Skip to main content

Variational Sequences

  • Chapter
  • First Online:
Introduction to Global Variational Geometry

Part of the book series: Atlantis Studies in Variational Geometry ((ASVG,volume 1))

  • 1624 Accesses

Abstract

We introduced in Chap. 4 the Euler–Lagrange mapping of the calculus of variations as an \( {\mathbf{R}} \)-linear mapping, assigning to a Lagrangian \( \lambda \), defined on the r-jet prolongation \( J^{r} Y \) of a fibered manifold Y, its Euler–Lagrange form \( E_{\lambda } \). Local properties of this mapping are determined by the components of the Euler–Lagrange form, the Euler–Lagrange expressions of the Lagrangian \( \lambda \). In this chapter, we construct an exact sequence of Abelian sheaves, the variational sequence, such that one of its sheaf morphisms coincides with the Euler–Lagrange mapping. Existence of the sequence provides a possibility to study basic global characteristics of the Euler–Lagrange mapping in terms of the cohomology groups of the corresponding complex of global sections and the underlying manifold Y. In particular, for variational purposes, the structure of the kernel and the image of the Euler–Lagrange mapping \( \lambda \to E_{\lambda } \) is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I. Anderson, The variational bicomplex, preprint, Utah State University, 1989, 289 pp.

    Google Scholar 

  2. I. Anderson, T. Duchamp, On the existence of global variational principles, Am. J. Math. 102 (1980) 781-867

    Google Scholar 

  3. J. Brajercik, D. Krupka, Cohomology and local variational principles, Proc. of the XVth International Workshop on Geometry and Physics (Puerto de la Cruz, Tenerife, Canary Islands, September 11-16, 2006, Publ. de la RSME, (2007) 119-124

    Google Scholar 

  4. R.L. Bryant, S.S. Chern, R.B. Gardner, H.J. Goldschmidt, P.A. Griffiths, Exterior Differential Systems, Mathematical Sciences Research Institute Publications 18, Springer-Verlag, New York, 1991

    Google Scholar 

  5. R. Bott, L.V. Tu, Differential Forms and Algebraic Topology, Springer-Verlag, New York, 1982

    Google Scholar 

  6. P. Dedecker, W. Tulczyjew, Spectral sequences and the inverse problem of the calculus of variations, Internat. Colloq., Aix-en-Provence, 1979; in: Differential-Geometric Methods in Mathematical Physics, Lecture Notes in Math. 826 Springer, Berlin, 1980, 498-503

    Google Scholar 

  7. M. Francaviglia, M. Palese, E. Winterroth, Cohomological obstructions in locally variational field theory, Journal of Physics: Conference Series 474 (2013) 012017, doi:10.1088/1742-6596/474/1/012017

  8. D.R. Grigore, Lagrangian formalism on Grassmann manifolds, in: D. Krupka, D. Saunders, Eds., Handbook of Global Analysis, Elsevier, 2008, 327-373

    Google Scholar 

  9. D. Krupka, The Vainberg-Tonti Lagrangian and the Euler–Lagrange mapping, in: F. Cantrijn, B. Langerock, Eds., Differential Geometric Methods in Mechanics and Field Theory, Volume in Honor of W. Sarlet, Gent, Academia Press, 2007, 81-90

    Google Scholar 

  10. D. Krupka, Variational principles for energy-momentum tensors, Rep. Math. Phys. 49 (2002) 259-268

    Google Scholar 

  11. D. Krupka, Variational sequences in mechanics, Calc. Var. 5 (1997) 557-583

    Google Scholar 

  12. D. Krupka, Variational sequences on finite-order jet spaces, Proc. Conf., World Scientific, 1990, 236-254

    Google Scholar 

  13. M. Krbek, J. Musilová, Representation of the variational sequence by differential forms, Acta Appl. Math. 88 (2005) 177-199

    Google Scholar 

  14. D. Krupka, D. Saunders, Eds., Handbook of Global Analysis, Elsevier, 2008

    Google Scholar 

  15. D. Krupka, J. Sedenková, Variational sequences and Lepage forms, in: Diff. Geom. Appl., Proc. Conf., Charles University, Prague, Czech Republic, 2005, 617-627

    Google Scholar 

  16. J.M. Lee, Introduction to Smooth Manifolds, Graduate Texts in Math. 218, Springer, 2006

    Google Scholar 

  17. P.J. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag, New York, 1998

    Google Scholar 

  18. J.F. Pommaret, Spencer sequence and variational sequence, Acta Appl. Math. 41 (1995) 285-296

    Google Scholar 

  19. D.J. Saunders, The Geometry of Jet Bundles, Cambridge Univ. Press, 1989

    Google Scholar 

  20. F. Takens, A global version of the inverse problem of the calculus of variations, J. Differential Geometry 14 (1979) 543-562

    Google Scholar 

  21. Z. Urban, D. Krupka, Variational sequences in mechanics on Grassmann fibrations, Acta Appl. Math. 112 (2010) 225-249

    Google Scholar 

  22. A.M. Vinogradov, I.S. Krasilschik, V.V. Lychagin, Introduction to the Geometry of Non-linear Differential Equations (in Russian) Nauka, Moscow, 1986

    Google Scholar 

  23. R. Vitolo, Finite order Lagrangian bicomplexes, Math. Soc. Cambridge Phil. Soc. 125 (1999) 321-333

    Google Scholar 

  24. J. Volna, Z. Urban, The interior Euler-Lagrange operator in field theory, Math. Slovaca, to appear

    Google Scholar 

  25. F.W. Warner, Foundations of Differentiable Manifolds and Lie Groups, Springer-Verlag, New York, 1983

    Google Scholar 

  26. D. Zenkov (Ed.), The Inverse Problem of the Calculus of Variations, Local and Global Theory and Applications, Atlantis Series in Global Variational Geometry, to appear

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demeter Krupka .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Atlantis Press and the authors

About this chapter

Cite this chapter

Krupka, D. (2015). Variational Sequences. In: Introduction to Global Variational Geometry. Atlantis Studies in Variational Geometry, vol 1. Atlantis Press, Paris. https://doi.org/10.2991/978-94-6239-073-7_8

Download citation

Publish with us

Policies and ethics