Skip to main content

Some Science Behind the Daguerreotype: Nanometer and Sub-micrometer Realities On and Beneath the Surface

Abstract

The daguerreotype, the first viable imaging process invented and developed by Louis-Jacques-Mande Daguerre in Paris in 1839 gave birth to photography and started the imaging revolution. This chapter will briefly introduce the daguerreotype, its enthusiastic worldwide acceptance as the first commercially viable form of photography, its short yet productive two decades of existence, and its legacy. The following sections will describe the historical daguerreotype process as practiced today by artists, professional photographers and aficionados. The process has been examined in detail at each of its many steps with scanning and transmission electron microscopies, optical microscopies and vibrational spectroscopies to reveal nanometer and sub-micrometer features at the surface and sub/meso-surface that are involved in and part of the image making process. Knowing more of this wondrous photochemical/physical process increases our appreciation for the object itself and the complexities related to their preservation.

Keywords

  • Image Particle
  • Latent Image
  • Silver Cluster
  • Silver Halide
  • Silver Surface

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.2991/978-94-6239-198-7_5
  • Chapter length: 36 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-94-6239-198-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

Photo credit: © Adam Fuss. Courtesy Cheim & Read, New York

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

(Reprinted from Swan et al. 1979, © 1979, with permission from SEM.) 

Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

References

  • Abbruzzese C, Fomari P, Massidda R, Veglio F, Ubaldini S (1995) Thiosulphate leaching for gold hydrometallurgy. Hydrometallurgy 39:265–276

    CAS  CrossRef  Google Scholar 

  • Baren MR (1992) Silver mercury amalgam phase diagram. In: Baker H (ed) Alloy phase diagrams, vol 3, ASM handbook, 10th edn. ASM International, Materials Park, Ohio

    Google Scholar 

  • Baren MR (1996) The Ag-Hg (Silver-Mercury) system. J Phase Equilib 17(2):122–128

    CAS  CrossRef  Google Scholar 

  • Barger S, White W (1991) The daguerreotype: 19th century and modern science. Smithsonian Institution Press, John Hopkins University Press, Washington, D.C., pp 117–134

    Google Scholar 

  • Barger S, Messier R, White W (1984) Nondestructive assessment of daguerreotype image quality by diffuse reflectance spectroscopy. Stud Conserv 29(2):84–86

    Google Scholar 

  • Bell IM, Clark RJH, Gibbs PJ (1997) Raman spectroscopic library of natural and synthetic pigments (pre-approximately 1850 AD). Spectrochim Acta Part A Mol‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬ Biomol Spectros 53:2159–2179

    Google Scholar 

  • Belloni J (2002) The role of silver clusters in photography. CR Phys 3:1–10

    CrossRef  Google Scholar 

  • Belous VM, Kuskovsky IL (2007) On differences in photoluminescence and photographic characteristic of AgBr (100) and AgBr (111) microcrystals I: unsensitized and reduction sensitized emulsions. JIST 51(6):530–539

    CAS  CrossRef  Google Scholar 

  • Berman H, Harcourt GA (1938) Natural amalgams. Am Min 23:761–764

    CAS  Google Scholar 

  • Binner JGP, Dimitrakis G, Price DM, Reading M, Vaidhyanathan B (2006) Hysteresis in the—phase transition in silver iodide (PDF). J Therm Anal Calorim 84(2):409–412. doi:10.1007/s10973-005-7154-1

    CAS  CrossRef  Google Scholar 

  • Bosnick KA et al (1999) Tricapped tetrahedral Ag7: a structural determination by resonance Raman spectroscopy and density functional theory. J Chem Phys 111(19):8867–8870

    CAS  CrossRef  Google Scholar 

  • Brewster D (1847) History of discoveries in photography. In: WH Bidwell (eds) Eclectic magazine of foreign literature, science and art, p 239

    Google Scholar 

  • Brodie I, Thackray M (1984) Photocharging of thin films of silver iodide and its relevance to the Daguerrodiere photographic process. Nature 312:744–746

    CrossRef  Google Scholar 

  • Bryce RA, Charnock JM, Pattrick RA, Lennie AR (2003) EXAFS and density functional study of gold thiosulfate complex in aqueous solution. J Phys Chem A 107:2516–2523

    CAS  CrossRef  Google Scholar 

  • Burgio L, Clark RJH (2001) Library of FT-Raman spectra of pigments, minerals, pigment media and varnishes, and supplement to existing library of Raman spectra of pigments with visible excitation. Spectrochimica Acta Part A: Mol Biomol Spectros 57:1491–1521

    Google Scholar 

  • Centeno SA, Meller T, Knnedy N, Wypyski M (2008) The daguerreotype surface as a SERS substrate: characterization of image deterioration in plates from the 19th century studio of Southworth & Hawes. J Raman Spectrosc 39:914–921. doi:10.1002/jrs.1934

    CAS  CrossRef  Google Scholar 

  • Centeno SA, Schulte F, Kennedy NW, Schrott AG (2011) The formation of chlorine-induced alterations in daguerreotype image particles: a high resolution SEM-EDS study. Appl Phys A 105(1):55–63 (October 2011). doi:10.1007/s00339-011-6570-2

    Google Scholar 

  • Daguerre L (1839) History and practice of the photogenic drawing on the true principles of the daguerreotype with the new method of dioramic painting. Stewart and Murray, London

    Google Scholar 

  • Eachus RS, Marchetti AP, Muenter AA (1999) The photophysics of silver halide imaging materials. Annu Rev Phys Chem 50:117–144

    CAS  CrossRef  Google Scholar 

  • Fizeau AHL (1841) Notes sur un moyen de fixer les images photographiques. Comptes Rendus hebdomadaires des séances de l’academie des sciences 11:237–238

    Google Scholar 

  • Flinn PA, Flinn PA, Mack AS, Besser PR, Marieb TN (1993) Stress-induced void formation in metal lines. MRS Bull 18(12):26–35

    CAS  Google Scholar 

  • Hailstone RK, Hamilton JF (1985) Determination of the minimum size of the latent image. J Imaging Science 29:125–131 and references therein

    CAS  Google Scholar 

  • Hamilton JF (1988) The silver halide photographic process. Adv Phys 37(4):359–441

    CAS  CrossRef  Google Scholar 

  • Hansen M, Anderko K (1958) Constitution of binary alloys. McGraw Hill, New York

    Google Scholar 

  • Harbich W, Fedrigo S, Meyer F, Lindsay DM, Lignieres J, Rivoal JC, Kreisle D (1990) Deposition of mass selected silver clusters in rare gas matrices. J Chem Phys 93(12):8536–8543

    CrossRef  Google Scholar 

  • Haslett TL, Bosnick A, Moskovits M (1998) Ag5 is a planar trapezoidal molecule. J Chem Phys 108(9):3453–3457

    CAS  CrossRef  Google Scholar 

  • Haslett TL et al (1999) Resonance Raman spectroscopy of matrix-isolated mass-selected Fe3 and Ag3. J Chem Phys V111(14):6456–6461

    CrossRef  Google Scholar 

  • Humphrey SD (1858) American Hand Book of the Daguerreotype, 5th edn, New York, p 59

    Google Scholar 

  • Legodi MA, de Waal D (2007) Preparation of magnetite, goethite, hematite of pigment quality from mill scale iron. Dyes Pigm 74:161–168

    CAS  CrossRef  Google Scholar 

  • Lombardi JR, Davis B (2002) Periodic properties of force constants of small transition-metal and lanthanide clusters. Chem Rev 102:2431–2460

    CAS  CrossRef  Google Scholar 

  • Marquis EA, C Y, Kohanek Julia, Dong Y, Centeno SA (2015) Exposing the sub-surface of historical daguerreotypes and the effects of sulfur-induced corrosion. Corros Sci 94:438–444

    CAS  CrossRef  Google Scholar 

  • Mitchell JW (1957) Photographic sensitivity. Rep Prog Phys 20(1):433

    CAS  CrossRef  Google Scholar 

  • Mitchell JW (1981) The formation of the latent image in photographic emulsion grains. Photographic Sci Eng 25:170–188

    Google Scholar 

  • Motoyoshi I, Nishida S, Sharan L, Adelson EH (2007) Image statistics and the perception of surface qualities. Nature 447:206–209

    CAS  CrossRef  Google Scholar 

  • Mott NF, Gurney RW (1940) Electronic processes in ionic crystals. Clarendon press, Oxford pp 227–248

    Google Scholar 

  • Okinaka T, Kato M (2010) Electroless deposition of gold. In: Modern electroplating, 5th ed. Wiley, NY pp 483–498

    Google Scholar 

  • Oraby EA, Jeffrey MI, Browner RE (2010) The deportment of mercury during thiosulfate leaching and resin-in-pulp recovery of gold from ores. Miner Metall Process 27(4):184–189

    CAS  Google Scholar 

  • Orr WS (1856) Orr’s circle of the sciences: a series of treatises on the principles of science with their application to practical pursuits, practical chemistry. Houlston and Stoneman, London, pp 260–261

    Google Scholar 

  • Pobboravsky I (1971) Study of iodized daguerreotype plates. MS thesis, Rochester Institute of Technology, p 9

    Google Scholar 

  • Predel B (2006) Ag-Hg (Silver-Mercury), This document is part of subvolume 12A ‘Ac-Ag … Au-Zr, supplement to subvolume IV/5A’ of volume 12 ‘phase equilibria, crystallographic and thermodynamic data of binary alloys’ of Landolt-Börnstein—Group IV…—B. Predel in Ac-Ag … Au-Zr

    Google Scholar 

  • Ravines P, Wiegandt R, Wichern CM (2008) Surface characterisation of daguerreotypes with the optical metrological technique of confocal microscopy. Surf Eng 24(2):139–146

    CrossRef  Google Scholar 

  • Ravines P, West A, Minter J, Gutierrez RO (2010) The daguerreotype under high magnification: an ultra-high resolution SEM study of a 19th century daguerreotype’s surface nanostructure. In: Ruvalcaba Sil JL, Reyes Trujeque J, Arenas Alatorre JA, Velázquez Castro A (eds) 2nd Latin–American symposium on physical and chemical methods in archaeology, art and cultural heritage conservation: selected papers. Symposium on archaeological and arts issues in material science (LASMAC & IMRC 2009, Cancun, Mexico). Universidad Nacional Autonoma de Mexico (UNAM), Mexico City, pp 99–109)

    Google Scholar 

  • Ravines P, Lingjia Li, McElroy R (2016) An electron microscopy study of the image making process of the daguerreotype, the 19th century’s first commercially viable photographic process. J Imaging Sci Technol 60(3):030504-1-030504-10

    Google Scholar 

  • Seitz F (1951) Speculations on the properties of the silver halide crystals. Rev Mod Phys 23(4):328–352

    CAS  CrossRef  Google Scholar 

  • Suo Z (2003) Reliability of interconnect structures. In: Gerberich W, Yang W (eds) Interfacial and nanoscale failure, vol 8. In: Milne I, Ritchie RO, Karihaloo B (eds) Comprehensive structural integrity. Elsevier, Amsterdam, pp 265–324

    Google Scholar 

  • Swan A, Fiori CE, Heinrich KJ (1979) Daguerreotypes: a study of the plates and the process. Scan Electron Microsc 1:411–423

    Google Scholar 

  • Tani T (1998) Progress and future prospects of silver halide photography compared with digital imaging. J Imaging Sci Technol 42(1):1–13

    CAS  Google Scholar 

  • Tomasini EP et al (2012) Micro-Raman spectroscopy of carbon-based black pigments. J Raman Spectrosc 43:1671–1675

    CAS  CrossRef  Google Scholar 

  • Vanysek P (2002) Electrochemical series, chapter 8, pp 21–31. In: CRC handbook of chemistry and physics, 83rd edn

    Google Scholar 

  • Weber WH (2000) Raman applications in catalysis for exhaust-gas treatment (pp 236–237, Chapter 6). In: Willes WH, Merlin R (eds) Raman scattering in materials science. Springer Science & Business Media, Aug 24, 2000, 492 p‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬

    Google Scholar 

  • Whitmore P (2014) Personal communication and a spin-off observation related to research. In: Chen R, Nuhfer NT, Moussa L, Morris HR, Whitmore PM (2008) Silver sulfide nanoparticle assembly obtained by reacting an assembled silver nanoparticle template with hydrogen sulfide gas. Nanotechnology 19:455604

    Google Scholar 

  • Wikipedia, Classification of non-silicate minerals website, native elements http://en.wikipedia.org/wiki/Classification_of_non-silicate_minerals. Accessed Aug 2014

  • Wikipedia, Arquerite website, http://en.wikipedia.org/wiki/Arquerite. Accessed Aug 2014

  • Wright SI, Larsen RJ (2002) Extracting twins from orientation imaging microscopy scan data. J Microsc 205:245–252

    CAS  CrossRef  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the help and support of many colleagues and friends: Peter Bush, South Campus Instrumentation Center, SUNY Buffalo, SCIC, B1 Squire Hall, South Campus, Buffalo, New York, USA, pjbush@buffalo.edu. John Minter, Robledo Rodriguez and Steve Stoker, Corporate Engineering & Analytical Science, Eastman Kodak Company, 1999 Lake Avenue, Rochester, New York, 14650-2104 USA, jrminter@gmail.com, rob.gutierrez@kodak.com. Anne West, Eastman Kodak Company (retired), 1999 Lake Avenue, Rochester, New York, USA 14650-2104, annewest78@gmail.com. Natasha Erdman, Product Manager, JEOL USA Inc., 11 Dearborn Road, Peabody, Massachusetts 01960 USA, erdman@jeol.com. Yueling Qin, Senior Research Support Specialist Department, Integrated Nanostructured Systems Initiative, SUNY Buffalo, 114 Davis Hall, UB North Campus, Buffalo, New York, USA, yqin@buffalo.edu. Richard Hailstone, Associate Professor, Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623, USA, hailstone@cis.rit.edu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Ravines .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Atlantis Press and the author(s)

About this chapter

Cite this chapter

Ravines, P., Li, L., Chan, L., McElroy, R. (2016). Some Science Behind the Daguerreotype: Nanometer and Sub-micrometer Realities On and Beneath the Surface. In: Dillmann, P., Bellot-Gurlet, L., Nenner, I. (eds) Nanoscience and Cultural Heritage. Atlantis Press, Paris. https://doi.org/10.2991/978-94-6239-198-7_5

Download citation