Skip to main content

From Archaeological Sites to Nanoscale: The Quest of Tailored Analytical Strategy and Modelling

  • Chapter
  • First Online:
Nanoscience and Cultural Heritage

Abstract

Last developments of nano probes allows scientists of Cultural Heritage to assess a new kind of information that is crucial in the different topics concerned by the field: determining ancient manufacturing processes, studying use and provenance of ancient artefacts, revealing the degradation processes and developing adapted cleaning and conservation treatments. Nevertheless to be useful, these nanoscale approaches must be integrated in a tailored multi-step analysis. The final aim of these approaches will be to reach understanding and/or reliable modelling of the behaviours of the ancient systems. A first part of this chapter will review the issues in Cultural Heritage and the nature of the physico-chemical data that can be collected on the systems. In a second part, a selection of examples dealing with nano characterisation in Cultural Heritage will allow us to present several up to date techniques and methodologies employed in Cultural Heritage science. Then, the third part of the chapter will review some of the different modelling attempts that where already made in the domain of Cultural Heritage, and that were based on the use of physico-chemical descriptions at different scales. The challenge for the next future will be, for different kind of materials and environments, to propose multiscale models from nano to functional scale. Some key steps to face these challenges bridging the gap between multiscale descriptive characterisation and numerical modelling are reviewed here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.icom-cc.org/.

  2. 2.

    http://www.iccrom.org/.

References

  • Abruzzese D, Miccoli L, Yuan J (2009) Mechanical behavior of leaning masonry Huzhu Pagoda. J Cult Heritage 10:480–486. doi:10.1016/j.culher.2009.02.004

    Article  Google Scholar 

  • Albero S, Giavarini C, Santarelli ML, Vodret A (2004) CFD modeling for the conservation of the Gilded Vault Hall in the Domus Aurea. J Cult Heritage 5:197–203. doi:10.1016/j.culher.2003.08.001

    Article  Google Scholar 

  • Ambrosi M, Dei L, Giorgi R, Neto C, Baglioni P (2001) Colloidal particles of Ca(OH)2: properties and applications to restoration of frescoes. Langmuir 17(14):4251–4255. doi:10.1021/la010269b

    Article  CAS  Google Scholar 

  • Astruc L, Vargiolu R, Tkaya MB, Balkan-Atlı N, Özbaşaran M, Zahouani H (2011) Multi-scale tribological analysis of the technique of manufacture of an obsidian bracelet from Aşıklı Höyük (Aceramic Neolithic, Central Anatolia). J Archaeol Sci 38(12):3415–3424

    Article  Google Scholar 

  • Baglioni P, Chelazzi D, Giorgi R, Poggi G (2013) Colloid and materials science for the conservation of cultural heritage: cleaning, consolidation, and deacidification. Langmuir 29(17):5110–5122. doi:10.1021/la304456n

    Article  CAS  Google Scholar 

  • Bataillon C, Bouchon F, Chainais-Hillairet C, Desgranges C, Hoarau E, Martin F, Perrin S, Tupin M, Talandier J (2010) Corrosion modelling of iron based alloy in nuclear waste repository. Electrochim Acta 55(15):4451–4467. doi:10.1016/j.electacta.2010.02.087

    Google Scholar 

  • Bayle M (2015) Déchloruration des objets archéologiques ferreux par le processus de stabilisation subcritique - Caractérisations physico-chimiques des systèmes transformés. Pierre et Marie Curie University, Ph.D. thesis

    Google Scholar 

  • Bernard S, Benzerara K, Beyssac O, Brown GE (2010) Multiscale characterization of pyritized plant tissues in blueschist facies metamorphic rocks. Geochim Cosmochim Acta 74(17):5054–5068. doi:10.1016/j.gca.2010.06.011

    Article  CAS  Google Scholar 

  • Bertholon R (2001) The original surface of corroded metallic archaeological objects: characterization and location. La Revue de Métallurgie 9:817–823. doi:10.1051/metal:2001128

    Google Scholar 

  • Bingham PA, Jackson CM (2008) Roman blue-green bottle glass: chemical–optical analysis and high temperature viscosity modelling. J Archaeol Sci 35:302–309. doi:10.1016/j.jas.2007.03.011

    Article  Google Scholar 

  • Brauns M, Schwab R, Gassmann G, Wieland G, Pernicka E (2013) Provenance of iron age iron in southern Germany: a new approach. J Archaeol Sci 40(2):841–849. doi:10.1016/j.jas.2012.08.044

    Article  CAS  Google Scholar 

  • Burnett C, Blaschke T (2003) A multi-scale segmentation/object relationship modelling methodology for landscape analysis. Ecol Model 168:233–249. doi:10.1016/S0304-3800(03)00139-X

    Article  Google Scholar 

  • Cacciotti R, Blaško M, Valach J (2015) A diagnostic ontological model for damages to historical constructions. J Cult Heritage 16:40–48. doi:10.1016/j.culher.2014.02.002

    Article  Google Scholar 

  • Casadio F, Van Duyne RP (2013) Molecular analysis for art, archaeometry and conservation. Analyst 138(24):7276–7278. doi:10.1039/C3AN90096G

    Google Scholar 

  • Cersoy S, Richardin P, Walter P, Brunelle A (2012) Cluster TOF-SIMS imaging of human skin remains: analysis of a South-Andean mummy sample. J Mass Spectrom 47(3):338–346. doi:10.1002/jms.2979

    Article  CAS  Google Scholar 

  • Chalmin E, Menu M, Pomiès M-P, Vignaud C, Aujoulat N, Geneste J-M (2004) Les blasons de Lascaux. L’Anthropologie 108(5):571–592. doi:10.1016/j.anthro.2004.12.001

    Google Scholar 

  • Chalmin E, Vignaud C, Salomon H, Farges F, Susini J, Menu M (2006) Minerals discovered in paleolithic black pigments by transmission electron microscopy and micro-X-ray absorption near-edge structure. Appl Phys A 83(2):213–218. doi:10.1007/s00339-006-3510-7

    Article  CAS  Google Scholar 

  • Chelazzi D, Poggi G, Jaidar Y, Toccafondi N, Giorgi R, Baglioni P (2013) Hydroxide nanoparticles for cultural heritage: consolidation and protection of wall paintings and carbonate materials. J Colloid Interface Sci 392:42–49. doi:10.1016/j.jcis.2012.09.069

    Article  CAS  Google Scholar 

  • Chitty W-J, Berger P, Dillmann P, L’Hostis V (2008a) Long-term corrosion of rebars embedded in aerial and hydraulic binders—mechanisms and crucial physico-chemical parameters. Corros Sci 50(8):2117–2123. doi:10.1016/j.corsci.2008.03.017

    Google Scholar 

  • Chitty W-J, Dillmann P, L’Hostis V, Millard A (2008b) Long-term corrosion of rebars embedded in aerial and hydraulic binders—parametric study and first step of modelling. Corros Sci 50(11):3047–3065. doi:10.1016/j.corsci.2008.08.010

    Google Scholar 

  • Cole IS, Hughes AE (2014) Designing molecular protection: new paradigm for developing corrosion resistant materials uniting high throughput studies, multiscale modelling and self-repair. Corros Eng Sci Technol 49:109–115. doi:10.1179/1743278213Y.0000000119

    Google Scholar 

  • Cole IS, Paterson DA, Ganther WD (2003) Holistic model for atmospheric corrosion Part 1—theoretical framework for production, transportation and deposition of marine salts. Corros Eng, Sci Technol 38:129–134. doi:10.1179/147842203767789203

    Article  CAS  Google Scholar 

  • Cole IS, Muster TH, Azmat NS, Venkatraman MS, Cook A (2011) Multiscale modelling of the corrosion of metals under atmospheric corrosion. Electrochim Acta 56:1856–1865. doi:10.1016/j.electacta.2010.10.025

    Google Scholar 

  • Colombini MP, Modugno F (2009) Organic materials in art and archaeology. In: Colombini MP, Modugno F (eds) Organic mass spectrometry in art and archaeology. Wiley, New York, pp 1–36

    Google Scholar 

  • Creagh D, Bradley D (2006) Physical techniques in the study of art. In: Archaeology and Cultural Heritage, vol 1. Elsevier

    Google Scholar 

  • Creagh D, Bradley D (2007) Physical techniques in the study of art, archaeology and cultural heritage, vol 2. Elsevier

    Google Scholar 

  • Crina Anca Sandu I, de Sá MH, Pereira MC (2011) Ancient ‘gilded’ art objects from European cultural heritage: a review on different scales of characterization. Surf Interface Anal 43(8):1134–1151. doi:10.1002/sia.3740

    Article  Google Scholar 

  • D’Agostino D, Congedo PM, Cataldo R (2014) Computational fluid dynamics (CFD) modeling of microclimate for salts crystallization control and artworks conservation. J Cult Heritage 15:448–457. doi:10.1016/j.culher.2013.10.002

    Article  Google Scholar 

  • Dal Bianco B, Bertoncello R (2008) Sol–gel silica coatings for the protection of cultural heritage glass. Nucl Instrum Methods Phys Res, Sect B 266(10):2358–2362. doi:10.1016/j.nimb.2008.03.014

    Article  CAS  Google Scholar 

  • de la Fuente D, Díaz I, Simancas J, Chico B, Morcillo M (2011) Long-term atmospheric corrosion of mild steel. Corros Sci 53(2):604–617. doi:10.1016/j.corsci.2010.10.007

    Article  Google Scholar 

  • De Luca L (2014) Methods, formalisms and tools for the semantic-based surveying and representation of architectural heritage. Appl Geomatics 6:115–139. doi:10.1007/s12518-011-0076-7

    Google Scholar 

  • De Stasio G, Gilbert B, Frazer BH, Nealson KH, Conrad PG, Livi V, Labrenz M, Banfield JF (2001) The multidisciplinarity of spectromicroscopy: from geomicrobiology to archaeology. J Electron Spectrosc Relat Phenom 114–116:997–1003. doi:10.1016/S0368-2048(00)00369-8

    Article  Google Scholar 

  • Dejoie C, Tamura N, Kunz M, Goudeau P, Sciau P (2015) Complementary use of monochromatic and white-beam X-ray micro-diffraction for the investigation of ancient materials. J Appl Crystallogr 48(5):1522–1533. doi:10.1107/S1600576715014983

    Article  CAS  Google Scholar 

  • Dillmann P, Bellot-Gurlet L (2014) Circulation et provenance des matériaux dans les sociétés anciennes. Sciences Archéologiques. Editions Archives Contemporaines Paris

    Google Scholar 

  • Edwards H, Vandenabeele P (2012) Analytical archaeometry: selected topics. Royal Society of Chemistry, Cambridge

    Book  Google Scholar 

  • Evershed RP (2008) Organic residue analysis in archaeology: the archaeological biomarker revolution. Archaeometry 50(6):895–924. doi:10.1111/j.1475-4754.2008.00446.x

    Google Scholar 

  • Fleischer M (2012) Near-field scanning optical microscopy nanoprobes. Nanotechnology Reviews 1. doi:10.1515/ntrev-2012-0027.

  • Galvez ME, Benzerara K, Beyssac O, Bernard S (2009) Chemical and structural imaging of fossilized tissues at the nanoscale and assessment of their taphonomy. Geochim Cosmochim Acta 73(13):A408

    Google Scholar 

  • Giachi G, Bugani S, Łucejko J, Modugno F, Tatti F (2014) Different techniques (SR-µCT, SEM, FIB/SEM) for the evaluation of the deposition of impregnating substances into waterlogged archaeological wood, woodcutter.com

    Google Scholar 

  • Giavarini C, Santarelli ML, Natalini R, Freddi F (2008) A non-linear model of sulphation of porous stones: numerical simulations and preliminary laboratory assessments. J Cult Heritage 9:14–22. doi:10.1016/j.culher.2007.12.001

    Article  Google Scholar 

  • Guidi G, Remondino F, Russo M, Menna F, Rizzi A, Ercoli S (2009) A multi-resolution methodology for the 3d modeling of large and complex archeological areas. Int J Archit Comput 7:39–55. doi:10.1260/147807709788549439

    Article  Google Scholar 

  • Hélary D, Darque-Ceretti E, Bouquillon A, Aucouturier M, Monge G (2003) Contribution de la diffraction de rayons X sous incidence rasante à l’étude de céramiques lustrées. Revue d’Archéométrie, 115–122. doi:10.3406/arsci.2003.1047

    Google Scholar 

  • Hoerlé S, Mazaudier F, Dillmann P, Santarini G (2004) Advances in understanding atmospheric corrosion of iron II—mechanistic modelling of wet-dry cycles. Corrosion Sci 46(6):1431–1465. doi:10.1016/j.corsci.2003.09.028

    Google Scholar 

  • Hoppe P, Cohen S, Meibom A (2013) NanoSIMS: technical aspects and applications in cosmochemistry and biological geochemistry. Geostand Geoanal Res 37(2):111–154. doi:10.1111/j.1751-908X.2013.00239.x

    Google Scholar 

  • Huijbregts Z, Schellen H, Jv Schijndel, Ankersmit B (2015) Modelling of heat and moisture induced strain to assess the impact of present and historical indoor climate conditions on mechanical degradation of a wooden cabinet. J Cult Heritage 16:419–427. doi:10.1016/j.culher.2014.11.001

    Article  Google Scholar 

  • Kim C-J, Yoo WS, Lee U-K, Song K-J, Kang K-I, Cho H (2010) An experience curve-based decision support model for prioritizing restoration needs of cultural heritage. J Cult Heritage 11:430–437. doi:10.1016/j.culher.2010.03.004

    Article  Google Scholar 

  • King HE, Mattner DC, Plümper O, Geisler T, Putnis A (2014) Forming cohesive calcium oxalate layers on marble surfaces for stone conservation. Cryst Growth Des 14(8):3910–3917. doi:10.1021/cg500495a

    Article  CAS  Google Scholar 

  • Kouris LAS, Kappos AJ (2012) Detailed and simplified non-linear models for timber-framed masonry structures. J Cult Heritage 13:47–58. doi:10.1016/j.culher.2011.05.009

    Article  Google Scholar 

  • Kurouski D, Zaleski S, Casadio F, Van Duyne RP, Shah NC (2014) Tip-enhanced raman spectroscopy (TERS) for in situ identification of indigo and iron gall ink on paper. J Am Chem Soc 136(24):8677–8684. doi:10.1021/ja5027612

    Article  CAS  Google Scholar 

  • Leon Y, Saheb M, Drouet E, Neff D, Foy E, Leroy E, Dynes JJ, Dillmann P (2014) Interfacial layer on archaeological mild steel corroded in carbonated anoxic environments studied with coupled micro and nano probes. Corros Sci 88:23–35. doi:10.1016/j.corsci.2014.07.005

    Article  CAS  Google Scholar 

  • Leon Y, Sciau P, Passelac M, Sanchez C, Sablayrolles R, Goudeau P, Tamura N (2015) Evolution of terra sigillata technology from Italy to Gaul through a multi-technique approach. J Anal At Spectrom 30(3):658–665. doi:10.1039/C4JA00367E

    Article  CAS  Google Scholar 

  • Leroy S, Cohen SX, Verna C, Gratuze B, Téreygeol F, Fluzin P, Bertrand L, Dillmann P (2012) The medieval iron market in Ariège (France). Multidisciplinary analytical approach and multivariate analyses. J Archaeol Sci 39(4):1080–1093. doi:10.1016/j.jas.2011.11.025

    Google Scholar 

  • Madariaga JM (2015) Analytical chemistry in the field of cultural heritage. Anal Methods 7(12):4848–4876. doi:10.1039/C5AY00072F

    Google Scholar 

  • Manoudis PN, Karapanagiotis I, Tsakalof A, Zuburtikudis I, Kolinkeová B, Panayiotou C (2009) Superhydrophobic films for the protection of outdoor cultural heritage assets. Appl Phys A 97(2):351–360. doi:10.1007/s00339-009-5233-z

    Article  CAS  Google Scholar 

  • Mele E, Luca AD, Giordano A (2003) Modelling and analysis of a basilica under earthquake loading. J Cult Heritage 4:355–367. doi:10.1016/j.culher.2003.03.002

    Article  Google Scholar 

  • Monnier J, Dillmann P, Legrand L, Guillot I (2010) Corrosion of iron from heritage buildings: proposal for degradation indexes based on rust layer composition and electrochemical reactivity. Corros Eng, Sci Technol 4 (5):375–80.10.1179/147842210X12779093813740

    Google Scholar 

  • Muller J, Laïk B, Guillot I (2013) α-CuSn bronzes in sulphate medium: Influence of the tin content on corrosion processes. Corros Sci 77:46–51. doi:10.1016/j.corsci.2013.07.025

    Article  CAS  Google Scholar 

  • Pollard AM, Heron C (2008) Archaeological chemistry. Royal Society of Chemistry, UK

    Google Scholar 

  • Pomiès MP, Menu M, Vignaud C (1999) TEM observations of goethite dehydratation: application to archaeological samples. J Eur Ceram Soc 19:1605–1614. doi:10.1016/S0955-2219(98)00254-4

    Google Scholar 

  • Remondino F, Girardi S, Rizzi A, Gonzo L (2009) 3D Modeling of complex and detailed cultural heritage using multi-resolution data. J Comput Cult Herit 2:2:1–2:20. doi:10.1145/1551676.1551678

    Google Scholar 

  • Richardin P, Mazel V, Walter P, Laprévote O, Brunelle A (2011) Identification of different copper green pigments in renaissance paintings by cluster-TOF-SIMS imaging analysis. J Am Soc Mass Spectrom 22(10):1729–1736. doi:10.1007/s13361-011-0171-3

    Article  CAS  Google Scholar 

  • Sakdinawat A, Attwood D (2010) Nanoscale X-ray imaging. Nat Photon 4(12):840–848. doi:10.1038/nphoton.2010.267

    Google Scholar 

  • Silversmit G, Vekemans B, Brenker FE, Schmitz S, Burghammer M, Riekel C, Vincze L (2009) X-ray fluorescence nanotomography on cometary matter from comet 81P/Wild2 returned by stardust. Anal Chem 81(15):6107–6112. doi:10.1021/ac900507x

    Article  CAS  Google Scholar 

  • Stefani C, Brunetaud X, Janvier-Badosa S, Beck K, Luca LD, Al-Mukhtar M (2014) Developing a toolkit for mapping and displaying stone alteration on a web-based documentation platform. J Cult Heritage 15:1–9. doi:10.1016/j.culher.2013.01.011

    Article  Google Scholar 

  • Thoury M, Echard J-P, Réfrégiers M, Berrie B, Nevin A, Jamme F, Bertrand L (2011) Synchrotron UV—visible multispectral luminescence micro imaging of historical samples. Anal Chem 83(5):1737–1745. doi:10.1021/ac102986h

    Article  CAS  Google Scholar 

  • Tidblad J (2013) Atmospheric corrosion of heritage metallic artefacts: processes and prevention. Corrosion and conservation of cultural heritage metallic artefacts. EFC series. Woodhead Publishing, Oxford, pp 37–52

    Chapter  Google Scholar 

  • Ungár T, Martinetto P, Ribárik G, Dooryhée E, Walter P, Anne M (2002) Revealing the powdering methods of black makeup in Ancient Egypt by fitting microstructure based Fourier coefficients to the whole x-ray diffraction profiles of galena. J Appl Phys 91(4):2455–2465. doi:10.1063/1.1429792

    Article  Google Scholar 

  • Verney-Carron A, Gin S, Frugier P, Libourel G (2010) Long-term modeling of alteration-transport coupling: application to a fractured Roman glass. Geochim Cosmochim Acta 74(8):2291–2315. doi:10.1016/j.gca.2010.01.001

    Google Scholar 

  • Villanueva-Amadoz U, Benedetti A, Méndez J, Sender LM, Diez JB (2012) Focused ion beam nano-sectioning and imaging: a new method in characterisation of palaeopalynological remains. Grana 51(1):1–9. doi:10.1080/00173134.2011.641579

    Article  Google Scholar 

  • Vlachos DG (2005) A review of multiscale analysis: examples from systems biology, materials engineering, and other fluid–surface interacting systems. In: Marin GB (ed) Advances in chemical engineering multiscale analysis. Advances in Chemical Engineering, vol 30. Academic Press, pp 1–61

    Google Scholar 

  • Yang A, Marquardt W (2009) An ontological conceptualization of multiscale models. Computers & Chemical Engineering, 822–837. doi:10.1016/j.compchemeng.2008.11.015

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Dillmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Atlantis Press and the author(s)

About this chapter

Cite this chapter

Bellot-Gurlet, L., Dillmann, P., Neff, D. (2016). From Archaeological Sites to Nanoscale: The Quest of Tailored Analytical Strategy and Modelling. In: Dillmann, P., Bellot-Gurlet, L., Nenner, I. (eds) Nanoscience and Cultural Heritage. Atlantis Press, Paris. https://doi.org/10.2991/978-94-6239-198-7_7

Download citation

Publish with us

Policies and ethics