Advertisement

Modeling PolSAR Image with L-Distribution and the Parameter Estimation Method

  • Hao-gui Cui
  • Yu-zhong Jiang
  • Tao Liu
  • Jun Gao
Conference paper

Abstract

The product model, in which the background radar signals are modeled as a product between a texture component and a Gaussian speckle, is an effective method to analyze PolSAR image especially in non-Gaussian case. In this paper, the generalized gamma distribution (\( \text{G}\Gamma\text{D} \)) is chosen as the texture component and the PolSAR image can be modeled with L-distribution provided that the speckle is Gaussian. The parameter estimation method of L-distribution based on matrix log-cumulants (MLCs) is proposed aimed at the computational complexity of the estimation based on moment. The correctness of modeling with L-distribution and the validity of the derivation of the estimator are verified though real data.

Keywords

Generalized gamma distribution (\( \text{G}\Gamma\text{D} \)L-distribution Mellin transform Matrix log-cumulants Polarimetric SAR 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant 61372165. The authors are also grateful to European Space Agency for providing the PolSAR data.

References

  1. 1.
    Tur M, Chin KC, Goodman JW (1982) When is speckle noise multiplicative? Optics 21:1157–1159ADSGoogle Scholar
  2. 2.
    Liu T, Wang XS, Xiao SP (2008) Statistical characteristics of the normalized Stokes parameters. Sci China Ser F Inf Sci 51(10):1594–1606MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Liu T, Huang GM, Wang XS, Shao SP (2010) Statistical analysis of the H/A target decomposition theory. Sci China Ser F Inf Sci 40(1):102–114MATHGoogle Scholar
  4. 4.
    Liu T, Wang XS, Shao SP (2008) Statistical of the Stokes parameters for multilook SAR image. J Electron Inf Technol 30(5):1027–1031 (in Chinese)CrossRefGoogle Scholar
  5. 5.
    Frery AC, Muller HJ, Yanasse CCF (1997) A model for extremely heterogeneous clutter. IEEE Trans Geosci Remote Sens 35(3):648–659CrossRefADSGoogle Scholar
  6. 6.
    Liu T, Huang GM, Wang XS, Shao SP (2009) Statistics of the polarimetric Weibull-distributed electromagnetic wave. IEEE Trans Antennas Propag 57(10):3232–3248CrossRefGoogle Scholar
  7. 7.
    Li HC, Hong W, Wu YR, Fan PZ (2010) An efficient and flexible statistical model Based on generalized gamma distribution for amplitude SAR images. IEEE Trans Geosci Remote Sens 48(6):2711–2722CrossRefADSGoogle Scholar
  8. 8.
    Liu T, Huang GM, Wang XS, Shao SP (2009) Modeling polarimetric SAR images with L-distribution. Sci Found China 19(1):89–96 (in Chinese)Google Scholar
  9. 9.
    Song K (2008) Globally convergent algorithms for estimating generalized gamma distributions in fast signal and image processing. IEEE Trans Image Process 17(8):1233–1250MathSciNetCrossRefPubMedADSGoogle Scholar
  10. 10.
    Freitas CC, Frery AC, Correia AH (2005) The polarimetric distribution for SAR data analysis. Environmetrics 16(8):13–31MathSciNetCrossRefGoogle Scholar
  11. 11.
    Krylov V, Moser G, Serpico SB, Zerubia J (2011) On the method of logarithmic cumulants for parametric probability density function estimation, inria-00605274, version 2, N RR-7666, Aug 2011Google Scholar
  12. 12.
    Nicolas JM (2002) Introduction to second kind statistics: application of log-moments and log-cumulants to analysis of radar images. Traitement du Signal 19(3):139–167 (in French)MATHMathSciNetGoogle Scholar
  13. 13.
    Anfinsen SN, Doulgeris AP, Eltoft T (2009) Estimation of the equivalent number of looks in polarimetric synthetic aperture radar imagery. IEEE Trans Geosci Remote Sens 47(11):3795–3809CrossRefADSGoogle Scholar
  14. 14.
    Anfinsen SN, Eltoft T (2009) Application of the matrix-variate Mellin transform to analysis of polarimetric Radar images. IEEE Trans Geosci Remote Sens 49(6):2281–2295CrossRefADSGoogle Scholar
  15. 15.
    Anfinsen SN, Doulgeris AP, Eltoft T (2011) Goodness-of-fit tests for multilook polarimetric radar data based on the Mellin transform. IEEE Trans Geosci Remote Sens 49(7):2764–2781CrossRefADSGoogle Scholar
  16. 16.
    Bateman H (1954) Tables of integral transforms, McGraw-Hill Book Company, New York, pp 298–303Google Scholar
  17. 17.
    Goodman NR (1963) Statistical analysis based on a certain complex Gaussian distribution. Ann Math Stat 34:152–177MATHCrossRefGoogle Scholar

Copyright information

© Atlantis Press and the author(s) 2016

Authors and Affiliations

  1. 1.School of Electronic EngineeringNaval University of EngineeringWuhanChina

Personalised recommendations