Skip to main content

Solving Nonlinear Systems of Equations

  • Chapter
  • First Online:
Computational Methods in Power System Analysis

Part of the book series: Atlantis Studies in Scientific Computing in Electromagnetics ((ASSCE,volume 1))

  • 2041 Accesses

Abstract

It is not possible to solve a general nonlinear equation analytically, let alone a general nonlinear system of equations. However, there are iterative methods to find a solution for such systems. The Newton-Raphson algorithm is the standard method for solving nonlinear systems of equations. Most, if not all, other well-performing methods can be derived from the Newton-Raphson algorithm. In this chapter the Newton-Raphson method is treated, as well as some common variations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 149.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dembo, R.S., Eisenstat, S.C., Steihaug, T.: Inexact Newton methods. SIAM J. Numer. Anal. 19(2), 400–408 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  2. Dembo, R.S., Steihaug, T.: Truncated-Newton algorithms for large-scale unconstrained optimization. Math. Program. 26, 190–212 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  3. Eisenstat, S.C., Walker, H.F.: Choosing the forcing terms in an inexact Newton method. SIAM J. Sci. Comput. 17(1), 16–32 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Knoll, D.A., Keyes, D.E.: Jacobian-free Newton-Krylov methods: a survey of approaches and applications. J. Comput. Phys. 193, 357–397 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Armijo, L.: Minimization of functions having lipschitz continuous irst partial derivatives. Pacific J. Math. 16(1), 1–3 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dennis Jr, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice Hall, New Jersey (1983)

    MATH  Google Scholar 

  7. Brown, P.N., Saad, Y.: Hybrid Krylov methods for nonlinear systems of equations. SIAM J. Sci. Stat. Comput. 11(3), 450–481 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  8. Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-Region Methods. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reijer Idema .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Atlantis Press and the authors

About this chapter

Cite this chapter

Idema, R., Lahaye, D.J.P. (2014). Solving Nonlinear Systems of Equations. In: Computational Methods in Power System Analysis. Atlantis Studies in Scientific Computing in Electromagnetics, vol 1. Atlantis Press, Paris. https://doi.org/10.2991/978-94-6239-064-5_4

Download citation

  • DOI: https://doi.org/10.2991/978-94-6239-064-5_4

  • Published:

  • Publisher Name: Atlantis Press, Paris

  • Print ISBN: 978-94-6239-063-8

  • Online ISBN: 978-94-6239-064-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics