Skip to main content

Vibrissal Behavior and Function

  • Chapter
  • First Online:
Scholarpedia of Touch

Part of the book series: Scholarpedia ((SCHP))

Abstract

Tactile hair, or vibrissae, are a mammalian characteristic found on many mammals (Ahl, Veterinary Research Communications 10(4): 245–268. 1986). Vibrissae differ from ordinary (pelagic) hair by being longer and thicker, having large follicles containing blood-filled sinus tissues, and by having an identifiable representation in the somatosensory cortex. Here we provide a brief comparative and ethological review of the role of vibrissae in the life of small terrestrial mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 189.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Internal References

External References

  • Ahissar, E and Knutsen, P M (2008). Object localization with whiskers. Biological Cybernetics 98(6): 449–458.

    Google Scholar 

  • Ahl, A S (1982). Evidence of use of vibrissae in swimming in Sigmo don fulviventer. Animal Behaviour 30: 1203–1206.

    Google Scholar 

  • Ahl, A S (1986). The role of vibrissae in behavior - A status review. Veterinary Research Communications 10(4): 245–268. http://www.springerlink.com/content/k438303108l38260/.

    Google Scholar 

  • Ahl, A S (1987). Relationship of vibrissal length and habits in the Sciuridae. Journal of Mammalogy 68(4): 848–853.

    Google Scholar 

  • Anjum, F; Turni, H; Mulder, P G; van der Burg, J and Brecht, M (2006). Tactile guidance of prey capture in Etruscan shrews. Proceedings of the National Academy of Sciences of the United States of America 103(44): 16544–16549.

    Google Scholar 

  • Anjum, F and Brecht, M (2012). Tactile experience shapes prey-capture behavior in Etruscan shrews. Frontiers in Behavioral Neuroscience 6: 28.

    Google Scholar 

  • Arkley, K; Grant, R A; Mitchinson, B and Prescott, T J (2014). Strategy change in vibrissal active sensing during rat locomotion. Current Biology 24(13): 1507–1512.

    Google Scholar 

  • Berg, R W and Kleinfeld, D (2003). Rhythmic whisking by rat: Retraction as well as protraction of the vibrissae is under active muscular control. Journal of Neurophysiology 89(1): 104–117.

    Google Scholar 

  • Bermejo, R; Harvey, M; Gao, P and Zeigler, H P (1996). Conditioned whisking in the rat. Somatosensory & Motor Research 13(3–4): 225–233.

    Google Scholar 

  • Bobrov, E; Wolfe, J; Rao, R P and Brecht, M (2014). The representation of social facial touch in rat barrel cortex. Current Biology 24(1): 109–115.

    Google Scholar 

  • Brecht, M; Preilowski, B and Merzenich, M M (1997). Functional architecture of the mystacial vibrissae. Behavioural Brain Research 84(1–2): 81–97.

    Google Scholar 

  • Carvell, G E and Simons, D J (1990). Biometric analyses of vibrissal tactile discrimination in the rat. The Journal of Neuroscience 10(8): 2638–2648.

    Google Scholar 

  • Carvell, G E and Simons, D J (1996). Abnormal tactile experience early in life disrupts active touch. The Journal of Neuroscience 16(8): 2750–2757.

    Google Scholar 

  • Davis, H; Mackenzie, K A and Morrison, S (1989). Numerical discrimination by rats (Rattus norvegicus) using body and vibrissal touch. Journal of Comparative Psychology 103(1): 45–53.

    Google Scholar 

  • Dehnhardt, G and Ducker, G (1996). Tactual discrimination of size and shape by a California sea lion (Zalophus californianus). Animal Learning & Behavior 24(4): 366–374.

    Google Scholar 

  • Dehnhardt, G; Mauck, B; Hanke, W and Bleckmann, H (2001). Hydrodynamic trail-following in harbor seals (Phoca vitulina). Science 293(5527): 102–104.

    Google Scholar 

  • Diamond, M E; von Heimendahl, M and Arabzadeh, E (2008). Whisker-mediated texture discrimination. PLoS Biology 6(8): e220.

    Google Scholar 

  • Fox, C W; Mitchinson, B; Pearson, M J; Pipe, A G and Prescott, T J (2009). Contact type dependency of texture classification in a whiskered mobile robot. Autonomous Robots 26(4): 223–239. doi:10.1007/s10514-009-9109-z.

    Google Scholar 

  • Gao, P; Ploog, B O and Zeigler, H P (2003). Whisking as a “voluntary” response: Operant control of whisking parameters and effects of whisker denervation. Somatosensory & Motor Research 20(3–4): 179–189.

    Google Scholar 

  • Grant, R A; Mitchinson, B; Fox, C and Prescott, T J (2009). Active touch sensing in the rat: Anticipatory and regulatory control of whisker movements during surface exploration. Journal of Neurophysiology 101(2): 862–874.

    Google Scholar 

  • Grant, R A; Mitchinson, B and Prescott, T J (2012a). The development of whisker control in rats in relation to locomotion. Developmental Psychobiology 54(2): 151–168.

    Google Scholar 

  • Grant, R A; Sperber, A L and Prescott, T J (2012b). The role of orienting in vibrissal touch sensing. Frontiers in Behavioral Neuroscience 6: 39.

    Google Scholar 

  • Grant, R A; Haidarliu, S; Kennerley, N J and Prescott, T J (2013). The evolution of active vibrissal sensing in mammals: Evidence from vibrissal musculature and function in the marsupial opossum Monodelphis domestica. The Journal of Experimental Biology 216: 3483–3494.

    Google Scholar 

  • Gregoire, S E and Smith, D E (1975). Mouse-killing in the rat: Effects of sensory deficits on attack behaviour and stereotyped biting. Animal Behaviour 23(Part 1): 186–191.

    Google Scholar 

  • Guic-robles, E; Guajardo, G and Valdivieso, C (1989). Rats can learn a roughness discrimination using only their vibrissal system. Behavioural Brain Research 31: 285–289.

    Google Scholar 

  • Guic-robles, E; Jenkins, W M and Bravo, H (1992). Vibrissal roughness discrimination is barrelcortex-dependent. Behavioural Brain Research 48(2): 145–152.

    Google Scholar 

  • Gustafson, J W and Felbain-Keramidas, S L (1977). Behavioral and neural approaches to the function of the mystacial vibrissae. Psychological Bulletin 84(3): 477–488.

    Google Scholar 

  • Hartmann, M J (2001). Active sensing capabilities of the rat whisker system. Autonomous Robots 11: 249–254.

    Google Scholar 

  • Hipp, J et al. (2006). Texture signals in whisker vibrations. Journal of Neurophysiology 95(3): 1792–1799.

    Google Scholar 

  • Hutson, K A and Masterton, R B (1986). The sensory contribution of a single vibrissa’s cortical barrel. Journal of Neurophysiology 56(4): 1196–1223.

    Google Scholar 

  • Jenkinson, E W and Glickstein, M (2000). Whiskers, barrels, and cortical efferent pathways in gap crossing by rats. Journal of Neurophysiology 84(4): 1781–1789.

    Google Scholar 

  • Jin, T-E; Witzemann, V and Brecht, M (2004). Fiber types of the intrinsic whisker muscle and whisking behavior. The Journal of Neuroscience 24(13): 3386–3393.

    Google Scholar 

  • Kim, D and Moller, R (2007). Biomimetic whiskers for shape recognition. Robotics and Autonomous Systems 55(3): 229–243.

    Google Scholar 

  • Knutsen, P M; Pietr, M and Ahissar, E (2006). Haptic object localization in the vibrissal system: Behavior and performance. The Journal of Neuroscience 26(33): 8451–8464.

    Google Scholar 

  • Krupa, D J; Matell, M S; Brisben, A J; Oliveira, L M and Nicolelis, M A (2001). Behavioral properties of the trigeminal somatosensory system in rats performing whisker-dependent tactile discriminations. The Journal of Neuroscience 21(15): 5752–5763.

    Google Scholar 

  • Landers, M; Haidarliu, S and Philip Zeigler, H (2006). Development of rodent macrovibrissae: Effects of neonatal whisker denervation and bilateral neonatal enucleation. Somatosensory & Motor Research 23(1–2): 11–17.

    Google Scholar 

  • Landers, M S and Sullivan, R M (1999). Virissae-evoked behavior and conditioning before functional ontogeny of the somatosensory vibrissae cortex. The Journal of Neuroscience 19(12): 5131–5137.

    Google Scholar 

  • Landers, M and Zeigler, P H (2006). Development of rodent whisking: Trigeminal input and central pattern generation. Somatosensory & Motor Research 23(1–2): 1–10.

    Google Scholar 

  • Mehta, S B; Whitmer, D; Figueroa, R; Williams, B A and Kleinfeld, D (2007). Active spatial perception in the vibrissa scanning sensorimotor system. PLoS Biology 5(2): 309–322.

    Google Scholar 

  • Meyer, M E and Meyer, M E (1992). The effects of bilateral and unilateral vibrissotomy on behavior within aquatic and terrestrial environments. Physiology & Behavior 51(4): 877–880.

    Google Scholar 

  • Mitchinson, B; Martin, C J; Grant, R A and Prescott, T J (2007). Feedback control in active sensing: Rat exploratory whisking is modulated by environmental contact. Proceedings of the Royal Society B: Biological Sciences 274(1613): 1035–1041.

    Google Scholar 

  • Mitchinson, B et al. (2011). Active vibrissal sensing in rodents and marsupials. Philosophical Transactions of the Royal Society B: Biological Sciences 366(1581): 3037–3048.

    Google Scholar 

  • Mitchinson, B and Prescott, T J (2013). Whisker movements reveal spatial attention: A unified computational model of active sensing control in the rat. PLOS Computational Biology 9(9): e1003236.

    Google Scholar 

  • Niederschuh, S J; Witte, H and Schmidt, M (2015). The role of vibrissal sensing in forelimb position control during travelling locomotion in the rat (Rattus norvegicus, Rodentia). Zoology 118(1): 51–62.

    Google Scholar 

  • Polley, D B; Rickert, J L and Frostig, R D (2005). Whisker-based discrimination of object orientation determined with a rapid training paradigm. Neurobiology of Learning and Memory 83(2): 134–142.

    Google Scholar 

  • Prescott, T J; Wing, A and Diamond, M E (2011). Active touch sensing. Philosophical Transactions of Royal Society B: Biological Sciences. 366(1581): 2989–2995.

    Google Scholar 

  • Rice, F L (1995). Comparative aspects of barrel structure and development. In: E G Jones and I T Diamond (Eds.), Cerebral Cortex Volume II: The Barrel Cortex of Rodents. New York: Plenum Press.

    Google Scholar 

  • Richardson, F (1909). A study of sensory control in the rat. Psychological Monographs Supplement 12(1): 1–124.

    Google Scholar 

  • Sachdev, R N; Berg, R W; Champney, G; Kleinfeld, D and Ebner, F F (2003). Unilateral vibrissa contact: Changes in amplitude but not timing of rhythmic whisking. Somatosensory & Motor Research 20: 163–169.

    Google Scholar 

  • Schiffman, H R; Lore, R; Passafiume, J and Neeb, R (1970). Role of vibrissae for depth perception in the rat (Rattus norvegicus). Animal Behaviour 18(Part 2): 290–292.

    Google Scholar 

  • Sellien, H; Eshenroder, D S and Ebner, F F (2005). Comparison of bilateral whisker movement in freely exploring and head-fixed adult rats. Somatosensory & Motor Research 22: 97–114.

    Google Scholar 

  • Shatz, L F and Christensen, C W (2008). The frequency response of rat vibrissae to sound. The Journal of the Acoustical Society of America 123(5): 2918–2927.

    Google Scholar 

  • Sokolov, V E and Kulikov, V F (1987). The structure and function of the vibrissal apparatus in some rodents. Mammalia 51: 125–138.

    Google Scholar 

  • Solomon, J H and Hartmann, M J (2006). Biomechanics: Robotic whiskers used to sense features. Nature 443(7111): 525.

    Google Scholar 

  • Sullivan, R M et al. (2003). Characterizing the functional significance of the neonatal rat vibrissae prior to the onset of whisking. Somatosensory & Motor Research 20(2): 157–162.

    Google Scholar 

  • Symons, L A and Tees, R C (1990). An examination of the intramodal and intermodal behavioral consequences of long-term vibrissae removal in rats. Developmental Psychobiology 23(8): 849–867.

    Google Scholar 

  • Thé, L; Wallace, M L; Chen, C H; Chorev, E and Brecht, M (2013). Structure, function, and cortical representation of the rat submandibular whisker trident. The Journal of Neuroscience 33: 4815–4824.

    Google Scholar 

  • Towal, R B and Hartmann, M J (2006). Right-left asymmetries in whisking behavior of rats anticipate head movements. The Journal of Neuroscience 26(34): 8838–8846.

    Google Scholar 

  • Vincent, S B (1912). The function of the vibrissae in the behaviour of the white rat. Behavior Monographs 1: 1–82.

    Google Scholar 

  • Volgyi, B; Farkas, T and Toldi, J (1993). Compensation of a sensory deficit inflicted upon newborn and adult animals - A behavioral study. Neuroreport 4(6): 827–829.

    Google Scholar 

  • Welker, C I (1964). Analysis of sniffing in the albino rat. Behaviour 22: 223–244.

    Google Scholar 

  • Wineski, L E (1985). Facial morphology and vibrissal movement in the Golden Hamster. Journal of Morphology 183(2): 199–217.

    Google Scholar 

  • Wolfe, J et al. (2008). Texture coding in the rat whisker system: Slip-stick versus differential resonance. PLoS Biology 6(8): e215.

    Google Scholar 

  • Woolsey, T A; Welker, C and Schwartz, R H (1975). Comparative anatomical studies of the SmL face cortex with special reference to the occurrence of barrels in layer IV. Journal of Comparative Neurology 164(1): 79–94.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Atlantis Press and the author(s)

About this chapter

Cite this chapter

Prescott, T.J., Mitchinson, B., Grant, R.A. (2016). Vibrissal Behavior and Function. In: Prescott, T., Ahissar, E., Izhikevich, E. (eds) Scholarpedia of Touch. Scholarpedia. Atlantis Press, Paris. https://doi.org/10.2991/978-94-6239-133-8_7

Download citation

  • DOI: https://doi.org/10.2991/978-94-6239-133-8_7

  • Published:

  • Publisher Name: Atlantis Press, Paris

  • Print ISBN: 978-94-6239-132-1

  • Online ISBN: 978-94-6239-133-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics