Skip to main content

Polymer-Based Monolithic Porous Composite

  • Conference paper
  • First Online:
Proceedings of the III Advanced Ceramics and Applications Conference

Abstract

Porous monolithic glycidyl methacrylate (GMA) and ethylene glycol dimethacrylate (EGDMA) copolymer [PGME] and three composite samples with alumina (PGME/alumina) were synthesized by radical copolymerization in a cast and functionalized by reaction of diethylene triamine (deta) with epoxy groups in GMA. All the samples were characterized using FTIR-ATR spectroscopy, SEM, AFM, solid state NMR, thermogravimetry and mercury porosimetry. Additionally, amino functionalized PGME/alumina with the highest alumina content (PGME/alumina50-deta) was loaded with chromium [Cr(VI)] ions. Kinetics of Cr(VI) sorption was investigated in batch static experiments, at 298 K and pH = 2, for various initial concentrations (C i  = 0.5, 1.5 and 2.5 mM) and analyzed using three kinetic models. Cr(VI) sorption by PGME/alumina50-deta obeys the PSO kinetic model, while IPD model suggests some degree of intraparticle pore diffusion control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 229.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.C. Sherrington, Preparation, structure and morphology of polymer supports. Chem. Commun. 2275–2286 (1998)

    Google Scholar 

  2. O. Okay, Macroporous copolymer networks. Prog. Polym. Sci. 25, 711–779 (2000)

    Article  Google Scholar 

  3. F. Švec, J.M.J. Frechet, Continuous rods of macroporous polymer as high-performance liquid chromatography separation media. Anal. Chem. 64, 820–822 (1992)

    Article  Google Scholar 

  4. F. Švec, J.M.J. Frechet, Kinetic control of pore formation in macroporous polymers. Formation of “Molded” porous materials with high flow characteristics for separations or catalysis. Chem. Mater. 7, 707–715 (1995)

    Article  Google Scholar 

  5. C. Viklund, F. Švec, J.M.J. Frechet, K. Irgum, Monolithic, “Molded”, porous materials with high flow characteristics for separations, catalysis, or solid-phase chemistry: control of porous properties during polymerization. Chem. Mater. 8, 744–750 (1996)

    Article  Google Scholar 

  6. S. Jovanović, S. Stoimenov, A. Nastasović, T. Novaković and N. N. Jovanović, Synthesis of macroporous glycidyl methacrylate/ethylene glycol dimethacrylate copolymer in a tubular reactor, in 4th International Conference on Fundamental and Applied Aspects of Physical Chemistry, Book of Papers (Belgrade, 1998), p. 470, 2IO

    Google Scholar 

  7. E.C. Peters, F. Švec, J.M.J. Fréchet, Control of porous properties and surface chemistry in “Molded” porous polymer monoliths prepared by polymerization in the presence of TEMPO. Macromolecules 32, 6377–6379 (1999)

    Article  Google Scholar 

  8. S. Jovanović, S. Stoimenov, A. Nastasović, T. Novaković and N. Jovanović. Porosity parameters of poly(GMA-co-EGDMA) monolith. Fiziko-himija polimerov (Sintez, svojstva i primenenie), vol. 8 (Tver, 2002), pp. 172–175

    Google Scholar 

  9. F. Švec, Recent developments in the field of monolithic stationary phases for capillary electrochromatography. J. Sep. Sci. 28, 729–745 (2005)

    Article  Google Scholar 

  10. G. Zhu, L. Zhang, H. Yuan, Z. Liang, W. Zhang, Y. Zhang, Recent development of monolithic materials as matrices in microcolumn separation systems. J. Sep. Sci. 30, 792–803 (2007)

    Article  Google Scholar 

  11. M.R. Buchmeiser, Polymeric monolithic materials: Syntheses, properties, functionalization and applications. Polymer 48, 2187–2198 (2007)

    Article  Google Scholar 

  12. R.D. Arrua, M. Talebi, T.J. Causon, E.F. Hilder, Review of recent advances in the preparation of organic polymer monoliths for liquid chromatography of large molecules. Anal. Chim. Acta 738, 1–12 (2012)

    Article  Google Scholar 

  13. S. Xie, R.W. Allington, J.M.J. Fréchet, F. Švec, Porous polymer monoliths: an alternative to classical beads, modern advances in chromatography. Adv. Biochem. Eng./Biotechnol. 76, 87–125 (2002)

    Google Scholar 

  14. R.D. Arrua, M.C. Strumia, C.I.A. Igarzabal, Macroporous monolithic polymers: preparation and applications. Materials 2, 2429–2466 (2009)

    Article  Google Scholar 

  15. M.W.H. Roberts, C.M. Ongkudon, G.M. Forde, M.K. Danquah, Versatility of polymethacrylate monoliths for chromatographic purification of biomolecules. J. Sep. Sci. 32, 2485–2494 (2009)

    Article  Google Scholar 

  16. E. Kalalova, V. Beiglova, J. Kalal, F. Švec, Reactive polymers XXIII. Sorption properties of macroporous chelate-forming resin from the copolymer glycidyl methacrylate-ethylenedimethacrylate containing iminodiacetic groups. Angew. Makromol. Chem. 72, 143–149 (1978)

    Article  Google Scholar 

  17. D. Lindsay, D.C. Sherrington, J.A. Greig, R.D. Hancock, Copper-selective chelating resins. I. Batch extractions. React. Polym. 12, 59–73 (1990)

    Article  Google Scholar 

  18. F. Švec, H. Hrudkova, D. Horak, J. Kalal, Reactive polymers. VIII. Reaction of the epoxide groups of the copolymer glycidyl methacrylate—ethylenedimethacrylate with aliphatic amino compounds. Angew. Makromol. Chem. 63, 23–36 (1977)

    Article  Google Scholar 

  19. A. Nastasović, S. Jovanović, D. Đorđević, A. Onjia, D. Jakovljević, T. Novaković, Metal sorption on macroporous poly(GMA-co-EGDMA) modified with ethylene diamine. React. Funct. Polym. 58, 139–147 (2004)

    Article  Google Scholar 

  20. Lj. Malović, A. Nastasović, Z. Sandić, J. Marković, D. Đorđević, Z. Vuković, Surface modification of macroporous glycidyl methacrylate based copolymers for selective sorption of heavy metals. J. Mater. Sci. 42, 3326–3337 (2007)

    Article  Google Scholar 

  21. 21.A. Nastasović, D. Jakovljević, Z. Sandić, D. Đorđević, Lj. Malović, S. Kljajević, J. Marković, A. Onjia, in Reactive and Functional Polymers Research Advances, Ch. 2, ed. by M.I. Barroso (Nova Science Publishers, Inc., Hauppauge, 2007)

    Google Scholar 

  22. R. Gangopadhyay, A. De, Conducting polymer nanocomposites: a brief overview. Chem. Mater. 12, 608–622 (2000)

    Article  Google Scholar 

  23. C.P. Wong, A.N.D.S.B. Raja, Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging. J. Appl. Polym. Sci. 74, 3396–3403 (1999)

    Article  Google Scholar 

  24. B.E. Yoldas, Alumina gels that form porous transparent Al2O3. J. Mater. Sci. 10, 1856–1860 (1975)

    Article  Google Scholar 

  25. M. Karthikeyan, K.K.S. Kumar, K.P. Elango, Conducting polymer/alumina composites as viable adsorbents for the removal of fluoride ions from aqueous solution. J. Fluorine Chem. 130, 894–901 (2009)

    Article  Google Scholar 

  26. H.Y.N. Holman, D.L. Perry, M.C. Martin, G.M. Lamble, W.R. Mckinney, J.C. Hunter-Cevera, Real-time characterization of biogeochemical reduction of Cr(VI) on basalt surfaces by SR-FTIR imaging. Geomicrobiol. J. 16, 307–324 (1999)

    Article  Google Scholar 

  27. K. Kesenci, R. Say, A. Denizli, Removal of heavy metal ions from water by using poly(ethyleneglycol dimethacrylate-co-acrylamide) beads. Eur. Polym. J. 38, 1443–1448 (2002)

    Article  Google Scholar 

  28. J.H. Lee, B.S. Kim, J.O. Lee, S. Imaoka, K. Yoshinaga, Cross-linking of grafted copolymer on colloidal silica and introduction of surface amino group. Polym. J. 39, 1018–1024 (2007)

    Article  Google Scholar 

  29. M.H. Espinosa, P.J.O. Del Toro, D.Z. Silva, Microstructural analysis of poly(glycidyl methacrylate) by 1H and 13C NMR spectroscopy. Polymer 42, 3393–3397 (2001)

    Article  Google Scholar 

  30. M. Kiremitçi, H. Çukurova, S. Özkar, Spectral characterization and thermal behaviour of crosslinked poly(hydroxyethylmethacrylate) beads prepared by suspension polymerization. Polym. Int. 30, 357–361 (1993)

    Article  Google Scholar 

  31. H.M. Kao, R.R. Wu, T.Y. Chen, Y.H. Chen, C.S. Yeh, Probing the formation process of aluminium hydroxide nanoparticles repared by laser ablation with 27Al NMR spectroscopy. J. Mater. Chem. 10, 2802–2804 (2000)

    Article  Google Scholar 

  32. A.P. Karnaukhov, Глoбyляpнaя мoдeль пopиcтыx тeл кopпycкyляpнoгo cтpoeния. I. Xapaктepиcтикa мoдeли. Kinet. Kataliz. 12, 1235–1242 (1971)

    Google Scholar 

  33. D. Horak, F. Švec, M. Ilavsky, M. Bleha, J. Baldrian, Reactive polymers, XXXVI. The effect of polymerization conditions on the porosity and mechanical properties of macroporous suspension copolymers from glycidylmethacrylate-ethylenedimethacrylate. Angew. Makromol. Chem. 95, 117–127 (1981)

    Article  Google Scholar 

  34. T. Novaković, A. Nastasović, Z. Vuković, M. Čomor and Lj. Suručić, Monolithic porous polymer composite, in Proceedings of the Physical Chemistry 2014—12th International Conference on Fundamental and Applied Aspects of Physical Chemistry, Belgrade, 22–26 September 2014, vol. II, J-18-P p9. (2014), pp. 819–830

    Google Scholar 

  35. S. Zulfiquar, M. Zulfiquar, M. Nawaz, I.C. McNeill, J.G. Gorman, Thermal degradation of poly(glycidyl methacrylate). Polym. Degrad. Stab. 30, 195–203 (1990)

    Article  Google Scholar 

  36. A. Piracha, S. Zulfiquar, The thermal degradation of glycidyl methacrylate-methyl methacrylate copolymers. Polym. Degrad. Stab. 51, 27–34 (1996)

    Article  Google Scholar 

  37. S. Ahmad, S. Zulfiqar, Synthesis, characterization and thermal degradation of glycidyl methacrylate-α-methyl styrene copolymers. Polym. Degrad. Stab. 76, 173–177 (2002)

    Article  Google Scholar 

  38. M.S. Iqbal, Y. Jamil, T. Kausar, M. Akhtar, Thermal degradation of glycidyl methacrylate-acrylonitrile copolymers. J. Therm. Anal. Calorim. 96, 225–233 (2009)

    Article  Google Scholar 

  39. A.B. Nastasović, Z.P. Sandić, Lj.T. Suručić, D.D. Maksin, D.M. Jakovljević, A.E. Onjia, Kinetics of hexavalent chromium sorption on amino-functionalized macroporous glycidyl methacrylate copolymer. J. Hazard. Math. 171, 153–159 (2009)

    Article  Google Scholar 

  40. D.D. Maksin, A.B. Nastasović, A.D. Milutinović-Nikolić, Lj.T. Suručić, Z.P. Sandić, R.V. Hercigonja, A.E. Onjia, Equilibrium and kinetics study on hexavalent chromium adsorption onto diethylene triamine grafted glycidyl methacrylate based copolymers. J. Hazard. Mater. 209–210, 99–110 (2012)

    Article  Google Scholar 

  41. S. Lagergren, About the theory of so-called adsorption of soluble substances. K Sven. Vetenskapsakad. Handl. 24, 1–39 (1898)

    Google Scholar 

  42. Y.S. Ho, Review of second-order models for adsorption systems. J. Hazard. Mater. 136, 681–689 (2006)

    Article  Google Scholar 

  43. G.E. Boyd, A.W. Adamson, L.S. Myers, The exchange adsorption of ions from aqueous solutions by organic zeolites, II: kinetics 2. J. Am. Chem. Soc. 69, 2836–2842 (1947)

    Article  Google Scholar 

  44. J. Clerk Maxwell, A treatise on electricity and magnetism, vol. 2, 3rd edn. (Clarendon, Oxford, 1892), pp. 68–73

    Google Scholar 

  45. I.S. Jacobs, C.P. Bean, Fine particles, thin films and exchange anisotropy, in Magnetism, vol. III, ed. by G.T. Rado, H. Suhl (Academic, New York, 1963), pp. 271–350

    Google Scholar 

  46. K. Elissa, Title of paper if known, unpublished

    Google Scholar 

  47. R. Nicole, Title of paper with only first word capitalized, J. Name Stand. Abbrev. (in press)

    Google Scholar 

  48. Y. Yorozu, M. Hirano, K. Oka, Y. Tagawa, Electron spectroscopy studies on magneto-optical media and plastic substrate interface. IEEE Trans. J. Magn. Jpn. 2, 740–741 (1987). (Digests 9th Annual Conference Magnetics Japan, p. 301, 1982)

    Article  Google Scholar 

  49. M. Young, The Technical Writer’s Handbook (University Science, Mill Valley, 1989)

    Google Scholar 

Download references

Acknowledgment

This work has been funded by Serbian Ministry of Education, Science and Technological Development through the projects (III 43009, ON 172015, III 45001, TR 34026 and TR 32008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra B. Nastasović .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Atlantis Press and the author(s)

About this paper

Cite this paper

Nastasović, A.B. et al. (2016). Polymer-Based Monolithic Porous Composite. In: Lee, W., Gadow, R., Mitic, V., Obradovic, N. (eds) Proceedings of the III Advanced Ceramics and Applications Conference. Atlantis Press, Paris. https://doi.org/10.2991/978-94-6239-157-4_17

Download citation

  • DOI: https://doi.org/10.2991/978-94-6239-157-4_17

  • Published:

  • Publisher Name: Atlantis Press, Paris

  • Print ISBN: 978-94-6239-156-7

  • Online ISBN: 978-94-6239-157-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics