E Pluribus Unum

Formalisation, Use-Cases, and Computational Support for Conceptual Blending
  • Oliver Kutz
  • John Bateman
  • Fabian Neuhaus
  • Till Mossakowski
  • Mehul Bhatt
Part of the Atlantis Thinking Machines book series (ATLANTISTM, volume 7)


Conceptual blending has been employed very successfully to understand the process of concept invention, studied particularly within cognitive psychology and linguistics. However, despite this influential research, within computational creativity little effort has been devoted to fully formalise these ideas and to make them amenable to computational techniques. Unlike other combination techniques, blending aims at creatively generating (new) concepts on the basis of input theories whose domains are thematically distinct but whose specifications share structural similarity based on a relation of analogy, identified in a generic space, the baseontology. We introduce here the basic formalisation of conceptual blending, as sketched by the late Joseph Goguen, and discuss some of its variations. We illustrate the vast array of conceptual blends that may be covered by this approach and discuss the theoretical and conceptual challenges that ensue. Moreover, we show how the Distributed Ontology Language \(\mathsf {DOL}\) can be used to declaratively specify blending diagrams of various shapes, and discuss in detail how the workflow and creative act of generating and evaluating a new, blended concept can be managed and computationally supported within Ontohub, a \(\mathsf {DOL}\)-enabled theory repository with support for a large number of logical languages and formal linking constructs.


Conceptual Space Optimality Principle Ontology Language Concept Invention Intended Interpretation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The project COINVENT acknowledges the financial support of the Future and Emerging Technologies (FET) programme within the Seventh Framework Programme for Research of the European Commission, under FET-Open Grant number: 611553. Work on this paper was moreover supported by the DFG-funded collaborative research centre SFB/TR 8 ‘Spatial Cognition’ of the Universities of Bremen and Freiburg.

We thank the anonymous referees as well as Mihai Codescu for detailed feedback on this chapter.


  1. 1.
    Adámek, J., Herrlich, H., Strecker, G.: Abstract and Concrete Categories. Wiley, New York (1990)zbMATHGoogle Scholar
  2. 2.
    Bateman, J.A.: Language and space: a two-level semantic approach based on principles of ontological engineering. Int. J. Speech Technol. 13(1), 29–48 (2010)CrossRefGoogle Scholar
  3. 3.
    Bateman, J.A.: The decomposability of semiotic modes. In: O’Halloran, K.L., Smith, B.A. (eds.) Multimodal Studies: Multiple Approaches and Domains, Routledge Studies in Multimodality, pp. 17–38. Routledge, London (2011)Google Scholar
  4. 4.
    Bateman, J.A., Veloso, F.O.D.: The semiotic resources of comics in movie adaptation: Ang Lee’s Hulk (2003) as a case study. Stud. Comics 4(1), 137–159 (2013)CrossRefGoogle Scholar
  5. 5.
    Bhatt, M., Hois, J., Kutz, O.: Ontological modelling of form and function in architectural design. Appl. Ontol. 7(3), 233–267 (2012)Google Scholar
  6. 6.
    Black, M.: More about metaphor. In: Ortony, A. (ed.) Metaphor and Thought, pp. 19–43. Cambridge University Press, Cambridge (1979)Google Scholar
  7. 7.
    Borgida, A., Serafini, L.: Distributed description logics: assimilating information from peer sources. J. Data Semant. 1, 153–184 (2003)Google Scholar
  8. 8.
    Codescu, M., Mossakowski, T.: Heterogeneous colimits. In: Boulanger, F., Gaston, C., Schobbens, P.-Y. (eds.) MoVaH’08 Workshop on Modeling, Validation and Heterogeneity, pp. 131–140. IEEE Press (2008)Google Scholar
  9. 9.
    Codescu, M., Mossakowski, T., Kutz, O.: A categorical approach to ontology alignment. In Proceedings of the 9th International Workshop on Ontology Matching (OM-2014), ISWC-2014, Riva del Garda, Trentino. CEUR-WS (2014)Google Scholar
  10. 10.
    Eisner, W.: Comics and Sequential Art. Kitchen Sink Press Inc., Princeton (1992)Google Scholar
  11. 11.
    Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)Google Scholar
  12. 12.
    Fauconnier, G.: Mappings in Thought and Language. Cambridge University Press, Cambridge (1997)CrossRefGoogle Scholar
  13. 13.
    Fauconnier, G., Turner, M.: Conceptual integration networks. Cognit. Sci. 22(2), 133–187 (1998)CrossRefGoogle Scholar
  14. 14.
    Fauconnier, G., Turner, M.: The Way We Think: Conceptual Blending and the Mind’s Hidden Complexities. Basic Books, New York (2003)Google Scholar
  15. 15.
    Fleuriot, J., Maclean, E., Smaill, A., Winterstein, D.: Reinventing the complex numbers. In: Besold, T., Kühnberger, K.-U., Schorlemmer, M., Smaill, A. (eds.) Computational Creativity, Concept Invention, and General Intelligence, Proceedings of the 3rd International Workshop C3GI@ECAI-14, vol. 1-2014, Prague, Czech Republic. Publications of the Institute of Cognitive Science, Osnabrück (2014)Google Scholar
  16. 16.
    Forbus, K., Falkenhainer, B., Gentner, D.: The structure-mapping engine. Artif. Intell. 41, 1–63 (1989)CrossRefzbMATHGoogle Scholar
  17. 17.
    Forceville, C.J., Urios-Aparisi, E. (eds.): Multimodal Metaphor. Mouton de Gruyter, Berlin (2009)Google Scholar
  18. 18.
    Frank, A., Kuhn, W.: A specification language for interoperable GIS. In: Goodchild, M., Egenhofer, M., Fegeas, R., Kottmann, C. (eds.) Interoperating Geographic Information Systems, pp. 123–132. Kluwer, Norwell (1999)CrossRefGoogle Scholar
  19. 19.
    Gärdenfors, P.: Conceptual Spaces—The Geometry of Thought. Bradford Books, MIT Press, Cambridge (2000)Google Scholar
  20. 20.
    Gentner, D.: Structure mapping: a theoretical framework for analogy. Cognit. Sci. 7(2), 155–170 (1983)CrossRefGoogle Scholar
  21. 21.
    Goguen, J.A.: An introduction to algebraic semiotics, with applications to user interface design. In: Computation for Metaphors, Analogy and Agents, LNCS, vol. 1562, pp. 242–291. Springer, Berlin (1999)Google Scholar
  22. 22.
    Goguen, J.A., Burstall, R.M.: Institutions: abstract model theory for specification and programming. J. Assoc. Comput. Mach. 39(1):95–146 (1992) (Predecessor. In: LNCS 164, 221–256 (1984))Google Scholar
  23. 23.
    Goguen, J.A., Harrell, D.F.: Style: a computational and conceptual blending-based approach. In: Argamon, S., Dubnov, S. (eds.) The Structure of Style: Algorithmic Approaches to Understanding Manner and Meaning, pp. 147–170. Springer, Berlin (2010)Google Scholar
  24. 24.
    Goguen, J.A., Malcolm, G.: Algebraic Semantics of Imperative Programs. MIT, Cambridge (1996)Google Scholar
  25. 25.
    Gruber, T.: Toward principles for the design of ontologies used for knowledge sharing. Int. J. Human-Comput. Stud. 43(5/6), 907–928 (1995)CrossRefGoogle Scholar
  26. 26.
    Grüninger, M., Fox, M.S.: The role of competency questions in enterprise engineering. In: Benchmarking-Theory and Practice, pp. 22–31. Springer, Berlin (1995)Google Scholar
  27. 27.
    Guarino, N.: The ontological level. In: Casati, R., Smith, B., White, G. (eds.) Philosophy and the Cognitive Sciences, pp. 443–456. Hölder-Pichler-Tempsky, Vienna (1994)Google Scholar
  28. 28.
    Guarino, N., Welty, C.: Evaluating ontological decisions with OntoClean. Commun. ACM 45(2), 61–65 (2002)CrossRefGoogle Scholar
  29. 29.
    Guhe, M., Pease, A., Smaill, A., Martínez, M., Schmidt, M., Gust, H., Kühnberger, K.-U., Krumnack, U.: A computational account of conceptual blending in basic mathematics. Cognit. Syst. Res. 12(3–4), 249–265 (2011)CrossRefGoogle Scholar
  30. 30.
    Gust, H., Kühnberger, K.-U., Schmid, U.: Metaphors and anti-unification. In: Proceedings of the Twenty-First Workshop on Language Technology, Algebraic Methods in Language Processing, Verona, Italy (2003)Google Scholar
  31. 31.
    Hart, C.: Critical discourse analysis and metaphor: toward a theoretical framework. Crit. Discourse Stud. 5(2), 91–106 (2008)CrossRefGoogle Scholar
  32. 32.
    Hois, J., Kutz, O., Mossakowski, T., Bateman, J.: Towards ontological blending. In: Proceedings of the The 14th International Conference on Artificial Intelligence:  Methodology, Systems, Applications (AIMSA-2010), Varna, Bulgaria, 8th–10th September 2010Google Scholar
  33. 33.
    Jaszczolt, K.M.: On translating ‘What is said’: tertium comparationis in contrastive semantics and pragmatics. In: Meaning Through Language Contrast, vol. 2, pp. 441–462. J. Benjamins, Amsterdam (2003)Google Scholar
  34. 34.
    Johnson, M.: The body in the mind. In: The Bodily Basis of Meaning, Imagination, and  Reasoning. The University of Chicago Press, Chicago (1987)Google Scholar
  35. 35.
    Kövescses, Z.: Metaphor: A Practical Introduction, 2nd edn. Oxford University Press, Oxford (2010)Google Scholar
  36. 36.
    Kuhn, W.: Modeling the semantics of geographic categories through conceptual integration. In: Proceedings of GIScience 2002, pp. 108–118. Springer (2002)Google Scholar
  37. 37.
    Kuhn, W.: Semantic reference systems. Int. J. Geogr. Inf. Sci. 17(5), 405–409 (2003)CrossRefGoogle Scholar
  38. 38.
    Kutz, O., Lücke, D., Mossakowski, T.: Heterogeneously structured ontologies: integration, connection, and refinement. In: Proceedings of the KROW 2008, CRPIT, vol. 90, pp. 41–50. ACS (2008a)Google Scholar
  39. 39.
    Kutz, O., Lücke, D., Mossakowski, T., Normann, I.: The OWL in the CASL: designing ontologies across logics. In: Proceedings of OWLED-08, vol. 432. CEUR (2008b)Google Scholar
  40. 40.
    Kutz, O., Lutz, C., Wolter, F., Zakharyaschev, M.: \(\cal E\)-connections of abstract description systems. Artif. Intell. 156(1), 1–73 (2004)Google Scholar
  41. 41.
    Kutz, O., Mossakowski, T., Codescu, M.: Shapes of alignments: construction, combination, and computation. In: Sattler, U., Tamilin, A. (eds.) Proceedings of the 1st Workshop on Ontologies: Reasoning and Modularity (WORM-08), ESWC, vol. 348. Tenerife, Spain. CEUR-WS (2008c)Google Scholar
  42. 42.
    Kutz, O., Mossakowski, T., Hois, J., Bhatt, M., Bateman, J.: Ontological blending in DOL. In: Besold, T., Kühnberger, K.-U., Schorlemmer, M., Smaill, A., (eds.) Computational Creativity, Concept Invention, and General Intelligence, Proceedings of the 1st International Workshop C3GI@ECAI, vol. 01-2012. Montpellier, France. Publications of the Institute of Cognitive Science, Osnabrück (2012)Google Scholar
  43. 43.
    Kutz, O., Mossakowski, T., Lücke, D.: Carnap, Goguen, and the hyperontologies: logical pluralism and heterogeneous structuring in ontology design. Log. Universalis 4(2):255–333 (2010) Special issue on ‘Is logic universal?’Google Scholar
  44. 44.
    Kutz, O., Neuhaus, F., Mossakowski, T., Codescu, M.: Blending in the hub-towards a collaborative concept invention platform. In: Proceedings of the 5th International Conference on  Computational Creativity, Ljubljana, Slovenia (2014)Google Scholar
  45. 45.
    Kutz, O., Normann, I.: Context discovery via theory interpretation. In: Workshop  on Automated Reasoning about Context and Ontology Evolution, ARCOE-09 (IJCAI-09) (2009)Google Scholar
  46. 46.
    Lakoff, G., Núñez, R.E.: Where Mathematics Comes From. Basic Books, New York  (2000)Google Scholar
  47. 47.
    Li, B., Zook, A., Davis, N., Riedl, M.O.: Goal-driven conceptual blending: a computational approach for creativity. In: Proceedings of the 2012 International Conference on Computational Creativity, Dublin, Ireland (2012)Google Scholar
  48. 48.
    Mamakos, C., Stefaneas, P., Dimarogkona, M., Ireson-Paine, J.: Polytropos project: experiments in blending. In: Besold, T., Kühnberger, K.-U., Schorlemmer, M., Smaill, A. (eds.) Computational Creativity, Concept Invention, and General Intelligence, Proceedings of the 3rd International Workshop C3GI@ECAI-14, vol. 1-2014. Prague, Czech Republic. Publications of the Institute of Cognitive Science, Osnabrück (2014)Google Scholar
  49. 49.
    Martinez, M., Besold, T.R., Abdel-Fattah, A., Kühnberger, K.-U., Gust, H.,  Schmidt, M., Krumnack, U.: Towards a domain-independent computational framework for theory blending. In: Proceedings of the AAAI Fall 2011 Symposium on Advances in Cognitive Systems (2011)Google Scholar
  50. 50.
    McCloud, S.: Understanding Comics: The Invisible Art. HarperPerennial, New York (1994)Google Scholar
  51. 51.
    Miller, A.I.: Metaphor and scientific creativity. In: Hallyn, F. (ed.) Metaphor and Analogy in the Sciences, pp. 147–164. Kluwer Academic Publishers, Dordrecht (2000)CrossRefGoogle Scholar
  52. 52.
    Mossakowski, T., Kutz, O., Codescu, M., Lange, C.: The distributed ontology, modeling and specification language. In: Del Vescovo, C., Hahmann, T., Pearce, D., Walther, D. (eds.) Proceedings of the 7th International Workshop on Modular Ontologies (WoMO-13), vol. 1081. CEUR-WS (2013)Google Scholar
  53. 53.
    Mossakowski, T., Kutz, O., Neuhaus, F., Codescu, M., Lange, C., Gruninger, M., Keet, M.: The distributed ontology, modeling and specification language. Draft answer to the OMG RFP “OntoIOp” (2014)Google Scholar
  54. 54.
    Nalon, C., Kutz, O.: Towards resolution-based reasoning for connected logics. Electron. Notes Theor. Comput. Sci. 305, 85–102 (2014) Post-proceedings of the 8th Workshop on Logical and Semantic Frameworks (LSFA)Google Scholar
  55. 55.
    Neuhaus, F., Kutz, O., Codescu, M., Mossakowski, T.: Fabricating monsters is hard: towards the automation of conceptual blending. In: Besold, T., Kühnberger, K.-U., Schorlemmer, M., Smaill, A. (eds.) Computational Creativity, Concept Invention, and General Intelligence, Proceedings of the 3rd International Workshop C3GI@ECAI-14, vol. 1-2014. Prague, Czech Republic. Publications of the Institute of Cognitive Science, Osnabrück (2014)Google Scholar
  56. 56.
    Neuhaus, F., Vizedom, A., Baclawski, K., Bennett, M., Dean, M., Denny, M., Grüninger, M., Hashemi, A., Longstreth, T., Obrst, L., et al.: Towards ontology evaluation across the life cycle: the ontology summit 2013. Appl. Ontol. 8(3), 179–194 (2013)Google Scholar
  57. 57.
    Normann, I.: Automated Theory Interpretation. PhD thesis, Jacobs University Bremen (2009)Google Scholar
  58. 58.
    Núñez, R.E.: Creating mathematical infinities: metaphor, blending, and the beauty of transfinite cardinals. J. Pragmat. 37, 1717–1741 (2005)CrossRefGoogle Scholar
  59. 59.
    Pagán Cánovas, C.: Erotic emissions in Greek poetry: a generic integration network. Cognit. Semiot. 6, 7–32 (2010)CrossRefGoogle Scholar
  60. 60.
    Pereira, F.C.: Creativity and Artificial Intelligence: A Conceptual Blending Approach, volume 4 of Applications of Cognitive Linguistics (ACL). Mouton de Gruyter, Berlin (2007)Google Scholar
  61. 61.
    Pereira, F.C., Cardoso, A.: Optimality principles for conceptual blending: a first computational approach. AISB J. 1(4) (2003)Google Scholar
  62. 62.
    Plotkin, G.D.: A note on inductive generalization. Mach. Intell. 5, 153–163 (1970)Google Scholar
  63. 63.
    Ritze, D., Meilicke, C., Šváb Zamazal, O., Stuckenschmidt, H.L.: A pattern-based ontology matching approach for detecting complex correspondences. In: OM-09, vol. 551. CEUR (2009)Google Scholar
  64. 64.
    Schorlemmer, M., Smaill, A., Kühnberger, K.-U., Kutz, O., Colton, S., Cambouropoulos, E., Pease, A.: COINVENT: towards a computational concept invention theory. In: Proceedings of the 5th International Conference on Computational Creativity, Ljubljana, Slovenia (2014)Google Scholar
  65. 65.
    Schwering, A., Krumnack, U., Kühnberger, K.-U., Gust, H.: Syntactic principles of heuristic-driven theory projection. Cognit. Syst. Res. 10(3), 251–269 (2009a)CrossRefGoogle Scholar
  66. 66.
    Schwering, A., Kühnberger, K.-U., Krumnack, U., Gust, H., Wandmacher, T., Indurkhya, B., Ojha, A.: A computational model for visual metaphors: interpreting creative visual advertisements. In: International Conference on Agents and Artificial Intelligence (ICAART-09), pp. 339–344 (2009b)Google Scholar
  67. 67.
    Turner, M.: The way we imagine. In: Roth, I. (ed.) Imaginative Minds—Proceedings of the British Academy, pp. 213–236. OUP, Oxford (2007)Google Scholar
  68. 68.
    Turner, M.: The Origin of Ideas: Blending, Creativity, and the Human Spark. Oxford University Press, Oxford (2014)Google Scholar
  69. 69.
    van Mulken, M., le Pair, R., Forceville, C.: The impact of perceived complexity, deviation and comprehension on the appreciation of visual metaphor in advertising across three European countries. J. Pragmat. 42, 3418–3430 (2010)CrossRefGoogle Scholar
  70. 70.
    Veale, T.: Creativity as pastiche: a computational treatment of metaphoric blends, with special reference to cinematic “borrowing”. In: Proceedings of Mind II, Computational Models of Creative Cognition (1997)Google Scholar
  71. 71.
    Veale, T.: From conceptual mash-ups to “Bad-Ass” blends: a robust computational model of conceptual blending. In: Proceedings of the 2012 International Conference on Computational Creativity, Dublin, Ireland (2012)Google Scholar
  72. 72.
    Veale, T., O’Donoghue, D.: Computation and blending. Cognit. Linguist. 11(3/4), 253–281 (2001)Google Scholar
  73. 73.
    Walshe, B.: Identifying complex semantic matches. In: The Semantic  Web: Research and Applications, pp. 849–853. Springer (2012)Google Scholar
  74. 74.
    Zimmermann, A., Krötzsch, M., Euzenat, J., Hitzler, P.: Formalizing ontology alignment and its operations with category theory. In: Proceedings of FOIS-06, pp. 277–288 (2006)Google Scholar

Copyright information

© Atlantis Press and the authors 2015

Authors and Affiliations

  • Oliver Kutz
    • 1
  • John Bateman
    • 2
  • Fabian Neuhaus
    • 1
  • Till Mossakowski
    • 1
  • Mehul Bhatt
    • 3
  1. 1.Institute of Knowledge and Language EngineeringOtto-von-Guericke University of MagdeburgMagdeburgGermany
  2. 2.Faculty of Linguistics and Literary Sciences/Research Center on Spatial Cognition (SFB/TR 8)University of BremenBremenGermany
  3. 3.Research Center on Spatial Cognition (SFB/TR 8)University of BremenBremenGermany

Personalised recommendations