Skip to main content

A Historical Perspective on the Toughness of Ceramics

  • Conference paper
  • First Online:
Proceedings of the III Advanced Ceramics and Applications Conference
  • 670 Accesses

Abstract

In this paper, we discuss fracture problems experienced by engineers early in the twentieth century, before fracture mechanics was developed and before we had a systematic way to characterize the fracture resistance of ceramic materials. Universal mechanical test machines and standard methods of establishing material performance under mechanical loads did not exist. Yet the needs for mechanical reliability were there, just as they are today. We review some of the problems encountered by engineers in designing with ceramic materials at the beginning of the twentieth century that are still problems today, but on materials with very different use. We shall show how the development of fracture mechanics and modern techniques of microstructural analysis enabled the solution of mechanical problems associated with the ceramics in modern applications. In the course of the paper we will trace the development of fracture mechanics from the early twentieth century to the present day and the replacement of performance tests with design criteria based on fracture mechanics analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 229.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.C. Bradt, D.P.H. Hasselman, F.F. Lange (eds.), Fracture Mechanics of Ceramics, vols. 1 and 2 (Plenum Publishing. Co., New York, 1974)

    Google Scholar 

  2. B.R. Lawn, T.R. Wilshaw, Fracture of Brittle Solids (Cambridge University Press, Cambridge, 1975)

    Google Scholar 

  3. G. Irwin, Moisture assisted slow crack extension in glass plates, in A Report of Studies conducted at the Ernst Mach Institute, ed by W. Freiburg, 6 May–3 August 1965, NRL Memorandum Report, Germany, 28 January, 1966

    Google Scholar 

  4. S.M. Wiederhorn, Influence of water vapor on crack propagation in soda-lime glass. J. Am. Ceram. Soc. 50(8), 407–414 (1967)

    Article  Google Scholar 

  5. F.C. Frank and B.R. Lawn, On theory of Hertzian fracture. Proc. R. Soc. Lond. Ser. A, 288, 291–306 (1967)

    Google Scholar 

  6. E.G. Elmer, A Non-shivering (?) body. Trans. Am. Ceram. Soc. 1, 84–87 (1899)

    Google Scholar 

  7. V. Sergo, D.R. Clarke, Observation of subcritical spall propagation of a thermal barrier coating. J. Am. Ceram. Soc. 81(12), 3237–3242 (1998)

    Article  Google Scholar 

  8. F.C. Mish, Editor in Chief, Webster’s Ninth New Collegiate Dictionary (Merriam-Webster, Inc., Publishers, Springfield, MA 1984)

    Google Scholar 

  9. S.K. Lee, S. Wuttiphan, B.R. Lawn, Role of microstructure in Hertzian contact damage in silicon nitride: I, mechanical characterization. J. Am. Ceram. Soc. 80(9), 2367–2381 (1997)

    Article  Google Scholar 

  10. F.H. Norton, A general theory of spalling. J. Am. Ceram. Soc. 8(1), 9–39 (1925)

    Article  Google Scholar 

  11. F.W. Preston, The spalling of bricks. J. Am. Ceram. Soc. 9, 654–658 (1926)

    Article  Google Scholar 

  12. A.A. Griffith, The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. A221, 163–198 (1920)

    Google Scholar 

  13. D.P.H. Hasselman, Unified theory of thermal shock fracture initiation and crack propagation in brittle ceramics. J. Am. Ceram. Soc. 52, 600–604 (1969)

    Article  Google Scholar 

  14. R.W. Davidge, G. Tappin, Thermal shock and fracture in ceramics. Trans. Br. Ceram. Soc. 66(8), 405–422 (1967)

    Google Scholar 

  15. G.R. Irwin, Fracture, in Handbuch der Physik, vol. 6 (Springer, Berlin, 1958)

    Google Scholar 

  16. B.R. Lawn, Fracture of Brittle Solids, 2nd edn. (Cambridge University Press, Cambridge, 1993)

    Book  Google Scholar 

  17. T.L. Anderson, Fracture Mechanics and Applications, 2nd edn. Chapter 6 (CRC Press, 1995), p. 324

    Google Scholar 

  18. S.M. Wiederhorn, L.H. Bolz, Stress corrosion and static fatigue of glass. J. Am. Ceram. Soc. 53(10), 543–548 (1970)

    Article  Google Scholar 

  19. S.M. Wiederhorn, Dependence of lifetime predictions on the form of the crack propagation equation, Fracture 1977, ICF4, vol. 3, (University of Waterloo Press, Waterloo, Canada, 19–24 June, 1977)

    Google Scholar 

  20. S.M. Wiederhorn, S.W. Freiman, E.R. Fuller Jr., C.J. Simmons, Effect of water and other dielectrics on crack growth. J. Mater. Sci. 17, 3460–3478 (1982)

    Article  Google Scholar 

  21. S.W. Freiman, S.M. Wiederhorn, J.J. Mecholsky, Jr., Environmentally enhanced fracture of glass: a historical perspective. J. Am. Ceram. Soc. 92(7), 1371–1382 (2009)

    Article  Google Scholar 

  22. H.H. Hertz, Hertz’s Miscellaneous Papers, Chapters 5, 6 (Macmillan, London, 1896)

    Google Scholar 

  23. F.C. Roesler, Brittle fractures near equilibrium. Proc. Phys. Soc. B69, 981 (1956)

    Article  Google Scholar 

  24. G.D. Quinn, Fractography of Ceramics and Glasses, Special Publication 960-16, NIST, National Institute of Standards and Technology, Technology Administration, U.S, Department of Commerce (2007)

    Google Scholar 

  25. O.S. Narayanaswamy, Stress and structural relaxation in tempering glass. J. Am. Ceram. Soc. 61(3-4), 146–152 (1978)

    Article  Google Scholar 

  26. A.K. Varshneya, Fundamentals of Inorganic Glasses (Academic Press, Inc., New York, 1994), p. 446

    Google Scholar 

  27. F.F. Lange, Powder processing science and technology for increased reliability. J. Am. Ceram. Soc. 72, 3–15 (1989)

    Google Scholar 

  28. P.F. Becher, Microstructural design of toughened ceramics. J. Am. Ceram. Soc. 74(2), 255–260 (1991)

    Article  Google Scholar 

  29. N. Padture, In situ-toughened silicon-carbide. J. Am. Ceram. Ceram. Soc. 77(2), 519–523 (1994)

    Article  Google Scholar 

  30. P.F. Becher, E.Y. Sun, K.P. Plucknett, C.-H. Hsueh, H.-T. Lin, S.B. Waters, C.G. Westmoreland, E.-S. Kang, K. Hirao, M.E. Brito, Microstructural design of silicon nitride with improved fracture toughness: I, effects of grain shape and size. J. Am. Ceram. Soc. 81(11), 2821–2830 (1998)

    Article  Google Scholar 

  31. E.Y. Sun, P.F. Becher, K.P. Plucknett, C.-H. Hsue, K.B. Alexander, S.B. Waters, Microstructural design of silicon nitride with improved fracture toughness: II, effects of yttria and alumina additives. J. Am. Ceram. Soc. 81(11), 2831–2840 (1998)

    Article  Google Scholar 

  32. D.J. Green, R.H.J. Hannink, M.V. Swain, Transformation Toughening of Ceramics (CRC Press, Inc., Boca Raton, 1989)

    Google Scholar 

  33. J.B. Wachtman, W.R. Cannon, M.J. Matthewson, Mechanical Properties of Ceramics, 2nd edn. (Wiley, Hoboken, 2009)

    Book  Google Scholar 

  34. D. Munz, T. Fett, Ceramics—Mechanical Properties Failure Behaviour Material Selection (Springer, Berlin, 1999)

    Google Scholar 

  35. D.W. Richerson, Modern Ceramic Engineering, Properties, Processing, and Use in Design (Taylor and Francis, New York, 2006)

    Google Scholar 

  36. N.N. Nemeth, L.M. Powere, L.A. Janosik, J.P. Gyekenyesi, Time dependent reliability analysis of monolithic ceramic components using the cares/life integrated design program, life prediction methodologies and data for ceramic materials, in American Society for Testing and Materials ASTM STP 1201, ed by C.R. Brinkman S.F. Duffy (Philadelphia, 1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheldon M. Wiederhorn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Atlantis Press and the author(s)

About this paper

Cite this paper

Wiederhorn, S.M. (2016). A Historical Perspective on the Toughness of Ceramics. In: Lee, W., Gadow, R., Mitic, V., Obradovic, N. (eds) Proceedings of the III Advanced Ceramics and Applications Conference. Atlantis Press, Paris. https://doi.org/10.2991/978-94-6239-157-4_1

Download citation

  • DOI: https://doi.org/10.2991/978-94-6239-157-4_1

  • Published:

  • Publisher Name: Atlantis Press, Paris

  • Print ISBN: 978-94-6239-156-7

  • Online ISBN: 978-94-6239-157-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics