and photographs. International Institute for Conservation of Historic and Artistic Works, London, pp 189–192Google Scholar
  83. Sjostrom E (1977) TAPPI J 60:151Google Scholar
  84. Soares S, Camino G, Levchik S (1995) Comparative study of the thermal decomposition of pure cellulose and pulp paper. Polym Degrad Stab 49:275–283. doi:10.1016/0141-3910(95)87009-1 CrossRefGoogle Scholar
  85. Stefanis E, Panayiotou C (2007) Protection of lignocellulosic and cellulosic paper by deacidification with dispersions of micro- and nano-particles of Ca(OH)2 and Mg(OH)2 in alcohols. Restaurator 28:185–200. doi:10.1515/REST.2007.185 Google Scholar
  86. Strlič M, Kolar J (eds) (2005) Ageing and stabilization of paper. National and University Library, LjubljanaGoogle Scholar
  87. Strlič M, Kolar J, Žigon M, Pihlar B (1998) Evaluation of size-exclusion chromatography and viscometry for the determination of molecular masses of oxidised cellulose. J Chromatogr A 805:93–99. doi:10.1016/S0021-9673(98)00008-9 CrossRefGoogle Scholar
  88. Strlič M, Kolar J, Šelih VS, Kocar D, Pihlar B (2003) A comparative study of several transition metals in Fenton-like reaction system at circumneutral. Acta Chim Slov 50:619–632Google Scholar
  89. Sugimoto T (1978) General kinetics of Ostwald ripening of precipitates. J Colloid Interface Sci 63:16–26. doi:10.1016/0021-9797(78)90030-9 CrossRefGoogle Scholar
  90. TAPPI T 509 Om-02 (2002) Hydrogen ion concentration (pH) of paper extracts (cold extraction method)Google Scholar
  91. TAPPI T 529 Om-04 (2004) Surface pH measurement of paperGoogle Scholar
  92. Tétreault J (2003) Airborne pollutants in museums, galleries and archives: risk assessment, control strategies and preservation management. Canadian Conservation Institute, OttawaGoogle Scholar
  93. Tétreault J, Stamatopoulou E (1997) Determination of concentrations of acetic acid emitted from wood coatings in enclosures. Stud Conserv 42:141–156. doi:10.2307/1506710 Google Scholar
  94. Tse S, Bégin P, Kaminska E (2002) Highlights of paper research at the Canadian Conservation Institute. International Institution for Conservation of Historic and Artistic Works, London, pp 193–198Google Scholar
  95. Wilkie JS (1961) Carl Nägeli and the fine structure of living matter. Nature 190:1145–1150. doi:10.1038/1901145a0 CrossRefGoogle Scholar
  96. Wouters J (2008) Coming soon to a library near you? Science 80–322:1196–1198. doi:10.1126/science.1164991
  97. Yanjuan W, Yanxiong F, Wei T, Chunying L (2013) Preservation of aged paper using borax in alcohols and the supercritical carbon dioxide system. J Cult Herit 14:16–22. doi:10.1016/j.culher.2012.02.010 CrossRefGoogle Scholar
  98. Zappalà A, Stefani C De (2005) Evaluation of the Effectiveness of Stabilization Methods. Treatments by Deacidification, Trehalose, Phytates on Iron Gall Inks. Restaurator 26:36–43. doi: 10.1515/REST.2005.36
  99. Zervos S (2010) Natural and accelerated ageing of cellulose and paper: a literature review. In: Lejeune A, Deprez T (eds) Cellulose: structure and properties, derivatives and industrial uses. Nova Science Publishers Inc, New YorkGoogle Scholar
  100. Zhang Y, Bommuswamy J, Sinnott ML (1994) Kinetic isotope effect study of transition states for the hydrolyses of alpha- and beta-glucopyranosyl fluorides. J Am Chem Soc 116:7557–7563. doi:10.1021/ja00096a012 CrossRefGoogle Scholar
  101. Zumbühl S, Wuelfert S (2001) Chemical aspects of the bookkeeper deacidification of cellulosic materials: the influence of surfactants. Stud Conserv 46:169–180. doi:10.2307/1506808 Google Scholar

Copyright information

© Atlantis Press and the author(s) 2016

Authors and Affiliations

  • Piero Baglioni
    • 1
  • David Chelazzi
    • 1
  • Rodorico Giorgi
    • 1
  • Huiping Xing
    • 1
  • Giovanna Poggi
    • 1
  1. 1.Department of Chemistry and CSGIUniversity of FlorenceFlorenceItaly

Personalised recommendations