Skip to main content

Informative Potential of Multiscale Observations in Archaeological Biominerals Down to Nanoscale

  • Chapter
  • First Online:
  • 1594 Accesses

Abstract

Humans have intentionally used biological materials such as bone, ivory and shells since prehistoric times due to their particular physical and chemical properties. The composite nature of biological materials at the nanoscale combined with an important structural hierarchy up to the macroscopic level is responsible for these exceptional properties. In this chapter we discuss the relation of the structural features of different biological materials within their archaeological and historical contexts along with their anthropological use and function. Amid the wealth of biological materials of archaeological interest, a special attention is paid to carbonate–based materials such as corals and shells and phosphate-based ones, including bone, teeth, ivory and antler. The structural features of these archaeobiominerals at different length scales down to the nanoscopic scale are highlighted in this chapter as they allow drawing conclusions on ancient working techniques, the provision and circulation of raw materials, anthropological heat processes, and, last but not least, on diagenetic changes and authentication purposes. The informative potential of observations of archaeological biological materials at different length scales is finally illustrated by some case studies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Addadi L, Weiner S (2001) Biomineralization: crystals, asymmetry and life. Nature 411:753–755

    Article  CAS  Google Scholar 

  • Albéric M, Dean MN, Gourrier A, Wagermaier W, Dunlop JWC, Staude A, Fratzl P, Reiche I (accepted) Relation between the macroscopic pattern of elephant ivory and its three-dimensionsal micro-tubutlar network. PLOS ONE

    Google Scholar 

  • Albéric M, Gourrier A, Müller K, Zizak I, Wagermaier W, Fratzl P, Reiche I (2014) Early diagenesis of elephant tusks in marine environment. Palaeogeogr Palaeoclimatol Palaeoecol 416(1):120–132

    Article  Google Scholar 

  • Albéric M, Müller K, Pichon L, Lemasson Q, Moignard B, Pacheco C, Fontan E, Reiche I (2015) Non-invasive quantitative micro-PIXE-RBS/EBS imaging reveals the lost polychromy and gilding of the Neo-Assyrian ivories from the Louvre collection. Talanta 137:100–108

    Google Scholar 

  • Allard M, Drieux M, Jarry M, Pomies MP, Rodière J (1997) Perles en bois de renne du niveau 18 des Peyrugues, à Orniac (Lot): hypothèse sur l’origine du protomagdalénien. Paléo 9:355–369

    Article  Google Scholar 

  • Ambrose SH (1991) Effects of diet, climate and physiology on nitrogen isotope abundances in terrestrial foodwebs. J Archaeol Sci 18:293–317

    Article  Google Scholar 

  • Anne J, Edwards NP, Wogelius RA, Tumarkin-Deratzian AR, Sellers WI, van Veelen A, Bergmann U, Sokaras D, Alonso-Mori R, Ignatyev K, Egerton VM, Manning PL (2014) Synchrotron imaging reveals bone healing and remodelling strategies in extinct and extant vertebrates. J R Soc Interface 11(96):20140277. doi:10.1098/rsif.2014.0277

    Article  Google Scholar 

  • Arjmandi BH, Juma S, Beharka A, Bapna MS, Akhter M, Meydani SN (2002) Vitamin E improves bone quality in the aged but not in young adult male mice. J Nutr Biochem 13(9):543–549

    Article  CAS  Google Scholar 

  • Asmussen B (2009) Intentional or incidental thermal modification? Analysing site occupation via burned bone. J Archaeol Sci 36(2):528–536

    Article  Google Scholar 

  • Backwell L, d’Errico F (2008) Early hominid bone tools from Drimolen, South Africa. J Archaeol Sci 35(11):2880–2894. doi:10.1016/j.jas.2008.05.017

    Article  Google Scholar 

  • Backwell L, d’Errico F, Wadley L (2008) Middle stone age bone tools from the Howiesons Poort layers, Sibudu Cave, South Africa. J Archaeol Sci 35(6):1566–1580. doi:10.1016/j.jas.2007.11.006

    Article  Google Scholar 

  • Bailey R, Wijngaarden Jv (2015) The role of B-vitamins in bone health and disease in older adults. Curr Osteoporos Rep 13(4):256–261

    Article  Google Scholar 

  • Balasse M, Tresset A (2002) Early weaning of Neolithic domestic cattle (Bercy, France) revealed by intra-tooth variation in Nitrogen isotopes ratios. J Archaeol Sci 29:853–859

    Article  Google Scholar 

  • Balasse M, Bocherens H, Mariotti A, Ambrose SH (2001) Detection of dietary changes by intra-tooth carbon and nitrogen isotopic analysis: an experimental study of dentine collagen of cattle (Bos taurus). J Archaeol Sci 28:235–245

    Article  Google Scholar 

  • Balasse M, Brugal J-P, Dauphin Y, Geigl E-M, Oberlin C, Reiche I (2015) Message d’os. Archéométrie du squelette animal et humain. Collection «Sciences Archéologiques». Editions des archives contemporaines, Paris

    Google Scholar 

  • Banks WJ (1974) The ossification process of the developping antler in the white-tailed deer (Odocoileus virginianus). Calc Tiss Res 14:257–274

    Article  CAS  Google Scholar 

  • Baohua J, Gao XJ (2004) Mechanical properties of nanostructure of biological materials. J Mech Phys Solids 52(9):1963–1990

    Article  Google Scholar 

  • Bartsiokas A, Middleton AP (1992) Characterization and dating of recent and fossil bone by Xray diffraction. J Archaeol Sci 19:63–72

    Article  Google Scholar 

  • Baud CA, Tochon-Danguy HJ (1985) Les caractéristiques physico-chimiques de l’ivoire et leurs modifications par traitement thermique. Bulletin l’association pro Aventico 29:49–52

    Google Scholar 

  • Bennett JL (1999) Thermal alteration of buried bone. J Archaol Sci 26:1–8

    Article  Google Scholar 

  • Benzerara K, Miller VM, Barell G, Kumar V, Miot J, Brown GE Jr, Lieske JC (2006) Search for microbial signatures within human and microbial calcifications using soft X-ray spectromicroscopy. J Investig Med 54(7):1–15

    Article  Google Scholar 

  • Bergmann U, Morton RW, Manning PL, Sellers WI, Farrar S, Huntley KG, Wogelius RA, Larson P (2010) Archaeopteryx feathers and bone chemistry fully revealed via synchrotron imaging. Proc Natl Acad Sci USA 107(20):9060–9065. doi:10.1073/pnas.1001569107

    Article  CAS  Google Scholar 

  • Berna F, Matthews A, Weiner S (2004) Solubilities of bone mineral from archaeological sites: the recrystallization window. J Archaeol Sci 31(7):867–882. doi:10.1016/j.jas.2003.12.003

    Article  Google Scholar 

  • Bertrand L, Bernard S, Marone F, Thoury M, Reiche I, Gourrier A, Sciau P, Bergmann U (submitted) Emerging approaches in synchrotron studies of materials from cultural and natural history collections. Top Curr Chem

    Google Scholar 

  • Betts F, Blumenthal NC, Posner AS (1981) Bone mineralization. J Cryst Growth 53(1):63–73

    Article  CAS  Google Scholar 

  • Bocherens H, Fizet M, Mariotti A (1994) Diet, physiology and ecology of fossil mammals as inferred from stable carbon and nitrogen isotope biogeochemistry: implications for Pleistcene bears. Palaeogeogr Palaeoclimatol Palaeoecol 107:213–225

    Article  Google Scholar 

  • Bocherens H, Drucker DG, Billiou D, Geneste J-M, Jvd Plicht (2006) Bears and humans in Chauvet Cave (Vallon-Pont-d’Arc, Ardèche, France): insights from stable isotopes and radiocarbon dating of bone collagen. J Hum Evol 50(3):370–376. doi:10.1016/j.jhevol.2005.12.002

    Article  Google Scholar 

  • Bocherens H, Polet C, Toussaint M (2007) Palaeodiet of Mesolithic and Neolithic populations of Meuse Basin (Belgium): evidence from stable isotopes. J Archaeol Sci 34:10–27

    Article  Google Scholar 

  • Boivin G, Chapuy M-C, Baud CA, Meunier PJ (1988) Fluoride content in human iliac bone: results in controls, patients with fluorosis, and osteoporotic patients treated with fluoride. J Bone Miner Res 3(5):497–502

    Article  CAS  Google Scholar 

  • Bozec L, Odlyha M (2011) Thermal denaturation studies of collagen by microthermal analysis and atomic force microscopy. Biophys J 10(1):228–236

    Article  CAS  Google Scholar 

  • Buckley M, Walker A, Ho SY, Yang Y, Smith C, Ashton P, Oates JT, Cappellini E, Koon H, Penkman K, Elsworth B, Ashford D, Solazzo C, Andrews P, Strahler J, Shapiro B, Ostrom P, Gandhi H, Miller W, Raney B, Zylber MI, Gilbert MT, Prigodich RV, Ryan M, Rijsdijk KF, Janoo A, Collins MJ (2008) Comment on “Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry”. Science 319(5859):33; author reply 33. doi:10.1126/science.1147046

    Google Scholar 

  • Buckley M, Whitcher Kansa S, Howard S, Campbell S, Thomas-Oates J, Collins M (2010) Distinguishing between archaeological sheep and goat bones using a single collagen peptide. J Archaeol Sci 37(1):13–20. doi:10.1016/j.jas.2009.08.020

    Article  Google Scholar 

  • Budd P, Montgomery J, Barreiro B, Thomas RG (2000) Differential diagenesis of strontium in archaeological human dental tissues. Appl Geochem 15:687–694

    Article  CAS  Google Scholar 

  • Cain CR (2005) Using burned animal bone to look at Middle Stone Age occupation and behavior. J Archaeol Sci 32(6):873–884

    Article  Google Scholar 

  • Carter DR, Beaupré GS (2007) Skeletal function and form. Mechanobiology of skeletal development, aging, and regeneration. Cambridge University Press, Cambridge

    Google Scholar 

  • Castillo RF, Ubelaker DH, Acosta JAL, Rosa RJE, Garcia IG (2013) Effect of temperature on bone tissue: histological changes. J Forensic Sci 58(3):578–582

    Google Scholar 

  • Caubet A, Gaborit-Chopin D (2004) Ivoires. Réunion des Musées Nationaux, Paris

    Google Scholar 

  • Chadefaux C, Reiche I (2009) Archaeological bone from macro- to nanoscale. Heat-induced modifications at low temperatures. J NanoResearch 8:157–172

    CAS  Google Scholar 

  • Chadefaux C, Vignaud C, Menu M, Reiche I (2008a) Effects and efficiency of consolidation treatments on Palaeolithic reindeer antler. Multi-analytical study by means of XRD, FT-IR microspectroscopy, SEM, TEM and μ-PIXE/PIGE analyses. Appl Phys A 92:171–177. doi:10.1007/s00339-008-4469-3

    Article  CAS  Google Scholar 

  • Chadefaux C, Vignaud C, Menu M, Reiche I (2008b) Multianalytical study of Palaeolithic reindeer antler. Discovery of antler traces in Lascaux pigments by TEM. Archaeometry 50:516–534

    Google Scholar 

  • Chadefaux C, Le Hô A-S, Bellot-Gurlet L, Reiche I (2009a) Micro-ATR-FTIR studies combined with curve fitting of the amide I and II bands of type I collagen in archaeological bone materials. epreservation Science 6:129–137

    Google Scholar 

  • Chadefaux C, Vignaud C, Chalmin E, Robles-Camacho J, Aarroyo-Cabrales J, Johnson E, Reiche aI (2009b) Color origin and heat evidence of paleontological bones: case study of blue and gray bones from San Josecito Cave, Mexico. Am Mineral 94:27–33

    Google Scholar 

  • Chalmin E, Menu M, Vignaud C (2003) Analysis of rock art painting and the technology of Palaeolithic painters. Meas Sci Technol 14:1590–1597

    Article  CAS  Google Scholar 

  • Chapman DI (1981) Antler structure and function—a hypothesis. J Biomech 14(3):195–197

    Article  CAS  Google Scholar 

  • Chauvière F-X (2012) Objets d’ici et d’ailleurs: les industries osseuses du Paléolithique supérieur du Blot (Cerzat, Haute-Loire). Bulletin Préhistorique du Sud-Ouest 20(1):55–77

    Google Scholar 

  • Chauvière F-X, Fontana L (2005) Modalités d’exploitation des rennes dans le Protomagdalénien du Blot (Haute-Loire, France): entre subsistance, technique et symbolique. In: Industrie osseuse et parures du Solutréen au Magdalénien en Europe—table ronde sur la paléolithique supérieur récent, Angoulême (Charente). Société Préhistorique Française, pp 137–147

    Google Scholar 

  • Chen X, Nadiarynkh O, Plotnikov S, Campagnola PJ (2012) Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure. Nat Protoc 7(4):654–669

    Article  CAS  Google Scholar 

  • Chiotti L, Nespoulet R, Henry-Gambier D, Morala A, Vercoutère C, Agsous S, Lenoble A, Marquer L, Grimaud-Hervé D (2009) Statut des objets “extra-ordinaires” du Gravettien final de l’abri Pataud (Les Eyzies, Dordogne): objets abandonnés dans l’habitat ou dépôt intentionnel? In: Bonnardin S, Hamon C, Lauwers M, Quilliec B (eds) Du matériel au spirituel. Réalités archéologiques et historiques des “dépots” de la Préhistoire à nos jours. XXIXèmes rencontres internationales d’archéologie et d’histoire d’Antibes, Juan-les-Pins, 16–18 Oct 2008. éditions APDCA, pp 29–46

    Google Scholar 

  • Chiotti L, Nespoulet R, Henry-Gambier D, Vercoutère C, Crépin L, Lebon M, Beck L, Müller K, Reiche I (2014) Un comportement funéraire original au Gravettien final. Bilan des analyses et études 2005–2011 de la couche 2 de l’abri Pataud (Les Eyzies-de-Tayac, Dordogne, France). In: Paillet P (ed) Les arts de la Préhistoire: microanalyses, mises en contextes et conservation. Actes du colloque “micro-analyses et datations de l’art préhistorique dans son contexte archéologique” MADAPCA, Paris, 2014. Paléo

    Google Scholar 

  • Christensen M (2004) Fiche caractères morphologiques, histologiques et mécaniques des matières dures d’origin animales. In: Collectif DR (ed) Matières et techniques, Industrie de l’os préhistorique. Cahier XI. Société Préhistorique Française, Paris, pp 17–27

    Google Scholar 

  • Christensen M, Tejero J-M (2015) La fabrication d’objets en matières dures animales. In: Balasse M, Brugal J-P, Dauphin Y, Geigl E-M, Oberlin C, Reiche I (eds) Messages d’os. Archives contemporaines, Paris

    Google Scholar 

  • Codron J, Codron D, Sponheimer M, Kirkman K, Duffy KJ, Raubenheimer EJ, Melice JL, Grant R, Clauss M, Lee-Thorp JA (2012) Stable isotope series from elephant ivory reveal lifetime histories of a true dietary generalist. Proc Biol Sci 279(1737):2433–2441. doi:10.1098/rspb.2011.2472

    Article  Google Scholar 

  • Collins MJ, Riley MS, Child AM, Turner-Walker G (1995) A basic mathematical simulation of the chemical degradation of ancient collagen. J Archaeol Sci 22:175–183

    Article  Google Scholar 

  • Collins MJ, Waite ER, Van Duin ACT (1999) Predicting protein decomposition: the case of aspartic-acid racemization kinetics. Phil Trans R Soc Lond B 354:51–64

    Article  CAS  Google Scholar 

  • Collins MJ, Nielsen-Marsh CM, Hiller J, Smith CI, Roberts JP, Prigodich RV, Wess TJ, Csapo J, Millard AR, Turner-Walker G (2002) The survival of organic matter in bone: a review. Archaeometry 44(3):383–394

    Article  CAS  Google Scholar 

  • Conard N (2003) Palaeolithic ivory sculptures from southwestern Germany and the origins of figurative art. Nature 426:830–832

    Article  CAS  Google Scholar 

  • Conard NJ (2009) A female figurine from the basal Aurignacian of Hohle Fels Cave in southwestern Germany. Nature 459(7244):248–252. doi:10.1038/nature07995

    Article  CAS  Google Scholar 

  • Correia PM (1996) Fire modification of bone: a review of the literature. In: Haglund WDS, Sorg MH (eds) Forensic taphonomy. CRC Press, Boca Raton

    Google Scholar 

  • Cui FZ, Wen HB, Zhang HB, Ma CL, Li HD (1994) Nanophase hydroxyapatite-like crystallites in natural ivory. J Mate Sci Lett 13:1042–1044

    CAS  Google Scholar 

  • Currey JD (1999) The design of mineralised tissues for their mechanical functions. J Exp Biol 202:3285–3294

    CAS  Google Scholar 

  • Currey JD (2002) Bones - Structure and Mechanics. Princeton

    Google Scholar 

  • Currey JD (2005) Hierarchies in biomineral structures. Science 309:253–254

    Article  CAS  Google Scholar 

  • Currey JD, Brear K, Zioupos P (1994) Dependence of mechanical properties on fibre angle in narwhal tusk, a highly oriented biological composite. J Biomech 27:885–897

    Article  CAS  Google Scholar 

  • d’Errico F, Henshilwood CS (2007) Additional evidence for bone technology in the southern African Middle Stone Age. J Hum Evol 52(2):142–163. doi:10.1016/j.jhevol.2006.08.003

    Article  Google Scholar 

  • Dauphin Y, Williams CT (2004) Diagenetic trends of detnal tissues. C R Palevol 3:583–590

    Article  Google Scholar 

  • Denys C, Patou-Methis M (2014) Manuel de taphonomie. Collections archéologiques. Editions Errance, Paris

    Google Scholar 

  • Dupont C, Marchand G (2008) Coastal exploitation in the Mesolithic of western France: la Pointe Saint-Gildas (Préfailles). Environ Archaeol 13(2):143–152. doi:10.1179/174963108X343263

    Article  Google Scholar 

  • Duval M (2011) High resolution LA-ICP-MS mapping of U and Th isotopes in an early Pleistocene equid tooth from Fuente Nueva-3 (Orce, Andalusia, Spain). Quat Geochronol 6(5):458–467

    Article  Google Scholar 

  • Edwards HGM, O’Connor S (2012) Archaeological ivory: a challenge for analytical Raman spectroscopy. In: Edwards HGM, Vandenabeele P (eds) Analytical archaeometry. The Royal Society of Chemistry, Cambridge, pp 449–467

    Chapter  Google Scholar 

  • Edwards HGM, Brody RH, Nick Hassan NF, Farwell DW, O’Connor S (2006) Identification of archaeological ivories using FT-Raman spectroscopy. Anal Chim Acta 559:64–72

    Article  CAS  Google Scholar 

  • Ellingham ST, Thompson TJ, Islam M (2015a) The effect of soft tissue on temperature estimation from burnt bone using Fourier Transform Infrared Spectroscopy. J Forensic Sci 61:153–159

    Google Scholar 

  • Ellingham ST, Thompson TJ, Islam M, Taylor G (2015b) Estimating temperature exposure of burnt bone: a methodological review. Sci Justice 55(3):181–188

    Article  Google Scholar 

  • Enk J, Devault A, Debruyne R, King CE, Treangen T, O’Rourke D, Salzberg SL, Fisher D, MacPhee R, Poinar H (2011) Complete Columbian mammoth mitogenome suggests interbreeding with woolly mammoths. Genome Biol 12(5):R51

    Article  Google Scholar 

  • Enzo S, Bazzoni M, Mazzarello V, Piga G, Bandiera P, Melis P (2007) A study of thermal treatment and X-ray powder diffraction on burnt fragmented bones from tomb II, IV and IX belonging to the hypogeic necropolis of “Sa Figu” near Ittiri, Sassari (Sardinia, Italy). J Archaeol Sci 34:1731–1737

    Article  Google Scholar 

  • Ericson JE (1985) Strontium isotope characterization in the study of prehistoric human ecology. J Hum Evol 14:503–514

    Article  Google Scholar 

  • Eriksson C, Börner K, Nygren H, Ohlson K, Bexell U, Billerdahl N, Johansson M (2006) Studies by imaging TOF-SIMS of bone mineralization on porous titanium implants after 1 week in bone. Appl Surf Sci 25:6757–6760

    Google Scholar 

  • Espinoza EO, Mann M-J (1991) Guide d’identification de l’ivoire et de ses substituts. World Wildlife Fund and Conservation Foundation, New York

    Google Scholar 

  • Falguères C, Bahain J-J, Duval M, Shao Q, Han F, Lebon M, Mercier N, Perez-Gonzalez A, Dolo J-M, Garcia T (2010) A 300–600 ka ESR/U-series chronology of Acheulian sites in Western Europe. Quatern Int 223–224:293–298. doi:10.1016/j.quaint.2009.10.008

    Article  Google Scholar 

  • Finch AA, Allison N (2007) Coordination of Sr and Mg in calcite and aragonite. Mineral Mag 71(5):539–552. doi:10.1180/minmag.2007.071.5.539

    Article  CAS  Google Scholar 

  • Fischer PM, Lodding ARE, Noren JG (1989) Trace elements and dating studies of teeth by secondary ion mass spectrometry (SIMS). In: Maniatis Y (ed) Archaeometry. Elsevier Science Publishers B. V, Amsterdam-Oxford-NY-Tokyo, pp 109–119

    Google Scholar 

  • Fontan E, Reiche I (2011) Les ivoires d’Arslan Tash (Syrie) d’après une etude de la collection du Musée du Louvre: mise en oeuvre du matériau, traces de polychromie et de dorure, état de conservation. ArcheoSciences 35:283–295

    Article  Google Scholar 

  • Fox DL, Fisher DC (2004) Dietary reconstruction of Miocene Gomphotherium (Mammalia, Proboscidea) from the Great Plains region, USA, based on the carbon isotope composition of tusk and molar enamel. Palaeogeogr Palaeoclimatol Palaeoecol 206(3–4):311–335. doi:10.1016/j.palaeo.2004.01.010

    Article  Google Scholar 

  • Fox DL, Fisher DC, Vartanyan S, Tikhonov AN, Mol D, Buigues B (2007) Paleoclimatic implications of oxygen isotopic variation in late Pleistocene and Holocene tusks of Mammuthus primigenius from northern Eurasia. Quatern Int 169–170:154–165. doi:10.1016/j.quaint.2006.09.001

    Article  Google Scholar 

  • Fratzl P (2004) Hierarchical structure and mechanical adaptation of biological materials. In: Weiner RLRS (ed) Learning from nature how to design new implantable biomaterials: from biomineralisation fundamentals to biomimetic materials and processing routes. Kluwer Academic Publishers, Berlin, pp 15–34

    Google Scholar 

  • Fratzl P (2007) Biomimetic materials research: what can we really learn from nature’s structural materials? J R Soc Interface 4(15):637–642. doi:10.1098/rsif.2007.0218

    Article  CAS  Google Scholar 

  • Fratzl P, Weinkammer R (2007) Nature’s hierarchical materials. Prog Mater Sci 52(8):271–298

    Article  CAS  Google Scholar 

  • Fratzl P, Gupta HS, Paschalis EP, Roschger P (2004) Structure and mechanical quality of the collagen–mineral nano-composite in bone. J Mater Chem 14:2115–2123

    Article  CAS  Google Scholar 

  • Fürst S, Müller K, Paris C, Bellot-Gurlet L, Pare C, Reiche I (2014) Neue Identifizierungsstrategie eisenzeitlicher Korallen anhand optischer und Raman-spektroskopischer Charakteristiken. Berliner Beiträge zur Archäometrie, Kunsttechnologie und Konservierungswissenschaft 22:25–35

    Google Scholar 

  • Gaschen AA-M, Krähenbühl U, Döbeli M, Markwitz A, Barry B, Ulrich-Bochsler S (2008) Fluorine age dating of archaeological bones: fluorine depth profiling as a function of environmentally induced bone degradation. J Archaeol Sci 35:535–552

    Article  Google Scholar 

  • Geigl E-M (2002) Why ancient DNA research needs taphonomy. In: O’Connor T (ed) 9th Conference of the International Council of Archaeozoology, Durham, UK, 2004. Oxford, Oxbow Books, pp 78–85

    Google Scholar 

  • Gifford DP (1981) Taphonomy and paleoecology: a critical review of archaeology’s sister disciplines. In: Advances in archaeological method and theory, vol 4. Springer, Berlin, pp 365–438

    Google Scholar 

  • Gillespie R, Hedges REM, Wand JO (1984) Radiocarbon dating of bone by accelerator mass spectrometry. J Archaeol Sci 11:165–170

    Article  Google Scholar 

  • Godfrey IM, Ghisalberti EL, Beng EW, Byrne LT, Richardson GW (2002) The analysis of ivory from a marine environment. ICC 47:1–29

    Google Scholar 

  • Gonçalves D, Thompson T, Cunha E (2011) Implications of heat-induced changes in bone on the interpretation of funerary behaviour and practice. J Archaeol Sci 38(6):1308–1313

    Article  Google Scholar 

  • Goodwin MB, Grant PG, Bench G, Holroyd PA (2007) Elemental composition and diagenetic alteration of dinosaur bone: distinguishing micron-scale spatial and compositional heterogeneity using PIXE. Palaeogeogr Palaeoclimatol Palaeoecol 253:458–476

    Article  Google Scholar 

  • Gourrier A, Wagermaier W, Burghammer M, Lammie D, Gupta HS, Fratzl P, Riekel C, Wess TJ, Paris O (2007a) Scanning X-ray imaging with small-angle scattering contrast. J Appl Crystallogr 40(Supplement):s78–s82

    Article  CAS  Google Scholar 

  • Gourrier A, Wagermaier W, Burghammer M, Lammie D, Gupta HS, Fratzl P, Riekel C, Wess TJ, Paris O (2007b) Scanning X-ray imaging with small-angle scattering contrast. J Appl Crystallogr 40(Supplement):s78–s82

    Article  CAS  Google Scholar 

  • Gourrier A, Li C, Siegel S, Paris O, Roschger P, Klaushofer K, Fratzl P (2010) Scanning small-angle X-ray scattering analysis of the size and organization of the mineral nanoparticles in fluorotic bone using a stack of cards model. J Appl Crystallogr 43:1385–1392

    Article  CAS  Google Scholar 

  • Gourrier A, Bunk O, Müller K, Reiche I (2011a) Artificially heated bone at low temperatures: a quantitative scanning small-angle X-ray scattering imaging study of the mineral particle size. ArcheoSciences 35:191–199

    Article  Google Scholar 

  • Gourrier A, Bunk O, Müller K, Reiche I (2011b) Artificially heated bone at low temperatures: a quantitative scanning small angle X-ray scattering imaging study of the mineral particle size. ArcheoSciences 35:191–199

    Article  Google Scholar 

  • Grime G, Watt F (1993) A survey of recent PIXE applications in archaeometry and environmental sciences using the Oxford scanning proton microphobe facility. Nucl Instrum Methods Phys Res B75:495–503

    Article  CAS  Google Scholar 

  • Grün R, Aubert M, Hellstrom J, Duval M (2010) The challenge of direct dating old human fossils. Quatern Int 223–224:87–93. doi:10.1016/j.quaint.2009.10.005

    Article  Google Scholar 

  • Gueriau P, Mocuta C, Dutheil DB, Cohen SX, Thiaudiere D, Charbonnier S, Clement G, Bertrand L (2014) Trace elemental imaging of rare earth elements discriminates tissues at microscale in flat fossils. PLoS One 9(1):e86946. doi:10.1371/journal.pone.0086946

    Article  CAS  Google Scholar 

  • Gupta HS, Seto J, Wagermaier W, Zalansky P, Boesecke P, Fratzl P (2006) Cooperative deformation of mineral and collagen in bone at the nanoscale. PNAS 103 (47):17741–17746

    Google Scholar 

  • Haile J, Froese DG, MacPhee RDE, Roberts RG, Arnold LJ, Reyes AV, Rasmussen M, Nielsen R, Brook BW, Robinson S, Demuro M, Gilbert MT, Munch K, Austin JJ, Cooper A, Barnes I, Möller P, Willerslev E (2009) Ancient DNA reveals late survival of mammoth and horse in interior Alaska. Proc Natl Acad Sci USA 106(52):22352–22357

    Google Scholar 

  • Hameau S, Falguères C, Bahain JJ, Sémah F, Sémah AM, Dolo JM (2007) ESR dating in song terus cave (East Java, Indonesia). Quat Geochronol 2(1–4):398–402

    Article  Google Scholar 

  • Hanson M, Cain CR (2007) Examining histology to identify burned bone. J Archaeol Sci 34(11):1902–1913

    Article  Google Scholar 

  • Hedges REM (2002) Bone diagenesis: an overview of processes. Archaeometry 44(3):319–328

    Article  CAS  Google Scholar 

  • Hedges REM, Law IA (1989) The radiocarbon dating of bone. Appl Geochem 4:249

    Article  CAS  Google Scholar 

  • Hiller JC, Wess TJ (2006) The use of small-angle X-ray scattering to study archaeological and experimentally altered bone. J Archaeol Sci 33:560–572

    Article  Google Scholar 

  • Hiller JC, Thomson TJU, Evison MP, Chamberlain AT, Wess TJ (2003) Bone mineral change during experimental heating: an X-ray scattering investigation. Biomaterials 24:5091–5097

    Article  CAS  Google Scholar 

  • Hillson S (2009) Teeth. Cambridge manuals in archaeology. Cambridge University Press, New York

    Google Scholar 

  • Hodge AJ, Petruska JA (1963) Recent studies with the electron microscope on ordered aggregats of the tropocollagen molecule. In: Narayana RG (ed) Aspects of protein structure. Academic Press, New York, pp 289–300

    Google Scholar 

  • Holden J, Phakey P, Clement J (1995) Scanning electron microscope observations of heat-treated human bone. Forensic Sci Int 74(1–2):29–45

    Article  CAS  Google Scholar 

  • Hulmes D (2008) Collagen diversity, synthesis and assembly. In: Fratzl P (ed) Collagen. Springer US, New York, pp 15–47

    Google Scholar 

  • Iacumin P, Bocherens H, Mariotti A, Longinelli A (1996) Oxygen isotope analyses of co-existing carbonate and phosphate in biogenic apatite: a way to monitor diagenetic alteration of bone phosphate? Earth Planet Sci Lett 142:1–6

    Article  CAS  Google Scholar 

  • Jäger I, Fratzl P (2000) Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. Biophys J 79:1737–1746

    Article  Google Scholar 

  • Jans MME, Kars H, Nielsen-Marsh CM, Smith CI, Nord AG, Arthur P, Earl E (2002) In situ preservation of archaeological bone: a histological study within a multidisciplinary approach. Archaeometry 44:343–352

    Article  Google Scholar 

  • Jans MME, Nielsen-Marsh CM, Smith CI, Collins MJ, Kars H (2004) Characterisation of microbial attack on archaeological bone. J Archaeol Sci 31:87–95

    Article  Google Scholar 

  • Jantou-Morris V, Horton MA, McComb DW (2010) The nano-morphological relationships between apatite crystals and collagen fibrils in ivory dentine. Biomaterials 31(19):5275–5286. doi:10.1016/j.biomaterials.2010.03.025

    Article  CAS  Google Scholar 

  • Kalsbeek N, Richter J (2006) Preservation of burned bones: an investigation of the effects of temperature and pH on hardness. Stud Conserv 51(2):123–138

    Article  CAS  Google Scholar 

  • Kierdorf H, Kierdorf U, Szuwart T, Clemen G (1995) A light microscopic study of primary antler develoment in fallow deer (Dama dama). Ann Anat 177:525–532

    Article  Google Scholar 

  • Klein-Nulend J, Bacabac R, Mullender M (2005) Mechanobiology of bone tissue. Pathol Biol 53(10):576–580

    Article  CAS  Google Scholar 

  • Kohn MJ, Schoeninger MJ, Barker WW (1999) Altered states: effects of diagenesis on fossil tooth chemistry. Geochim Cosmochim Acta 63(18):2737–2747

    Article  CAS  Google Scholar 

  • Koon HEC, Nicholson RA, Collins MJ (2003) A practical approach to the identification of low temperature heated bone using TEM. J Archaeol Sci 30:1393–1399

    Article  Google Scholar 

  • Koon HEC, O’Connor TP, Collins MJ (2010) Sorting the butchered from the boiled. J Archaeol Sci 37:62–69

    Article  Google Scholar 

  • Krauss S, Fratzl P, Seto J, Currey JD, Estevez JA, Funari SS, Gupta HS (2009) Inhomogeneous fibril stretching in antler starts after macroscopic yielding: indication for a nanoscale toughening mechanism. Bone 44(6):1105–1110. doi:10.1016/j.bone.2009.02.009

    Article  Google Scholar 

  • Krauss S, Wagermaier W, Estevez JA, Currey JD, Fratzl P (2011) Tubular frameworks guiding orderly bone formation in the antler of the red deer (Cervus elaphus). J Struct Biol 175(3):457–464. doi:10.1016/j.jsb.2011.06.005

    Article  Google Scholar 

  • Lafontaine RH, Wood PA (1982) The stabilization of ivory against relative humidity fluctuations. Stud Conserv 27:109–117

    CAS  Google Scholar 

  • Lakes R (1993) Materials with structural hierarchy. Nature 361:511–515

    Article  Google Scholar 

  • Landis WJ, Hodgens KJ, Arena J, Song MJ, McEwen BF (1996) Structural relations between collagen and mineral in bone as determined by high voltage electron licroscopic tomography. Microsc Res Tech 33:192–202

    Article  CAS  Google Scholar 

  • Lange K, Perlès C, Vanhaeren M, Reiche I (2008) Heat-induced modification of marine shells used as personal ornaments at the prehistoric site of Franchthi cave, Greece: first results of a multi-analytical approach. In: Rabin I, Weiner S (eds) art’2008. Jerusalem, Israel

    Google Scholar 

  • Large D, Müller K, Reiche I (2011) Approche analytique pour l’étude des ivoires archéologiques. ArcheoSciences 35:167–177

    Article  Google Scholar 

  • Latham AG (1997) Uranium-series dating of bone by gamma-ray spectrometry: comment. Archaeometry 39(1):217–219

    Article  Google Scholar 

  • Launey ME, Chen P-Y, McKittrick J, Ritchie RO (2010) Mechanistic aspects of the fracture toughness of elk antler bone. Acta Biomater 6:1505–1514

    Article  CAS  Google Scholar 

  • Lebon M, Reiche I, Gallet X, Bellot-Gurlet L, Zazzo A (2016) Rapid quantification of preserved bone collagen content by ATR-FTIR spectroscopy. Radiocarbon (in press)

    Google Scholar 

  • Lebon M, Reiche I, Fröhlich F, Bahain J-J, Falguères C (2008) Characterization of archaeological burnt bones: contribution of a new analytical protocol based on derivative FTIR spectroscopy and curve fitting of the ν1ν3 PO4 domain. Anal Bioanal Chem 392(7–8):1479–1488

    Article  CAS  Google Scholar 

  • Lebon M, Reiche I, Bahain J-J, Chadefaux C, Moigne A-M, Fröhlich F, Sémah F, Schwarcz HP, Falguères C (2010) New parameters for the characterization of diagenetic alterations and heat-induced changes of fossil bone mineral using Fourier transform infrared spectrometry. J Archaeol Sci 37:2265–2276

    Article  Google Scholar 

  • Lebon M, Müller K, Bahain J-J, Fröhlich F, Falguères C, Bertrand L, Sandt C, Reiche I (2011a) Imaging fossil bone alterations at the microscale by SR-FTIR microspectroscopy. J Anal At Spectrom 26(5):922. doi:10.1039/c0ja00250j

    Article  CAS  Google Scholar 

  • Lebon M, Müller K, Bellot-Gurlet L, Paris C, Reiche I (2011b) Application des micro-spectrométries Infrarouge et Raman à l’étude des processus diagénétiques altérant les ossements Paléolithiques. ArcheoSciences 35:179–190

    Article  Google Scholar 

  • Lee-Thorp J, Manning L, Sponheimer M (1997) Problems and prospects for carbon isotope analysis of very small samples of fossil tooth enamel. Bulletin de la Société géologique de France 168(6):767–773

    CAS  Google Scholar 

  • Leroi-Gourhan A, Allain J (1979) Lascaux inconnu. Editions du CNRS edn

    Google Scholar 

  • Li C, Suttie JM, Clark DE (2005) Histological examination of antler regeneration in red deer (Cervus Elaphus). Anat Rec Part A 282A:163–174

    Article  Google Scholar 

  • Liverino B (1989) Red coral. In: Jewel of the Sea. Bologna

    Google Scholar 

  • Llamas B, Holland ML, Chen K, Cropley JE, Cooper A, Suter CM (2012) High-resolution analysis of cytosine methylation in ancient DNA. PLoS One 7(1):e30226

    Article  CAS  Google Scholar 

  • Locke M (2008) Structure of ivory. J Morphol 269(4):423–450. doi:10.1002/jmor.10585

    Article  Google Scholar 

  • Lowenstam HA, Weiner S (1989) On biomineralization, 1st edn. Oxford University Press, New York Oxford

    Google Scholar 

  • Mann S, Weiner S (1999) Biomineralization: structural questions at all length scales. J Struct Biol 126:179–181

    Article  CAS  Google Scholar 

  • Mellars P (1989a) Major issues in the origin of modern humans. Curr Anthropol 30:349–385

    Article  Google Scholar 

  • Mellars P (1989b) Technological changes across the Middle-Upper Paleolithic transition: economic, social, and cognitive perspectives. In: Mellars P, Stringer C (eds) The human revolution: behavioral and biological perspectives on the origins of modern humans. Edinburgh University Press, Edinburgh, pp 338–365

    Google Scholar 

  • Meneghini C, Dalconi MC, Nuzzo S, Mobilio S, Wenk RH (2003) Rietveld refinement on X-ray diffraction patterns of bioapatite in human fetal bones. Biophys J 84(3):2021–2029

    Article  CAS  Google Scholar 

  • Miles AEW, F.D.S., L.R.C.P., M.R.C.S., J.W.White, L.D.S., R.C.S (1960) Ivory. In: Meeting at the Royal College of Surgeons Lincoln’s Inn Fields, London. Section of Odontology, Royal Society of Medicine, pp 775–780

    Google Scholar 

  • Millard AR, Pike AWG (1999) Uranium-series dating of the Tabun Neanderthal: a cautionary note. J Hum Evol 36:581–585

    Article  CAS  Google Scholar 

  • Molleson T (1987) Trace elements in human teeth. In: Grupe G, Herrmann B (eds) Trace elements in environmental history, Göttingen. Springer-Verlag Berlin Heidelberg New York, pp 67–82

    Google Scholar 

  • Müller K, Reiche I (2011) Differentiation of archaeological ivory and bone materials by micro-PIXE/PIGE with emphasis on two Upper Palaeolithic key sites: Abri Pataud and Isturitz, France. J Archaeol Sci 38:3234–3243

    Article  Google Scholar 

  • Munro LE, Longstaffe FJ, White CD (2007) Burning and boiling of modern deer bone: effects on crystallinity and oxygen isotope composition of bioapatite phosphate. Palaeogeogr Palaeoclimatol Palaeoecol 249:90–1002

    Article  Google Scholar 

  • Nalla R (2003) Effect of orientation on the in vitro fracture toughness of dentin: the role of toughening mechanisms. Biomaterials 24(22):3955–3968. doi:10.1016/s0142-9612(03)00278-3

    Article  CAS  Google Scholar 

  • Nalla RK (2005) Fracture in human cortical bone: local fracture criteria and toughness mechanism. J Biomech 38(7):1517–1525. doi:10.1016/s0142-9612(03)00278-3

    Article  CAS  Google Scholar 

  • Nalla RK, Kinney JH, Ritchie RO (2003) Mechanistic fracture criteria for the failure of human cortical bone. Nat Mater 2(3):164–168

    Article  CAS  Google Scholar 

  • Nicholson RA (1996) Bone degradation, burial medium and species representation: debunking the myths, an experiment-based approach. J Archaeol Sci 23(4):513–533

    Article  Google Scholar 

  • Nielsen-March CM, Hedges REM (1999) Bone porosity and the use of mercury intrusion porosimetry in bone diagenesis studies. Archaeometry 41(1):165–174

    Article  Google Scholar 

  • Nielsen-Marsh CM, Hedges REM, Mann T, Collins MJ (2000) A preliminary investigation of the application of differential scanning calorimetry to the study of collagen degradation in archaeological bone. Thermochim Acta 365:129–139

    Article  CAS  Google Scholar 

  • Nielsen-Marsh CM, Smith CI, Jans MME, Nord A, Kars H, Collins MJ (2007) Bone diagenesis in the European Holocene II: taphonomic and environmental considerations. J Archaeol Sci 34:1523–1531

    Article  Google Scholar 

  • Nogués-Bravo D, Rodríguez J, Hortal J, Batra P, Araújo MB (2008) Climate change, humans, and the extinction of the woolly mammoth? PLoS Biol 6(4):e79

    Article  CAS  Google Scholar 

  • Nothnagel G, Le Roux SD, Grotepass WP (1996) Correlation between texture of hydroxyapatite and mechanical anisootropy in Loxodonta Africana ivory. Textures Microstruct 26–27:579–583

    Article  Google Scholar 

  • O’Connor S, Edwards HGM, Ali E (2011) An interim investigation of the potential of vibrational spectroscopy for the dating of cultural objects in ivory. ArcheoSciences 35:159–165

    Google Scholar 

  • Olhausen O (1888) Über die farbigen Einlagen einer Bronzefibel von Schwabsburg in Rheinhessen. Kr. Mainz. Verhandlungen Berliner Ges Anthrop Ethnol u Urgesch XX:140–151

    Google Scholar 

  • Perlès C, Vanhaeren M (2010) Black cyclope neritea marine shell in the Upper Palaeolithic and Mesolithic of Franchthi (Argolid, Greece). Arguments for an intentionnal heat treatment. J Field Archaeol 35(3):314–325

    Article  Google Scholar 

  • Perrin F (1996) Technologie et économie du corail de Méditerranée en Gaule du VIe au 1er siècle avant J.-C., Lyon

    Google Scholar 

  • Person A, Bocherens H, Saliège J-F, Paris F, Zeitoun V, Gérard M (1995) Early diagenetic evolution of bone phosphate: an X-ray diffractometry analysis. J Archaeol Sci 22:211–221

    Article  Google Scholar 

  • Person A, Bocherens H, Mariotti A, Renard M (1996a) Diagenetic Evolution and experimental heating of Bone Phosphate. Palaeogeogr Palaeoclimatol Palaeoecol 126:135–149

    Article  Google Scholar 

  • Person A, Bochérens H, Mariotti A, Renard M (1996b) Diagenetic Evolution and experimental heating of Bone Phosphate. Palaeogeogr Palaeoclimatol Palaeoecol 126:135–149

    Article  Google Scholar 

  • Piga G, Malgosa A, Thompson T, Enzo S (2008) A new calibration of the XRD technique for the study of archaeological burned human remains. J Archaeol Sci 35:2171–2178

    Google Scholar 

  • Piga G, Solinas G, Thompson T, Brunetti A, Malgosa A, Enzo S (2013) Is X-ray diffraction able to distinguish between animal and human bones? J Archaeol Sci 40(1):778–785

    Article  CAS  Google Scholar 

  • Pijoan CM, Mansilla J, Leboreiro I, Lara VH, Bosch P (2007) Thermal alterations in archaeological bones. Archaeometry 49:713–727

    Article  CAS  Google Scholar 

  • Politi Y, Batchelor DR, Zaslansky P, Chmelka BF, Weaver JC, Sagi I, Weiner S, Addadi L (2010) Role of magnesium ion in the stabilization of biogenic amorphous calcium carbonate: a structure-function investigation. Chem Mater 22:161–166. doi:10.1021/cm902674h; 10.1029/2008GL033543

    Google Scholar 

  • Posner AS (1969) Crystal chemistry of bone mineral. Physiol Rev 49(4):760–792

    CAS  Google Scholar 

  • Prozesky VM, Raubenheimer EJ, Heerden WFPV, Grotepass WP, Przybylowicz WJ, Pineda CA, Swart R (1995) Trace element concentration and distribution in ivory. Nucl Instrum Meth B 104:638–644

    Article  CAS  Google Scholar 

  • Pruvost M, Schwartz R, Correia VB, Champlot S, Braguier S, Morel N, Fernandez-Jalvo Y, Grange T, Geigl E-M (2007) Freshly excavated fossil bones are best for amplification of ancient DNA. PNAS 104(3):739–744

    Article  CAS  Google Scholar 

  • Pruvost M, Schwarz Bessa Correia, Champlot Grange T, Geigl E-M (2008) DNA diagenesis and palaeogenetic analysis: critical assessment and methodological progress. Palaeogeogr Palaeoclimatol Palaeoecol 266(3–4):211–219

    Article  Google Scholar 

  • Rajaram A, Ramanathan N (1982) Tensile properties of antler bone. Calcif Tissue Int 34(3):301–305

    Article  CAS  Google Scholar 

  • Raubenheimer EJ (1999) Morphological aspects and composition of African elephant (Loxodonta africana) ivory. Koedoe—African Protected Area Conserv Sci 42(2):57–64

    Article  Google Scholar 

  • Raubenheimer EJ, Biosman MC, Vorster R, Noffke CE (1998a) Histogenesis of the chequered pattern of ivory of the African elephant (Loxodonta Africana). Arch Oral Biol 43:969–977

    Article  CAS  Google Scholar 

  • Raubenheimer EJ, Brown JMM, Rama DBK, Dreyer MJ, Smith PD, Dauth J (1998b) Geographic variations in the composition of ivory of the african elephant (Loxodonta africana). Arch Oral Biol 43:641–647

    Article  CAS  Google Scholar 

  • Reiche I (2009a) Heating and diagenesis-induced heterogeneiteis in the chemical composition and structure of archaeological bones from the Neolithic site of Chalain 10 (Jura, France). Pal@thnologie 2:129–144

    Google Scholar 

  • Reiche I (2009b) Hétérogénéité de la composition chimique et de la structure des ossements archéologiques provenant du site néolithique de Chalain 19 (Jura, France) indute par la chauffe et la diagenèse. Pal@thnologie 2

    Google Scholar 

  • Reiche I (ed) (2011) dossier thématique: the international ArBoCo workshop. Towards a better understanding and preservation of ancient bone materials, vol 35. ArcheoSciences. PUR Rennes

    Google Scholar 

  • Reiche I, Chalmin E (2008) Synchrotron radiation and cultural heritage: combined XANES/XRF study at Mn K-edge of blue, grey or black coloured palaeontological and archaeological bone material. J Anal At Spectrom 23:799–806

    Article  CAS  Google Scholar 

  • Reiche I, Chadefaux C (2009) Fluorine uptake in archaeological bone—study from macro- to nanoscale Chemistry Today N° special. Focus Fluorine Chem 27(3):48–51

    Google Scholar 

  • Reiche I, Müller K, Rodière J, Allard M, Staude A, Riesemeier H, Chiotti L, Nespoulet R, Vercoutère C, Schwab C, Cleyet-Merle J-J (accepted) Relation between raw material, shape and function of Gravettian ornaments from three key sites in Southern France (Abri Pataud, Le Blot, Les Peyrugues). Paléo

    Google Scholar 

  • Reiche I, Favre-Quattropani L, Calligaro T, Salomon J, Bocherens H, Charlet L, Menu M (1999) Trace element composition of archaeological bones and post-mortem alteration in the burial environment. Nucl Instr Meth Phys Res B 150:656–662

    Article  CAS  Google Scholar 

  • Reiche I, Vignaud C, Menu M (2000) Heat induced transformation of fossil mastodon ivory into turquoise “odontolite”. Structural and elemental characterisation. Solid State Sci 2:625–636

    Article  CAS  Google Scholar 

  • Reiche I, Morin G, Brouder C, Sole VA, Petit P-E, Vignaud C, Calligaro T, Menu M (2002a) Manganese accomodation in fossilised mastodon ivory and heat-induced colour transformation: Evidence by EXAFS. Eur J Mineral 14(6):1069–1073

    Article  CAS  Google Scholar 

  • Reiche I, Vignaud C, Menu M (2002b) The crystallinity of ancient bone and dentine: new insights by transmission electron microscopy. Archaeometry 44(3):447–459

    Article  CAS  Google Scholar 

  • Reiche I, Favre-Quattropani L, Vignaud C, Bocherens H, Charlet L, Menu M (2003) A multi-analytical study of bone diagenesis: the Neolithic site of Bercy (Paris, France). Measur Sci Technol 14:1608–1619

    Article  CAS  Google Scholar 

  • Reiche I, Chadefaux C, Vignaud C, Menu M (2007) Les matériaux osseux archéologiques Des biomatériaux nanocomposites complexes. l’actualité chimique 312–313:86–92

    Google Scholar 

  • Reiche I, Lebon M, Chadefaux C, Müller K, Le Hô A-S, Gensch M, Schade U (2010) Microscale imaging of the preservation state of 5,000-year-old archaeological bones by synchrotron infrared microspectroscopy. Anal Bioanal Chem 397:2491–2499

    Article  CAS  Google Scholar 

  • Reiche I, Chadefaux C, Müller K, Gourrier A (2011a) Towards a better understanding of alteration phenomena of archaeological bone by a closer look at the organic/mineral association at microscale. Preliminary results on Neolithic samples from Chalain lake site 19, Jura, France. ArcheoSciences 35:143–158

    Article  Google Scholar 

  • Reiche I, Müller K, Staude A, Goebbels J, Riesemeier H (2011b) Synchrotron radiation and laboratory micro X-ray computed tomography—useful tools for the material’s identification of prehistoric objects made of ivory, bone or antler. J Anal At Spectrosc 26:1802–1812. doi:10.1039/c0ja00246a

    Article  CAS  Google Scholar 

  • Reiche I, Muller K, Alberic M, Scharf OU, Wahning A, Bjeoumikhov A, Radtke M, Simon R (2013) Discovering vanished paints and naturally formed gold nanoparticles on 2800 years old Phoenician ivories using SR-FF-microXRF with the Color X-ray Camera. Anal Chem 85(12):5857–5866. doi:10.1021/ac4006167

    Article  CAS  Google Scholar 

  • Reiche I, Müller K, Vercoutère C, Nespoulet R, Chiotti L, Staude A, Riesemeier H (2014) Nouvelles méthodes de laboratoire et de synchrotron pour l’identification de la matière dure d’origine animale. L’étude des perles du Gravettien final de l’abri Pataud (Les Eyzies-de-Tayac-Sireuil, Dordogne, France). In: Paillet P (ed) Les arts de la Préhistoire: microanalyses, mises en contextes et conservation. Actes du colloque “Micro-analyses et datations de l’art préhistorique dans son contexte archéologique” MADAPCA, Paris. PALEO, numéro spécial:75–83

    Google Scholar 

  • Rey C, Combes C, Drouet C, Glimcher M (2009) Bone mineral: update on chemical composition and structure. Osteoporos Int 20(6):1013–1021

    Article  CAS  Google Scholar 

  • Rho JY, Kuhn-Spearing L, Zioupos P (1998) Mechanical properties and the hierarchical structure of bone. Med Eng Phys 20:92–102

    Article  CAS  Google Scholar 

  • Richter J (1986) Experimental study of heat induced morphological changes in fish bone collagen. J Archaeol Sci 13:477–481

    Article  Google Scholar 

  • Richter KK, Wilson J, Jones AKG, Buckley M, van Doorn N, Collins MJ (2011) Fish’n chips: ZooMS peptide mass fingerprinting in a 96 well plate format to identify fish bone fragments. J Archaeol Sci 38(7):1502–1510. doi:10.1016/j.jas.2011.02.014

    Article  Google Scholar 

  • Rink WJ, Schwarcz HP, Lee HK, Valdés VC, Quiros FBd, Hoyos M (1996) ESR dating of tooth enamel: comparison with AMS 14C at El Castillo Cave, Spain. J Archaeol Sci 23:945–951

    Article  Google Scholar 

  • Rodière J (2011) Etude tracéologique de la perforation. Application aux perles rectangulaires de l’abri Pataud, du Blot, des Peyrugues. ArchéoSciences 35:273–281

    Google Scholar 

  • Rogers KD, Daniels P (2002) An X-ray diffraction study of the effects of heat treatment on bone mineral structure. Biomaterials 23:2577–2585

    Article  CAS  Google Scholar 

  • Rogers K, Beckett S, Kuhn S, Chamberlain A, Clement J (2010) Contrasting the crystallinity indicators of heated and diagenetically altered bone mineral. Palaeogeogr Palaeoclimatol Palaeoecol 296(1–2):125–129

    Article  Google Scholar 

  • Roschger P, Fratzl P, Klaushofer K, Rodan G (1997) Mineralization of cancellous bone after alendronate and sodium fluoride treatment: a quantitative backscattered electron imaging study on minipig ribs. Bone 20(5):393–397

    Article  CAS  Google Scholar 

  • Rubin MA, Jasiuk I, Taylor J, Rubin J, Ganey T, Apkarian RP (2003) TEM analysis of the nanostructure of normal and osteoporotic human trabecular bone. Bone 33:270–282

    Article  Google Scholar 

  • Rubin MA, Jasiuk I (2005) The TEM characterization of the lamellar structure of osteoporotic human trabecular bone. Micron 36:653–664

    Google Scholar 

  • Ruppel ME, Miller LM, Burr DB (2008) The effect of the microscopic and nanoscale structure on bone fragility. Osteoporos Int 19(9):1251–1265

    Article  CAS  Google Scholar 

  • Saliège JF, Person A, Paris F (1995) Preservation of 13C/12C original ratio and 14C dating of the mineral fraction of human bones from Saharan tombs, Niger. J Archaeol Sci 22:301–312

    Article  Google Scholar 

  • Sawyer S, Krause J, Guschanski K, Savolainen V, Pääbo S (2012) Temporal patterns of nucleotide misincorporations and DNA fragmentation in ancient DNA. PLoS One 7(3):e34131

    Article  CAS  Google Scholar 

  • Schweitzer MH, Avci R, Collier T, Goodwin MB (2008) Microscopic, chemical and molecular methods for examining fossil preservation. CR Palevol. doi:10.1016/j.crpv.2008.02.005

    Google Scholar 

  • Shahack-Gross R, Bar-Yosef O, Weiner S (1997) Black-coloured bones in Hayonim Cave, Israel: differentiating between burning and oxide staining. J Archaeol Sci 24:439–446

    Article  Google Scholar 

  • Shipman P, Foster G, Schoeninger M (1984) Burnt bones and teeth: an experimental study of color, morpholgy, crystal strucure and shrinkage. J Archaeol Sci 11:307–325

    Article  Google Scholar 

  • Singh RR, Goyal SP, Khanna PP, Mukherjee PK, Sukumar R (2006) Using morphometric and analytical techniques to characterize elephant ivory. Forensic Sci Int 162(1–3):144–151. doi:10.1016/j.forsciint.2006.06.028

    Article  CAS  Google Scholar 

  • Skinner H (2013) Mineralogy of bones essentials of medical geology. Springer, Netherlands

    Google Scholar 

  • Smith CI, Nielsen-Marsh CM, Jans MME, Collins MJ (2007) Bone diagenesis in the European Holocene I: patterns and mechanisms. J Archaeol Sci 34(2007):1485–1493

    Article  Google Scholar 

  • Spadavecchia J, Apchain E, Alberic M, Fontan E, Reiche I (2014) One step synthesis of collagen hybrid gold nanoparticles and formation on egyptian-like gold-plated archaeological ivory. Angew Chem Int Ed 53:8363–8366. doi:10.1002/anie.201403567

    Article  CAS  Google Scholar 

  • Squires KE, Thompson TJ, Islam M, Chamberlain A (2011) The application of histomorphometry and Fourier Transform Infrared Spectroscopy to the analysis of early Anglo-Saxon burned bone. J Archaeol Sci 38(9):2399–2409

    Article  Google Scholar 

  • Stiner MC, Kuhn SL, Weiner S, Bar-Yosef O (1995) Differential burning, recrystallisation, and fragmentation of archaeological bone. J Archaeol Sci 22:223–237

    Article  Google Scholar 

  • Stiner MC, Kuhn SL, Gulec E (2013) Early upper paleolithic shell beads at Ucagizli Cave I (Turkey): technology and the socioeconomic context of ornament life-histories. J Hum Evol 64(5):380–398. doi:10.1016/j.jhevol.2013.01.008

    Article  Google Scholar 

  • Strupler M, Pena A-M, Hernest M, Tharaux P-L, Martin J-L, Beaurepaire E, Schanne-Klein M-C (2007) Second harmonic imaging and scoring of collagen in fibrotic tissues. Opt Express 15:4057–4065

    Article  Google Scholar 

  • Su XW, Cui FZ (1999) Hierarchical structure of ivory: from nanometer to centimeter. Mater Sci Eng C7:19–29

    Article  CAS  Google Scholar 

  • Taborin Y (2004) Language sans parole. La parure aux temps préhistoriques. La maison des roches, Paris, France

    Google Scholar 

  • Tejero J-M, Christensen M, Bodu P (2012) Red deer antler technology and early modern humans in Southeast Europe: an experimental study. J Archaeol Sci 39:332–346

    Article  Google Scholar 

  • Tesch W, Eidelman N, Roschger P, Goldenberg F, Klaushofer K, Fratzl P (2001) Graded microstructure and mechanical properties of human crown dentin. Calcif Tissue Int 69(3):147–157. doi:10.1007/s00223-001-2012-z

    Article  CAS  Google Scholar 

  • Tescione G (1965) Il corallo nella storia e nell’arte. Neapel

    Google Scholar 

  • Thompson T (2004) Recent advances in the study of burned bone and their implications for forensic anthropology. Forensic Sci Int 146(Supplement):S203–S205

    Article  Google Scholar 

  • Thompson T, Gauthier M, Islam M (2009) The application of a new method of Fourier Transform Infrared Spectroscopy to the analysis of burned bone. J Archaeol Sci 36(3):910–914

    Article  Google Scholar 

  • Thompson T, Islam M, Piduru K, Marcel A (2011) An investigation into the internal and external variables acting on crystallinity index using Fourier Transform Infrared Spectroscopy on unaltered and burned bone. Palaeogeogr Palaeoclimatol Palaeoecol 299(1–2):168–174

    Article  Google Scholar 

  • Tischler O (1886) Abriss der Geschichte des Emails. Schriften der Physikalisch-Ökonomischen Gesellschaft 27:39–59

    Google Scholar 

  • Trapani J, Fisher DC (2003) Discriminating proboscidean taxa using features of the Schreger pattern in tusk dentin. J Archaeol Sci 30:429–438

    Article  Google Scholar 

  • Traub W, Arad T, Weiner S (1992) Origin of mineral crystal growth in collagen fibrils. Matrix, Depart Struct Biol 12(4):251–255

    CAS  Google Scholar 

  • Trueman NG, Behrensmeyer AK, Tuross N, Weiner S (2004) Mineralogical and compositional changes in bones exposed on soil surfaces in Amboseli National Park, Kenya: diagenetic mechanisms and the role of sediment pore fluids. J Archaeol Sci 31:721–739

    Article  Google Scholar 

  • Trueman CN, Palmer MR, Field J, Privat K, Ludgate N, Chavagnac V, Eberth DA, Cifelli R, Rogers RR (2008) Comparing rates of recrystallisation and the potential for preservation of biomolecules from the distribution of trace elements in fossil bones. CR Palevol 7:145–158

    Article  Google Scholar 

  • Turner-Walker G, Jans M (2008) Reconstructing taphonomic histories using histological analysis. Palaeogeogr Palaeoclimatol Palaeoecol 266:227–235

    Article  Google Scholar 

  • Tütken T, Vennemann TW (2011) Fossil bones and teeth: Preservation or alteration of biogenic compositions? Palaeogeogr Palaeoclimatol Palaeoecol 310(1–2):1–8

    Article  Google Scholar 

  • Vanhaeren M, d’Errico F, Stringer C, James SL, Todd JA, Mienis HK (2006) Middle Palaeolithic shell beads in Israel and Algeria. Science 312:1785–1788

    Article  CAS  Google Scholar 

  • Vashishth D, Behiri JC, Bonfield W (1997) Crack growth resistance in cortical bone: concept of microcracking toughening. J Biomech 30(8):763–769

    Article  CAS  Google Scholar 

  • Vashishth D, Tanner KE, Bonfield W (2000) Contribution, development and morphology of microcracking in cortical bone during crack propagation. J Biomech 33(9):1169–1174

    Article  CAS  Google Scholar 

  • Vashishth D, Tanner KE, Bonfield W (2003) Experimental validation of a microcracking-based toughening mechanism for cortical bone. J Biomech 36(1):121–124

    Article  CAS  Google Scholar 

  • Vercoutère C, Müller K, Chiotti L, Nespoulet R, Staude A, Riesemeier H, Reiche I (2011) Rectangular beads from the final gravettian level of the abri Pataud: raw material identification and its archaeological implications. ArcheoSciences 35:259–271

    Article  Google Scholar 

  • Veri G, Collins P, Ambers J, Sweek T, Simpson SJ (2009) Assyrian colours: pigments on a neo-Assyrian relief of a parade horse. Tech Res Bull 3:57–62

    Google Scholar 

  • Vielzeuf D, Garrabou J, Baronnet A, Grauby O, Marschal C (2008) Nano to macroscale biomineral archtitecture of red coral (Corallium rubrum). Am Mineral 93:1799–1815

    Article  CAS  Google Scholar 

  • Vielzeuf D, Floquet N, Chatain D, Bonneté F, Ferry D, Garrabou J, Stolper EM (2010) Multilevel modular mesocrystalline organization in red coral. Am Mineral 95:242–248

    Article  CAS  Google Scholar 

  • Virag A (2012) Histogenesis of the unique morphology of proboscidean ivory. J Morphol 273(12):1406–1423. doi:10.1002/jmor.20069

    Article  Google Scholar 

  • Wagermaier W, Gupta HS, Gourrier A, Burghammer M, Roschger P, Fratzl P (2006) Spiral twisting of fiber orientation inside bone lamellae. Biointerphases 1(1):1–5

    Google Scholar 

  • Wagermaier W, Gourrier A, Aichmayer B (2013) Understanding hierarchy and functions of bone using scanning X-ray scattering methods In: Materials design inspired by nature: function through inner architecture. The Royal Society of Chemistry, pp 46–73

    Google Scholar 

  • Wang R, Weiner S (1998) Human root dentin: structural anisotropy and Vickers microhardness isotropy. Connect Tissue Res 39:269–279

    Article  CAS  Google Scholar 

  • Weiner S (2010) Microarchaeology, beyond the visible archaeological record. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Weiner S, Traub W (1986) Organization of hydroxyapatite crystals within collagen fibrils. FEBS Lett 206(2):262–266

    Article  CAS  Google Scholar 

  • Weiner S, Bar-Yosef O (1990) States of preservation of bones from prehistoric sites in the Near East: a survey. J Archaeol Sci 17:187–196

    Article  Google Scholar 

  • Weiner S, Wagner H (1998) The material bone: structure-mechanical function relations. Annu Rev Mater Sci 28(1):271–298

    Article  CAS  Google Scholar 

  • Weiner S, Quinqi X, Goldberg P, Liu J, Bar-Yosef O (1998) Evidence for the use of fire at Zhoukoudian, China. Science 281:251–253

    Article  CAS  Google Scholar 

  • Wess T (2008) Collagen fibrillar structure and hierarchies. In: Fratzl Pe (ed) Collagen. Springer, Berlin, pp 49–80

    Google Scholar 

  • Wess TJ, Drakoopoulos M, Snigirev A, Wouters J, Paris O, Fratzl P, Collins M, Hiller J, Nielsen K (2001) The use of small angle X-ray diffraction studies for the analysis of structural features in archaeological samples. Archaeometry 43(1):117–129

    Article  CAS  Google Scholar 

  • Wess T, Alberts I, Hiller J, Drakopoulos M, Chamberlain A, Collins M (2002) Microfocus small angle X-ray scattering reveals structural features in archaeological bone samples; detection of changes in bone mineral habit and size. Calcif Tissue Int 70(2):103–110

    Article  CAS  Google Scholar 

  • White R (1995) Ivory personal ornaments of Aurignacian Age: technological, social and symbolic perspectives. In: Travail et usages de l’ivoire au Paléolithique supérieur, Ravello. Centre universario europeo, pp 29–62

    Google Scholar 

  • White R (2006) The women of brassempouy: a century of research and interpretation. J Archaeol Method Theor 13(4):250–303. doi:10.1007/s10816-006-9023-z

    Article  Google Scholar 

  • White CD, Schwarcz HP (1989) Ancient Maya diet: as inferred from isotopic and elemental analysis of human bone. J Archaeol Sci 16:451–474

    Article  Google Scholar 

  • Wislocki GB (1942) Studies of the growth of deer antlers. 1. The structure and histogenesis of the antlers of the Viginia Deer (Odocoileus virginianus borealis). Am J Anat 71:371–415

    Article  Google Scholar 

  • Zaslansky P, Friesem AA, Weiner S (2006) Structure and mechanical properties of the soft zone separating bulk dentin and enamel in crowns of human teeth: insight into tooth function. J Struct Biol 153(2):188–199. doi:10.1016/j.jsb.2005.10.010

    Article  CAS  Google Scholar 

  • Zazzo A, Balasse M, Patterson WP (2006) The reconstruction of mammal individual history: refining high-resolution isotope record in bovine tooth dentine. J Archaeol Sci 33(8):1177–1187

    Article  Google Scholar 

  • Zioupos P, Currey JD, Sedman AJ (1994) An examination of the micromechanics of failure of bone and antler by acoustic emission tests and laser scanning confocal microscopy. Med Eng Phys 16:203–212

    Article  CAS  Google Scholar 

  • Zioupos P, Wang XT, Currey JD (1996) Experimental and theoretical quantification of the development of damage in fatigue tests of bone and antler. J Biomech 29(8):989–1002

    Article  CAS  Google Scholar 

  • Ziv V, Sabanay I, Arad T, Traub W, Weiner S (1996) Transitional structures in lamellar bone. Microsc Res Tech 33(2):203–213

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ina Reiche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Atlantis Press and the author(s)

About this chapter

Cite this chapter

Reiche, I., Gourrier, A. (2016). Informative Potential of Multiscale Observations in Archaeological Biominerals Down to Nanoscale. In: Dillmann, P., Bellot-Gurlet, L., Nenner, I. (eds) Nanoscience and Cultural Heritage. Atlantis Press, Paris. https://doi.org/10.2991/978-94-6239-198-7_4

Download citation

Publish with us

Policies and ethics