Advertisement

Robust Fault Tolerant Control Framework Using Uncertain Takagi-Sugeno Fuzzy Models

Chapter
Part of the Atlantis Computational Intelligence Systems book series (ATLANTISCIS, volume 9)

Abstract

This chapter introduces the idea of the robust Takagi-Sugeno (TS) framework, that is obtained as a combination of known results from the robust control area and the TS control area. This framework can be used for fault tolerant control, with the advantage that, depending on the information available about the fault, the proposed framework can give rise to different Fault Tolerant Control (FTC) strategies: passive FTC, active FTC without controller reconfiguration and active FTC with controller reconfiguration. Finally, the proposed framework is illustrated by an application to a mobile robot.

Notes

Acknowledgments

This work has been funded by the Spanish MINECO through the project CYCYT SHERECS (ref. DPI2011-26243), by the European Commission through contract i-Sense (ref. FP7-ICT-2009-6-270428) and by UPC through the grant FPI-UPC E-01104 and by AGAUR through the contract FI-DGR 2013 (ref. 2013FIB00218).

References

  1. Apkarian, P., Gahinet, P., & Becker, G. (1995). Self-scheduled \({H}_\infty \) Control of Linear Parameter-Varying Systems: A Design Example. Automatica, 31(9), 1251–1261.CrossRefMATHMathSciNetGoogle Scholar
  2. Blanke, M., Kinnaert, M., Lunze, J., & Staroswiecki, M. (2006). Diagnosis and fault-tolerant control. Berlin Heidelberg: Springer.MATHGoogle Scholar
  3. Chen, J., Patton, R. J., & Chen, Z. (1998). An LMI Approach to fault-tolerant control of uncertain systems: IEEE Conference on Decision and Control (Vol. 1, pp. 175–180).Google Scholar
  4. Chilali, M., & Gahinet, P. (1996). \({H}_\infty \) design with pole placement constraints: An LMI approach. IEEE Trans. Autom. Control, 41(3), 358–367.CrossRefMATHMathSciNetGoogle Scholar
  5. Diao, J., & Passino, K. M. (2001). Stable fault-tolerant adaptive fuzzy/neural control for a turbine engine. IEEE Trans. Control Syst. Technol., 9(3), 494–509.CrossRefGoogle Scholar
  6. Dziekan, Ł., Witczak, M., & Korbicz, J. (2011). Active fault-tolerant control design for Takagi-Sugeno fuzzy systems. Bull. Pol. Acad. Sci, Tech. Sci., 59(1), 93–102.MATHGoogle Scholar
  7. He, L., & Duan, G.-R. (2006). Robust \(H_\infty \) control with pole placement constraints of T-S fuzzy systems. Adv. Mach. Learn. Cybern. Lect Notes Comput. Sci., 3930, 338–346.CrossRefGoogle Scholar
  8. Horn, R. A. & Johnson, C. R. (1990). Matrix analysis. Cambridge University Press, Cambridge. ISBN 978-0-521-38632-6.Google Scholar
  9. Ichtev, A., Hellendoom, J., Babuska, R. & Mollov, S. (2002). Fault-tolerant model-based predictive control using multiple takagi-sugeno fuzzy models: Proceedings of the IEEE International Conference on Fuzzy Systems (Vol. 1, pp. 346–351).Google Scholar
  10. Kluska, J. (2009). Analytical methods in fuzzy modeling and control. Berlin: Springer.CrossRefMATHGoogle Scholar
  11. Lopez-Toribio, C., & Patton, R. (1999). Takagi-Sugeno fuzzy fault-tolerant control for a non-linear system: Proceedings of the 38th IEEE Conference on Decision and Control (Vol. 5, pp. 4368–4373).Google Scholar
  12. Patton, R. J. (1997). Fault-tolerant control systems: The 1997 situation: Proceedings of the IFAC Symposium: SAFEPROCESS’97 (Vol. 2, pp. 1033–1055), Hull, UK.Google Scholar
  13. Sun, X. D., & Postlethwaite, I. (1998). Affine LPV modeling and its use in Gain-Scheduled Helicopter Control: UKACC International Conference on Control (pp. 1504–1509).Google Scholar
  14. Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern., 15(1), 116–132.CrossRefMATHGoogle Scholar
  15. Tanaka, K., Hori, T., & Wang, H. (2001). A fuzzy lyapunov approach to fuzzy control system design: Proceedings of the American Control Conference, 2001 (Vol. 6, pp. 4790–4795). doi: 10.1109/ACC.2001.945740.
  16. Zhang, Q., & Wang, X. H. (2008). Binary and continuous ant colony algorithms research for solving continuous global optimization problem: Proceedings of the 1st International Conference on Intelligent Networks and Intelligent Systems, ICINIS 2008 (pp. 1–4). doi: 10.1109/ICINIS.2008.12.

Copyright information

© Atlantis Press and the authors 2014

Authors and Affiliations

  1. 1.Advanced Control Systems GroupUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations