Newton–Krylov Power Flow Solver

Chapter
Part of the Atlantis Studies in Scientific Computing in Electromagnetics book series (ASSCE, volume 1)

Abstract

Newton power flow solvers traditionally use a direct method to solve the linear systems. For large linear systems of equations with a sparse coefficient matrix, iterative linear solvers are generally more efficient than direct solvers. Using a Krylov method to solve the Jacobian systems in the Newton-Raphson method, leads to a Newton-Krylov method. In this chapter, computational aspects of Newton-Krylov power flow solvers are discussed. It is shown that direct solvers, and other methods using the LU factorisation, scale very badly in the problem size. The alternatives proposed in this chapter are faster for all tested problems and have near linear scaling, thus being much faster for large power flow problems. The largest test problem, with a million buses, takes over an hour to solve using a direct solver, while a Newton-Krylov solver can solve it in less than 30 seconds. That is 120 times faster.

References

  1. 1.
    Tinney, W.F., Hart, C.E.: Power flow solution by Newton’s method. IEEE Trans. Power Apparatus and Syst. PAS 86(11), 1449–1449 (1967)Google Scholar
  2. 2.
    Tinney, W.F., Walker, J.W.: Direct solutions of sparse network equations by optimally ordered triangular factorization. Proc. IEEE 55(11), 1801–1809 (1967)CrossRefGoogle Scholar
  3. 3.
    Semlyen, A.: Fundamental concepts of a Krylov subspace power flow methodology. IEEE Trans. Power Syst. 11(3), 1528–1537 (1996)CrossRefGoogle Scholar
  4. 4.
    Pai, M.A., Dag, H.: Iterative solver techniques in large scale power system computation. In: Proceedings of the 36th Conference on Decision & Control, pp. 3861–3866 (1997)Google Scholar
  5. 5.
    Flueck, A.J., Chiang, H.D.: Solving the nonlinear power flow equations with an inexact Newton method using GMRES. IEEE Trans. Power Syst. 13(2), 267–273 (1998)CrossRefGoogle Scholar
  6. 6.
    de León, F., Semlyen, A.: Iterative solvers in the Newton power flow problem: preconditioners, inexact solutions and partial Jacobian updates. IEE Proc. Gener. Transm. Distrib 149(4), 479–484 (2002)CrossRefGoogle Scholar
  7. 7.
    Chaniotis, D., Pai, M.A.: A new preconditioning technique for the GMRES algorithm in power flow and \(P-V\) curve calculations. Electr. Power Energy Syst. 25, 239–245 (2003)CrossRefGoogle Scholar
  8. 8.
    Zhang, Y.S., Chiang, H.D.: Fast Newton-FGMRES solver for large-scale power flow study. IEEE Trans. Power Syst. 25(2), 769–776 (2010)CrossRefGoogle Scholar
  9. 9.
    Idema, R., Lahaye, D.J.P., Vuik, C., van der Sluis, L.: Scalable Newton-Krylov solver for very large power flow problems. IEEE Trans. Power Syst. 27(1), 390–396 (2012)CrossRefGoogle Scholar
  10. 10.
    Idema, R., Papaefthymiou, G., Lahaye, D.J.P., Vuik, C., van der Sluis, L.: Towards faster solution of large power flow problems. IEEE Trans. Power Syst. 28(4), 4918–4925 (2013)CrossRefGoogle Scholar
  11. 11.
    Saad, Y.: A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Comput. 14(2), 461–469 (1993)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Trottenberg, U., Oosterlee, C.W., Schüller, A.: Multigrid. Academic Press, New York (2001)Google Scholar
  13. 13.
    Amestoy, P.R., Davis, T.A., Duff, I.S.: An approximate minimum degree ordering algorithm. SIAM J. Matrix Anal. Appl. 17(4), 886–905 (1996)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Chang, S.K., Brandwajn, V.: Adjusted solutions in fast decoupled load flow. IEEE Trans. Power Syst. 3(2), 726–733 (1988)CrossRefGoogle Scholar
  15. 15.
    Peterson, N.M., Meyer, W.S.: Automatic adjustment of transformer and phase-shifter taps in the Newton power flow. IEEE Trans. Power Apparatus Syst. PAS-90(1), 103–108 (1971)Google Scholar
  16. 16.
    Mamandur, K.R.C., Berg, G.J.: Automatic adjustment of generator voltages in Newton-Raphson method of power flow solutions. IEEE Trans. Power Apparatus Syst. PAS-101(6), 1400–1409 (1982)Google Scholar
  17. 17.
    Dembo, R.S., Steihaug, T.: Truncated-Newton algorithms for large-scale unconstrained optimization. Math. Program. 26, 190–212 (1983)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Eisenstat, S.C., Walker, H.F.: Choosing the forcing terms in an inexact Newton method. SIAM J. Sci. Comput. 17(1), 16–32 (1996)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Atlantis Press and the authors 2014

Authors and Affiliations

  1. 1.Numerical AnalysisDelft University of TechnologyDelftThe Netherlands

Personalised recommendations