Skip to main content

Interactive Meta-Reasoning: Towards a CAD-Like Environment for Designing Game-Playing Agents

Part of the Atlantis Thinking Machines book series (ATLANTISTM,volume 7)

Abstract

We posit that experimentation is a central element of the creative process. The question then becomes how can we support experimentation in creative tasks? We take inspiration from the success of computer aided design (CAD) environments that enable designers to construct, evaluate and revise models of engineering systems. Design of game-playing software agents is another creative task. By analogy, we present a CAD-like environment that enables designers to construct, evaluate and revise models of game-playing agents. However, unlike engineering systems, intelligent agents may learn from experience. In particular, intelligent agents may use meta-reasoning over their own models to redesign themselves. Thus, we envision a CAD-like environment in which the human designer and the intelligent software agent cooperate to perform interactive meta-reasoning to redesign the agent. In this article, we describe three elements of this vision: (2) an agent modeling language called TMKL2, (2) an interactive environment called GAIA for experimenting with the models of game-playing software agents, and (3) GAIA’s module called REM that performs meta-reasoning for self-adaptation in game-playing software agents. We illustrate these concepts for the task of design of software agents that play variants of Freeciv, a turn-based strategy game.

Keywords

  • Computer-aided design
  • Computational creativity
  • Design thinking
  • Experimentation
  • Game playing
  • Intelligent agents
  • Meta-reasoning
  • Modeling
  • Reflection
  • Self-adaptation
  • Simulation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.2991/978-94-6239-085-0_17
  • Chapter length: 24 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-94-6239-085-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   129.00
Price excludes VAT (USA)
Fig. 17.1
Fig. 17.2
Fig. 17.3

Notes

  1. 1.

    http://freeciv.wikia.com/.

  2. 2.

    http://www.eclipse.org/.

  3. 3.

    http://www.isi.edu/isd/LOOM/PowerLoom/.

  4. 4.

    http://www.cs.cmu.edu/~avrim/graphplan.html.

  5. 5.

    www.ideo.com

References

  1. Aha, D., Molineaux, M., Ponsen, M.: Learning to win: case-based plan selection in a real-time strategy game. In: Proceedings of ICCBR-2005 (2005)

    Google Scholar 

  2. Amabile, T.: Creativity in Context, 2nd edn. Westview Press, Boulder (1996)

    Google Scholar 

  3. Anderson, M., Oates, T.: A review of recent research in metareasoning and metalearning. AI Mag. 28(1), 12 (2007)

    Google Scholar 

  4. Anderson, M., Oates, T., Chong, W., Perlis, D.: The metacognitive loop I: enhancing reinforcement learning with metacognitive monitoring and control for improved perturbation tolerance. J. Exp. Theor. Artif. Intell. 18(3), 387 (2006)

    CrossRef  Google Scholar 

  5. Benami, O., Jin, Y.: Creative stimulation in conceptual design. In: Proceedings of ASME IDETC 14th Annual Conference on Design Theory and Methods, Montreal, Canada (2002)

    Google Scholar 

  6. Birnbaum, L., Collins, G., Freed, M., Krulwich, B.: Model-based diagnosis of planning failures. In: Proceedings of 8th National Conference on Artificial Intelligence, p. 318 (1990)

    Google Scholar 

  7. Blum, A., Furst, M.: Artif. Intell. 90(1–2), 281–300 (1997)

    CrossRef  MATH  Google Scholar 

  8. Boden, M.: The Creative Mind: Myths and Mechanisms, 2nd edn. Routledge, London (2004)

    Google Scholar 

  9. Bozdoc, M.: The History of CAD. http://mbinfo.mbdesign.net/CAD-History.htm (2003)

  10. Chandrasekaran, B., Johnson, T.: Generic tasks and task structures: history, critique and new directions. In: David, J.-M., Krivine, J.-P., Simmons, R. (eds.) Second Generation Expert Systems, pp. 232–272. Springer, Berlin (1993)

    CrossRef  Google Scholar 

  11. Chandrasekaran, B., Johnson, T., Smith, J.: Task structure analysis for knowledge modeling. CACM 35(9), 124–137 (1992)

    Google Scholar 

  12. Collins, G., Birnbaum, L., Krulwich, B., Freed, M.: The role of self-models in learning to plan. In: Meyrowitz, A. (ed.) Machine Learning: Induction, Analogy and Discovery. Kluwer Academic Publishers, Boston (1991)

    Google Scholar 

  13. Colton, S., Lopez de Mantaras, R.: Computational creativity: coming of age. AI Mag. 30(3), 11–14 (2009)

    Google Scholar 

  14. Colton, S., Wiggins, G.: Computational creativity: the final frontier? In: Proceedings of ECAI (2012)

    Google Scholar 

  15. Cook, M., Colton, S., Gow, J.: Nobody’s a critic: on the evaluation of creative code generators—a case study in video game design. In: Proceedings of 4th International Conference on Computational Creativity (2013)

    Google Scholar 

  16. Cox, M.: Metacognition in computation: a selected research review. Artif. Intell. 169(2), 104–141 (2005)

    CrossRef  Google Scholar 

  17. Cox, M., Raja, A. (eds.): Meta-Reasoning: Thinking About Thinking. MIT Press, Cambridge (2011)

    Google Scholar 

  18. Cross, N.: Design Thinking: Understanding How Designers Think and Work. Berg, Oxford (2011)

    Google Scholar 

  19. Csikszentmihalyi, M.: Creativity: Flow and the Psychology of Discovery and Invention. HarperCollins, New York (1996)

    Google Scholar 

  20. Davies, J., Nersessian, N., Goel, A.: Visual models in analogical problem solving. Found. Sci. 10(1), 133–152 (2005)

    CrossRef  Google Scholar 

  21. Dorst, K., Cross, N.: Creativity in the design process: problem-solution co-evolution. Des. Stud. 22, 425–437 (2003)

    CrossRef  Google Scholar 

  22. Dym, C., Agogino, A., Eris, O., Frey, D., Leifer, L.: Engineering design thinking, teaching and learning. J. Eng. Educ. 94(1), 103–120 (2005)

    CrossRef  Google Scholar 

  23. Dym, C., Brown, D.: Engineering Design: Representation and Reasoning, 2nd edn. Cambridge University Press, New York (2012)

    CrossRef  Google Scholar 

  24. Erol, K., Hendler, J., Nau, D.: HTN planning: complexity and expressivity. In: Proceedings of 12th National Conference on AI (AAAI-94), Seattle (1994)

    Google Scholar 

  25. Finke, R., Ward, T., Smith, S.: Creative Cognition: Theory, Research and Applications. MIT Press, Cambridge (1992)

    Google Scholar 

  26. Fox, S., Leake, D.: Using introspective reasoning to refine indexing. In: Proceedings of 14th International Joint Conference on Artificial Intelligence, pp. 391–397. San Mateo, CA: Morgan Kaufmann (1995)

    Google Scholar 

  27. Fox, S., Leake, D.: Introspective reasoning for index refinement in case-based reasoning. J. Exp. Theor. Artif. Intell. 13, 63–88 (2001)

    CrossRef  MATH  Google Scholar 

  28. French, M.: Conceptual Design for Engineers. Design Council, London (1985)

    CrossRef  Google Scholar 

  29. Georgoff, M., Lansky, A.: Reactive reasoning and planning. In: Proceedings of National Conference on AI (AAAI87), Seattle, Washington, pp. 677–682 (1987)

    Google Scholar 

  30. Goel, A.: Design, analogy and creativity. IEEE Expert 12(3), 62–70 (1997)

    CrossRef  MathSciNet  Google Scholar 

  31. Goel, A., Helms, M.: Theories, models, programs and tools of design: views from artificial intelligence, cognitive science and human-centered computing chapter 20. In: Chakrabarti, A., Blessing, L. (eds.) An Anthology of Theories and Models of Design, pp. 417–432. Springer, Berlin (2014)

    Google Scholar 

  32. Goel, A., Jones, J.: Meta-reasoning for self-adaptation in intelligent agents. In: Cox, M., Raja, A. (eds.) Meta-Reasoning. MIT Press, Cambridge (2011)

    Google Scholar 

  33. Goel, A., Joyner, D.: Computational ideation: model construction, evaluation and revision. In: Proceedings of AAAI-2014 Workshop on Discovery Informatics, Quebec City, Canada, June 2014

    Google Scholar 

  34. Griffith, T., Nersessian, N., Goel, A.: The role of generic models in conceptual change. In: Proceedings of 18th Conference of the Cognitive Science Society, pp. 312–317. San Diego, July 1996

    Google Scholar 

  35. Griffith, T., Nersessian, N., Goel, A.: Function-follows-form: generative modeling in scientific reasoning. In: Proceedings of 20th Second Conference of the Cognitive Science Society, Philadelphia, pp. 196–201. August 2000

    Google Scholar 

  36. Hoang, M., Lee-Urban, S., Munoz-Avila, H.: Hierarchical plan representations for encoding strategic game AI. In: Proceedings of AI in Digital Entertainment Conference (AIIDE-05). AAAI Press (2005)

    Google Scholar 

  37. Jones, J., Goel, A.: Perceptually grounded self-diagnosis and self-repair of domain knowledge. Knowl.-Based Syst. 227, 281–301 (2012)

    CrossRef  Google Scholar 

  38. Jones, J., Parnin, C., Sinharoy, A., Rugaber, S., Goel, A.: Adapting game-playing agents to game requirements. In: Proceedings of 5th AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-09), pp. 148–153, Stanford University, California, USA, 14–16 October 2009

    Google Scholar 

  39. Joyner, D., Goel, A., Papin, N.: Intelligent generation of agent-based simulations from conceptual models. In: Proceedings of 18th International Conference on Intelligent User Interfaces (IUI2014), pp. 289–298. Haifa, Israel, February 2014

    Google Scholar 

  40. Kephart, J., Chess, D.: The vision of autonomic computing. Computer 36(1), 41–50 (2003)

    CrossRef  MathSciNet  Google Scholar 

  41. Laird, J.: Research in human-level AI using computer games. CACM 17(4), 15–16 (2002)

    Google Scholar 

  42. Laird, J., Van Lent, M.: Human-level AI’s killer application: interactive computer games. AI Mag. 22(2), 15–25 (2001)

    Google Scholar 

  43. Leake, D.: Experience, introspection and expertise: learning to refine the case-based reasoning process. J. Exp. Theor. Artif. Intell. 8(3–4), 319 (1996)

    CrossRef  Google Scholar 

  44. Langley, P., Simon, H., Bradshaw, G., Zytkow, J. (eds.): Scientific Discovery: Computational Explorations of the Creative Process. MIT Press, Cambridge (1987)

    Google Scholar 

  45. Lindsay, R., Buchanan, B., Feigenbaum, E., Lederberg, J. (eds.): Applications of Artificial Intelligence for Organic Chemistry: The DENDRAL Project. McGraw-Hill, New York (1980)

    Google Scholar 

  46. Love, N., Hinrichs, T., Genesereth, M.: General game playing: game description language specification. Technical Report. Stanford University, 4 April 2006

    Google Scholar 

  47. MacGregor, R., Bates, R.: The LOOM knowledge representation language. USC/ISI Technical Report ISI/RS-87-188 (1987)

    Google Scholar 

  48. Maturana, H., Varela, F.: The Tree of Knowledge: Biological Roots of Human Understanding. New Science Library/Shambhala Publications, Boston (1987)

    Google Scholar 

  49. McCorduck, P.: Aaron’s Code. W.H. Freeman, San Francisco (1991)

    Google Scholar 

  50. Molineaux, M., Aha, D.: TIELT: a testbed for gaming environments. In: Proceedings of 20th National Conference on AI, pp. 1690–1691 (2005)

    Google Scholar 

  51. Muñoz-Avila, H., Jaidee, U., Aha, D., Carter, E.: Goal directed autonomy with case-based reasoning. In: Proceedings of 18th International Conference on Case-Based Reasoning, pp. 228–241, Springer, Alessandria, Italy (2010)

    Google Scholar 

  52. Murdock, W., Goel, A.: Learning about constraints by reflection. In: Proceedings of the 14th Biennial Conference of Canadian AI Society, pp. 131–140. Springer, Berlin (2001)

    Google Scholar 

  53. Murdock, J., Goel, A.: Localizing planning with functional process models. In: Proceedings of 13th International Conference on Automated Planning and Scheduling (ICAPS-2003) (2003)

    Google Scholar 

  54. Murdock, J., Goel, A.: Meta-case-based reasoning: self-improvement through self-understanding. J. Exp. Theor. Artif. Intell. 20(1), 1 (2008)

    CrossRef  Google Scholar 

  55. Myers, K.: A procedural knowledge approach to task-level control. AIPS Proceedings. AAAI Press, Menlo Park (1996)

    Google Scholar 

  56. Nau, D., Au, T., Ilghami, O., Kuter, U., Murdock, J., Wu, D., Yaman, F.: SHOP2: an HTN planning system. J. Artif. Intell. Res. 20, 379–404 (2003)

    MATH  Google Scholar 

  57. Nelson, M.: Representing and reasoning about videogame mechanics for automatated design support. Ph.D. Dissertation, School of Interactive Computing, Georgia Institute of Technology; forthcoming (2014)

    Google Scholar 

  58. Nelson, M., Mateas, M.: An interactive game design assistant. In: Proceedings of 20th Intelligent User Interface Conference, pp. 90–98. Spain (2008)

    Google Scholar 

  59. Nelson, M., Mateas, M.: A requirements analysis for videogame design support tools. In: Proceedings of 4th International Conference on the Foundations of Digital Games (FDG) (2009)

    Google Scholar 

  60. Newell, A.: The knowledge level. Artif. Intell. 18, 87–127 (1982)

    CrossRef  Google Scholar 

  61. Ontanon, S., Mishra, K., Sugandh, N., Ram. A.: Case-based planning and execution for real-time strategy games. In: Proceedings of ICCBR-2007 (2007)

    Google Scholar 

  62. Plattner, H., Meinel, C., Leifer, L. (eds.): Design Thinking: Understand, Improve, Apply. Springer, Berlin (2011)

    Google Scholar 

  63. Rao, A.S., Georgeff, M.: BDI agents: from theory to practice. In: Proceedings of the 1st International Conference on Multi-Agent Systems (ICMAS-95), pp. 312–319, San Francisco, CA, June 1995

    Google Scholar 

  64. Rittel, H., Webber, M.: Dilemmas in a general theory of planning. Policy Sci. 4, 155–169 (1973)

    CrossRef  Google Scholar 

  65. Rugaber, S., Goel, A., Martie, L.: GAIA: a CAD environment for model-based adaptation of game-playing agents. Procedia Comput. Sci. 16, 29–38 (2013)

    CrossRef  Google Scholar 

  66. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Prentice-Hall, Upper Saddle River (2010)

    Google Scholar 

  67. Sawyer, K.: The Science of Human Innovation: Explaining Creativity, 2nd edn. Oxford University Press, Oxford (2011)

    Google Scholar 

  68. Schon, D.: The Reflective Practitioner: How Professional Think in Action. Basic Books, New York (1983)

    Google Scholar 

  69. Schon, D.: Designing as reflective conversation with the materials of a design situation. Knowl.-Based Syst. 5(1), 3–14 (1992)

    CrossRef  Google Scholar 

  70. Simon, H.: Sciences of the Artificial. MIT Press, Cambridge (1969)

    Google Scholar 

  71. Simon, H.: Sciences of the Artificial, 3rd edn. MIT Press, Cambridge (1996)

    Google Scholar 

  72. Sternberg, R. (ed.): Handbook of Creativity. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  73. Stroulia, E., Goel, A.: Functional representation and reasoning in reflective systems. J. Appl. Artif. Intell. 9(1), 101–124 (1995)

    CrossRef  Google Scholar 

  74. Stroulia, E., Goel, A.: Evaluating problem solving methods in evolutionary design: the autognostic experiments. Int. J. Hum.-Comput. Stud. 51(4), 825 (1999)

    CrossRef  Google Scholar 

  75. Ulam, P., Jones, J., Goel, A.: Combining model-based meta-reasoning and reinforcement learning for adapting game-playing agents. In: Proceedings of 5th Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-08), Stanford University, California, October 2008

    Google Scholar 

  76. Vattam, S., Goel, A., Rugaber, S.: Behavior patterns: bridging conceptual models and agent-based simulations in interactive learning environments. In: Proceedings of 11th IEEE International Conference on Advanced Learning Technologies, pp. 375–377. Athens, Georgia, USA, July 2011

    Google Scholar 

  77. Weisberg, D.: The Engineering Design Revolution. http://www.CadHistory.net (2008)

  78. Wiggins, G.: A preliminary framework for description, analysis and comparison of creative systems. Knowl.-Based Syst. 19, 449–458 (2006)

    CrossRef  Google Scholar 

  79. Winston, P.: Artificial Intelligence, 3rd edn. MIT Press, Cambridge (1993)

    Google Scholar 

  80. Young, R., Riedl, M., Branly, M., Martin, R., Saretto, C.: An architecture for integrating plan-based behavior generation with interactive game environments. J. Game Dev. 1(1), 51–70 (2004)

    Google Scholar 

Download references

Acknowledgments

We thank Lee Martie for his contributions to the construction of GAIA. We are grateful to the US National Science Foundation for its support for this research through a Science of Design Grant (#0613744) entitled “Teleological Reasoning in Adaptive Software Design”. An earlier version of this paper appears in Rugaber, Goel and Martie [65].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok K. Goel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Atlantis Press and the authors

About this chapter

Cite this chapter

Goel, A.K., Rugaber, S. (2015). Interactive Meta-Reasoning: Towards a CAD-Like Environment for Designing Game-Playing Agents. In: Besold, T., Schorlemmer, M., Smaill, A. (eds) Computational Creativity Research: Towards Creative Machines. Atlantis Thinking Machines, vol 7. Atlantis Press, Paris. https://doi.org/10.2991/978-94-6239-085-0_17

Download citation

  • DOI: https://doi.org/10.2991/978-94-6239-085-0_17

  • Published:

  • Publisher Name: Atlantis Press, Paris

  • Print ISBN: 978-94-6239-084-3

  • Online ISBN: 978-94-6239-085-0

  • eBook Packages: Computer ScienceComputer Science (R0)