Evolution and Ecological Change During the New Zealand Quaternary

  • Jamie WoodEmail author
  • Janet Wilmshurst
  • Rewi Newnham
  • Matt McGlone
Part of the Atlantis Advances in Quaternary Science book series (AAQS, volume 3)


The biotic- and ecological-changes of the New Zealand Quaternary unfolded against a background of mountain-building, marine transgression and volcanism—a legacy of the mid-Tertiary that continued unabated through the Plio-Pleistocene. In the stable, warm northern regions much of the old Tertiary biota survives; in the mountainous, glaciated south, species-rich clades have radiated into the mountains and dry, lee-side habitats of the Quaternary. During cold glacial periods, forest was sparse in the southern two-thirds of the archipelago, but nowhere was it eliminated. Forest blanketed all regions below treeline during interglacials. The repeated climate fluctuations of the Quaternary left a strong imprint on biotic distributions. In southern districts, we infer widespread glacial survival of nearly the entire biota with rapid local spread during interglacial warmings, and only limited invasion from more distant areas. However, not all species distributions can be attributed to recent Quaternary glacial cycles. Molecular studies of numerous invertebrate, vertebrate and plant groups have shown that biotic patterns may just as easily reflect mountain building, Pliocene island formation and reabsorption, and long-distance trans-oceanic dispersal. Human settlement in the 13th century destroyed more than one third of the lowland forests and eliminated a large proportion of the terrestrial bird fauna including the large herbivorous moa. The current biota is still adjusting to the consequences of increased fire in an archipelago where fire was not naturally common, loss of avian browsers and pollinators, and introduction of invasive species.


Late Miocene Last Glacial Maximum Tree Fern Mountain Building Last Glacial Maximum Climate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Rich Leschen for his very helpful comments on the text, and George Perry for providing Fig. 7.13.


  1. Alloway BV, Stewart RB, Neall VE, Vucetich CG (1992) Climate of the Last Glaciation in New Zealand, based on aerosolic quartz influx in an andesitic terrain Quat Res 38:170-179Google Scholar
  2. Alloway BV, Lowe DJ, Barrell DJA, et al. (2007) Towards a climate event stratigraphy for New Zealand over the past 30 000 years (NZ-INTIMATE project) J Quat Sci 22:9-35 doi: 10.1002/jqs.1079
  3. Anderson RF, Ali S, Bradtmiller LI, et al. (2009) Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2 Science 323:1443-1448Google Scholar
  4. Anderson SH, Kelly D, Ladley JJ, et al. (2011) Cascading effects of bird functional extinction reduce pollination and plant density Science 331:1068-1071 doi: 10.1126/science.1199092
  5. Atkinson IAE, Greenwood RM (1989) Relationships between moas and plants N Z J Ecol 12:67-96Google Scholar
  6. Augustinus P, D’Costa D, Deng YB, et al. (2011) A multi-proxy record of changing environments from ca. 30 000 to 9000 cal. a BP: Onepoto maar palaeolake, Auckland, New Zealand J Quat Sci 26:389-401 doi: 10.1002/jqs.1463
  7. Bannister JM, Conran JG, Lee DE (2012) Lauraceae from rainforest surrounding an early Miocene maar lake, Otago, southern New Zealand Rev Palaeobot Palynol 178:13-34 doi: 10.1016/j.revpalbo.2012.03.015
  8. Beale CM, Lennon JL, Gimona A (2008) Opening the climate envelope reveals no macroscale associations with climate in European birds Proc Natl Acad Sci USA 105:14908–14912Google Scholar
  9. Bee JN, Kunstler G, Coomes DA (2007) Resistance and resilience of New Zealand tree species to browsing J Ecol 95:1014-1026 doi: 10.1111/j.1365-2745.2007.01261.x
  10. Bennett KD, Provan J (2008) What do we mean by ‘refugia? Quat Sci Rev 27:2449-2455 doi: 10.1016/j.quascirev.2008.08.019
  11. Bond WJ, Lee WG, Craine JM (2004) Plant structural defences against browsing birds: a legacy of New Zealand’s extinct moas Oikos 104:500-508 doi: 10.1111/j.0030-1299.2004.12720.x
  12. Boucher-Lalonde V, Morin A, Currie D (2012) How are tree species distributed in climatic space? A simple and general pattern Glob Ecol Biogeogr 21:1157–1166Google Scholar
  13. Buckley TR, Leschen RAB (2013) Comparative phylogenetic analysis reveals long-term isolation of lineages on the Three Kings Islands, New Zealand Biol J Linn Soc 108:361-377 doi: 10.1111/j.1095-8312.2012.02009.x
  14. Buckley TR, Simon C, Chambers GK (2001) Phylogeography of the New Zealand cicada Maoricicada campbelli based on mitochondrial DNA sequences: Ancient clades associated with cenozoic environmental change Evolution 55:1395-1407Google Scholar
  15. Buckley TR, Marske KA, Attanayake D (2009) Identifying glacial refugia in a geographic parthenogen using palaeoclimate modelling and phylogeography: the New Zealand stick insect Argosarchus horridus (White) Mol Ecol 18:4650-4663 doi: 10.1111/j.1365-294X.2009.04396.x
  16. Buckley TR, Marske K, Attanayake D (2010) Phylogeography and ecological niche modelling of the New Zealand stick insect Clitarchus hookeri (White) support survival in multiple coastal refugia J Biogeogr 37:682-695 doi: 10.1111/j.1365-2699.2009.02239.x
  17. Buckley TR, Krosch M, Leschen RAB (2015) Evolution of New Zealand insects: summary and prospectus for future research Austral Entomol 54:1-27 doi: 10.1111/aen.12116
  18. Burge PI, Shulmeister J (2007) Re-envisioning the structure of last glacial vegetation in New Zealand using beetle fossils Quat Res 68:121-132 doi: 10.1016/j.yqres.2007.03.009
  19. Burrows C (1965) Some discontinuous distributions of plants within New Zealand and their ecological significance. 11: Disjunctions between Otago-Southland and Nelson-Marlborough and related distribution patterns Tuatara 13: 9 29Google Scholar
  20. Bussell MR, Mildenhall DC (1990) Extinct palynomorph from Middle and Late Pleistocene terrestrial sediments, south Wanganui basin, New Zealand N Z J Geol Geophys 33:439-447Google Scholar
  21. Callard SL, Newnham RM, Vandergoes MJ, et al. (2013) The vegetation and climate during the Last Glacial Cold Period, northern South Island, New Zealand Quat Sci Rev 74:230-244 doi: 10.1016/j.quascirev.2012.12.007
  22. Chapple DG, Ritchie PA, Daugherty CH (2009) Origin, diversification, and systematics of the New Zealand skink fauna (Reptilia: Scincidae) Mol Phylogen Evol 52:470-487 doi: 10.1016/j.ympev.2009.03.021
  23. Christian HJ, Blakeslee RJ, Boccippio DJ, Boeck WL, Buechler DE, Driscoll KT, Goodman SJ, Hall JM, Koshak WJ, Mach DM, Stewart MF (2003) Global frequency and distribution of lightning as observed from space by the Optical Transient Detector J Geophys Res 108:ACL4.1-ACL4.15Google Scholar
  24. Clayton-Greene KA (1977) Structure and origin of Libocedrus bidwillii stands in Waikato district, New Zealalnd N Z J Bot 15:19-28Google Scholar
  25. Climo FM (1975) Biogeography and ecology in New Zealand. The land snail fauna Monographiae Biologicae 27:459-492Google Scholar
  26. Cockayne L (1928) The Vegetation of New Zealand. 2nd Rev edn. Engelmann, LeipzigGoogle Scholar
  27. Conran JG et al. (2014) Subtropical rainforest vegetation from Cosy Dell, Southland: plant fossil evidence for Late Oligocene terrestrial ecosystems N Z J Geol Geophys 57:236-252 doi: 10.1080/00288306.2014.888357
  28. Cooke PJ, Nelson CS, Crundwell MP (2008) Miocene isotope zones, paleotemperatures, and carbon maxima events at intermediate water-depth, Site 593, Southwest Pacific N Z J Geol Geophys 51:1-22Google Scholar
  29. Coomes DA, Allen RB, Bentley WA, et al. (2005) The hare, the tortoise and the crocodile: the ecology of angiosperm dominance, conifer persistence and fern filtering J Ecol 93:918-935Google Scholar
  30. Craw D, Druzbicka J, Rufaut C, et al. (2013) Geological controls on palaeo-environmental change in a tectonic rain shadow, southern New Zealand Palaeogeogr, Palaeoclimatol, Palaeoecol 370:103-116 doi:
  31. Crisp MD, Arroyo MTK, Cook LG, et al. (2009) Phylogenetic biome conservatism on a global scale Nature 458:754-756Google Scholar
  32. D’Costa D, Boswijk G, Ogden J (2009) Holocene vegetation and environmental reconstructions from swamp deposits in the Dargaville region of the North Island, New Zealand: implications for the history of kauri (Agathis australis) Holocene 19:559-574 doi: 10.1177/0959683609104026
  33. Diamond JM (1974) Colonization of exploded volcanic islands by birds - supertramp strategy Science 184:803-806 doi: 10.1126/science.184.4138.803
  34. Dormann CF, Schymanski SJ, Cabral J, Chuine I, Graham C, Hartig F, Kearney M, Morin X, Römermann C, Schröder B, Singer A (2012) Correlation and process in species distribution models: bridging a dichotomy J Biogeog 39:2119-2131Google Scholar
  35. Duncan RP, Cassey P, Blackburn TM (2009) Do climate envelope models transfer? A manipulative test using dung beetle introductions Proc R Soc B Biol Sci 276:1449-1457 doi: 10.1098/rspb.2008.1801
  36. Eden DN, Hammond AP (2003) Dust accumulation in the New Zealand region since the last glacial maximum Quat Sci Rev 22:2037-2052 doi: 10.1016/s0277-3791(03)00168-9
  37. Eden DN, Palmer AS, Cronin SJ, et al. (2001) Dating the culmination of river aggradation at the end of the last glaciation using distal tephra compositions, eastern North Island, New Zealand Geomorphology 38:133-151 doi:
  38. Elith J, Leathwick JR (2009) Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. In: Annual Review of Ecology Evolution and Systematics, vol 40. Annual Review of Ecology Evolution and Systematics. pp 677-697. doi: 10.1146/annurev.ecolsys.110308.120159
  39. Elliot MB (1998) Late Quaternary pollen records of vegetation and climate change from Kaitaia Bog, far northern New Zealand Rev Palaeobot Palynol 99:189-202Google Scholar
  40. Flannery T (1994) The Future Eaters. Reed Books, MelbourneGoogle Scholar
  41. Forsyth DM, Wilmshurst JM, Allen RB, et al. (2010) Impacts of introduced deer and extinct moa on New Zealand ecosystems N Z J Ecol 34:48-65Google Scholar
  42. Froggatt PC, Rogers GM (1990) Tephrostratigraphy of high altitude peat bogs along the axial ranges, North Island, New Zealand N Z J Geol Geophys 33:111-124Google Scholar
  43. Gardner RC, De Lange PJ, Keeling DJ, et al. (2004) A late Quaternary phylogeography for Metrosideros (Myrtaceae) in New Zealand inferred from chloroplast DNA haplotypes Biol J Linn Soc 83:399-412Google Scholar
  44. Gavin DG et al. (2014) Climate refugia: joint inference from fossil records, species distribution models and phylogeography New Phytol 204:37-54 doi: 10.1111/nph.12929
  45. Gerhart LM, Ward JK (2010) Plant responses to low CO2 of the past New Phytol 188:674-695 doi: 10.1111/j.1469-8137.2010.03441.x
  46. Gersonde R, Crosta X, Abelmann A, et al. (2005) Sea-surface temperature and sea ice distribution of the Southern Ocean at the EPILOG Last Glacial Maximum—a circum-Antarctic view based on siliceous microfossil records Quat Sci Rev 24:869-896 doi:
  47. Gibbard PL, Head MJ, Walker MJC, The Subcommission on Quaternary Stratigraphy (2010) Formal ratification of the Quaternary System/Period and the Pleistocene Series/Epoch with a base at 2.58 Ma J Quat Sci 25:96–102Google Scholar
  48. Gillespie RG (2016) Island time and the interplay between ecology and evolution in species diversification Evolutionary Applications 9:53-73 doi: 10.1111/eva.12302
  49. Goldberg J, Trewick SA, Paterson AM (2008) Evolution of New Zealand’s terrestrial fauna: a review of molecular evidence Philos Trans R Soc B Sci 363:3319-3334 doi: 10.1098/rstb.2008.0114
  50. Golledge NR, Mackintosh AN, Anderson BM, Buckley KM, Doughty AM, Barrell DJA, Denton GH, Vandergoes MJ, Anderson BG, Schaefer JM (2012) Last Glacial Maximum climate in New Zealand inferred from a modelled Southern Alps icefield Quat Sci Rev 46:30-45Google Scholar
  51. Haase M, Marshall B, Hogg I (2007) Disentangling causes of disjunction on the South Island of New Zealand: the Alpine fault hypothesis of vicariance revisited Biol J Linn Soc 91:361-374 doi: 10.1111/j.1095-8312.2007.00801.x
  52. Hall GMJ, McGlone MS (2006) Potential forest cover of New Zealand as determined by an ecosystem process model N Z J Bot 44:211-232Google Scholar
  53. Hawke DJ, Holdaway RN (2009) Nutrient sources for forest birds captured within an undisturbed petrel colony, and management implications Emu 109:163-169 doi: 10.1071/mu08035
  54. Heenan PB, McGlone MS (2013) Evolution of New Zealand alpine and open-habitat plant species during the late Cenozoic N Z J Ecol 37:105-113Google Scholar
  55. Heusser LE, Vandegeer G (1994) Direct correlation of terrestrial and marine paleoclimatic records from 4 glacial-interglacial cycles - DSDP site 594, southwest Pacific Quat Sci Rev 13:273-282 doi: 10.1016/0277-3791(94)90030-2
  56. Ho SL, Mollenhouer G, Lamy F, et al. (2012) Sea surface temperature variability in the Pacific sector of the Southern Ocean over the past 700 kyr Paleoceanography 27 doi: 10.1029/2012pa002317
  57. Hornibrook NdB (1992) New Zealand Cenozoic marine paleoclimates: a review based on the distribution of some shallow water and terrestrial biota Pacific Neogene: environment, evolution, and events University of Tokyo Press, Tokyo:83-106Google Scholar
  58. Horrocks M, Ogden J (1998) Fine resolution palynology of Erua Swamp, Tongaririo, New Zealand, since the Taupo Tephra eruption of c.1718 BP N Z J Bot 36:285-293Google Scholar
  59. Horrocks M, Ogden J (2000) Evidence for Lateglacial and Holocene tree-line fluctuations from pollen diagrams from the Subalpine zone on Mt Hauhungatahi, Tongariro National Park, New Zealand Holocene 10:61-73 doi: 10.1191/095968300667751080
  60. Horrocks M, Irwin GJ, McGlone MS, et al. (2003) Pollen, phytoliths and diatoms in prehistoric coprolites from Kohika, Bay of Plenty, New Zealand J Archaeol Sci 30:13-20 doi: 10.1006/jasc.2001.0714
  61. Hughes CE, Atchison GW (2015) The ubiquity of alpine plant radiations: from the Andes to the Hengduan Mountains New Phytol 207:275-282 doi: 10.1111/nph.13230
  62. Hulme PE (2005) Adapting to climate change: is there scope for ecological management in the face of a global threat? J Appl Ecol 42:784–794Google Scholar
  63. Humphreys AM, Pirie MD, Linder HP (2010) A plastid tree can bring order to the chaotic generic taxonomy of Rytidosperma Steud. s.l. (Poaceae) Mol Phylogen Evol 55:911-928 doi: 10.1016/j.ympev.2009.12.010
  64. Jara IA, Newnham RM, Vandergoes M, et al. (2015) Pollen-climate reconstruction from northern South Island, New Zealand (41 degrees S), reveals varying high- and low-latitude teleconnections over the last 16 000 years J Quat Sci 30:817-829 doi: 10.1002/jqs.2818
  65. Keppel G, Van Niel KP, Wardell-Johnson GW, Yates CJ, Byrne M, Mucina L, Schut AGT, Hopper SD, Franklin SE (2012) Refugia: identifying and understanding safe havens for biodiversity under climate change Global Ecol Biogeog 21:393-404Google Scholar
  66. Kgope BS, Bond WJ, Midgley GF (2010) Growth responses of African savanna trees implicate atmospheric CO2 as a driver of past and current changes in savanna tree cover Austral Ecol 35:451-463 doi: 10.1111/j.1442-9993.2009.02046.x
  67. King WM, Wilson JB (2006) Differentiation between native and exotic plant species from a dry grassland: fundamental responses to resource availability, and growth rates Austral Ecol 31:996-1004 doi: 10.1111/j.1442-9993.2006.01693.x
  68. Kooyman RM, Wilf P, Barreda VD, et al. (2014) Paleo-Antarctic rainforest into the modern Old World tropics: the rich past and threatened future of the “southern wet forest survivors” Am J Bot 101:2121-2135 doi: 10.3732/ajb.1400340
  69. Korner C, Paulsen J (2004) A world-wide study of high altitude treeline temperatures J Biogeogr 31:713-732Google Scholar
  70. Leathwick JR (1995) Climatic relationships of some New Zealand forest tree species J Veg Sci 6:237-248Google Scholar
  71. Leathwick JR (2001) New Zealand’s potential forest pattern as predicted from current species-environment relationships N Z J Bot 39:447-464Google Scholar
  72. Leathwick JR, Whitehead D (2001) Soil and atmospheric water deficits and the distribution of New Zealand’s indigenous tree species Funct Ecol 15:233-242Google Scholar
  73. Ledgard N (2001) The spread of lodgepole pine (Pinus contorta, Dougl.) in New Zealand For Ecol Manag 141:43-57Google Scholar
  74. Lee DE, Lee WG, Mortimer N (2001) Where and why have all the flowers gone? Depletion and turnover in the New Zealand Cenozoic angiosperm flora in relation to palaeogeography and climate Aust J Bot 49:341-356 doi: 10.1071/bt00031
  75. Lee WG, Wood JR, Rogers GM (2010) Legacy of avian-dominated plant-herbivore systems in New Zealand N Z J Ecol 34:28-47Google Scholar
  76. Lee DE, Conran JG, Lindqvist JK, et al. (2012) New Zealand Eocene, Oligocene and Miocene macrofossil and pollen records and modern plant distributions in the Southern Hemisphere Bot Rev 78:235-260 doi: 10.1007/s12229-012-9102-7
  77. Lees CM, Neall VE (1993) Vegetation response to volcanic eruptions on Egmont volcano, New Zealand, during the last 1500 years J R Soc N Z 23:91-127Google Scholar
  78. Lees CM, Neall VE, Palmer AS (1998) Forest persistence at coastal Waikato, 24000 years BP to present J R Soc N Z 28:55-81Google Scholar
  79. Leschen RAB, Buckley TR (2015) Revision and phylogeny of Syrphetodes (Coleoptera: Ulodidae): implications for biogeography, alpinization and conservation Syst Entomol 40:143-168 doi: 10.1111/syen.12094
  80. Leschen RAB, Buckley TR, Harman HM, et al. (2008) Determining the origin and age of the Westland beech (Nothofagus) gap, New Zealand, using fungus beetle genetics Mol Ecol 17:1256-1276Google Scholar
  81. Leslie DM, McGlone MS (1973) Relict periglacial landforms at Clarks Junction, Otago N Z J Geol Geophys 16:575-583 doi: 10.1080/00288306.1973.10431380
  82. Lockhart PJ, McLenachan PA, Harell D, et al. (2001) Phylogeny, radiation, and transoceanic dispersal of New Zealand alpine buttercups: Molecular evidence under split decomposition Ann Mo Bot Gard 88:458-477 doi: 10.2307/3298586
  83. Macphail MK, McQueen DR (1983) The value of New Zealand pollen and spores as indicators of Cenozoic vegetation and climates Tuatara 26:37-56Google Scholar
  84. Marden M, Mazengarb C, Palmer A, et al. (2008) Last glacial aggradation and postglacial sediment production from the non-glacial Waipaoa and Waimata catchments, Hikurangi Margin, North Island, New Zealand Geomorphology 99:404-419 doi: 10.1016/j.geomorph.2007.12.003
  85. Mark AF (2012) Above the treeline: a nature guide to alpine New Zealand. Craig Potton Publishing, NelsonGoogle Scholar
  86. Marra MJ (2003) Last interglacial beetle fauna from new Zealand Quat Res 59:122-131 doi: 10.1016/s0033-5894(02)00022-4
  87. Marra M (2013) New Zealand Pleistocene Beetles. Elsevier, AmsterdamGoogle Scholar
  88. Marra M, Leschen RAB (2004) Late Quaternary paleoecology from fossil beetle communities in the Awatere Valley, South Island, New zealand J Biogeogr 31:571-586Google Scholar
  89. Marra MJ, Leschen RAB (2011) Persistence of New Zealand Quaternary beetles N Z J Geol Geophys 54:403-413 doi: 10.1080/00288306.2011.599399
  90. Marra MJ, Thackray GD (2010) Glacial forest refugium in Howard Valley, South Island, New Zealand J Quat Sci 25:309-319 doi: 10.1002/jqs.1339
  91. Marra MJ, Shulmeister J, Smith EGC (2006) Reconstructing temperature during the Last Glacial Maximum from Lyndon Stream, South Island, New Zealand using beetle fossils and maximum likelihood envelopes Quat Sci Rev 25:1841-1849 doi: 10.1016/j.quascirev.2006.01.016
  92. Marshall DC, Hill KBR, Fontaine KM, Buckley TR, Simon C (2009) Glacial refugia in a maritime temperate climate: Cicada (Kikihia subalpina) mtDNA phylogeography in New Zealand Mol Ecol 18:1995-2009 doi: 10.1111/j.1365-294X.2009.04155.x
  93. Marshall DC, Hill KBR, Marske KA, et al. (2012) Limited, episodic diversification and contrasting phylogeography in a New Zealand cicada radiation BMC Evol Biol 12 doi: 10.1186/1471-2148-12-177
  94. Marske KA, Leschen RAB, Buckley TR (2011) Reconciling phylogeography and ecological niche models for New Zealand beetles: Looking beyond glacial refugia Mol Phylogen Evol 59:89-102 doi:
  95. Martin TJ, Ogden J (2005) Experimental studies on the drought, waterlogging, and frost tolerance of Ascarina lucida Hook. f (Chloranthaceae) seedlings N Z J Ecol 29:53-59Google Scholar
  96. McCulloch GA, Wallis GP, Waters JM (2010) Onset of glaciation drove simulanteous vicariant isolation of alpine insects in New Zealand Evolution 64:2033-2043 doi: 10.1111/j.1558-5646.2010.00980.x
  97. McGlone M (1983a) Polynesian deforestation of New Zealand: a preliminary synthesis Archaeol Ocean 18:11-25Google Scholar
  98. McGlone MS (1983b) Holocene pollen diagrams, Lake Rotorua, North Island, New Zealand J R Soc N Z 13:53-65Google Scholar
  99. McGlone MS (1985) Plant biogeography and the late Cenozoic history of New Zealand N Z J Bot 23:723-749Google Scholar
  100. McGlone MS (1989) The Polynesian settlement of New Zealand in relation to environmental and biotic changes N Z J Ecol 12:115-129Google Scholar
  101. McGlone MS (2001a) A late Quaternary pollen record from marine core P69, southeastern North Island, New Zealand N Z J Geol Geophys 44:69-77Google Scholar
  102. McGlone MS (2001b) The origin of the indigenous grasslands of southeastern South Island in relation to pre-human woody ecosystems N Z J Ecol 25:1-15Google Scholar
  103. McGlone MS (2002) A Holocene and latest Pleistocene pollen record from Lake Poukawa, Hawke’s Bay, New Zealand Global Planet Change 33:283-299Google Scholar
  104. McGlone MS (2006) Becoming New Zealanders: immigration and the formation of the biota. In: Allen RB, Lee WG (eds) Biological Invasions in New Zealand, vol 186. Ecological Studies. Springer-Verlag, Berlin, pp 17-32Google Scholar
  105. McGlone MS (2009) Postglacial history of New Zealand wetlands and implications for their conservation N Z J Ecol 33:1-23Google Scholar
  106. McGlone MS, Basher L (2012) Holocene vegetation change at treeline, Cropp Valley, Southern Alps, New Zealand vol 34. ANU E Press, CanberraGoogle Scholar
  107. McGlone MS, Moar NT (1977) Ascarina decline and postglacial climatic change in New Zealand N Z J Bot 15:485-489Google Scholar
  108. McGlone MS, Moar NT (1998) Dryland Holocene vegetation history, Central Otago and the Mackenzie Basin, South Island, New Zealand N Z J Bot 36:91-111Google Scholar
  109. McGlone MS, Neall VE (1994) The late Pleistocene and Holocene vegetation history of Taranaki, North Island, New Zealand N Z J Bot 32:251-269Google Scholar
  110. McGlone MS, Topping WW (1977) Aranuian (postglacial) pollen diagrams from Tongariro region, North Island, New Zealand N Z J Bot 15:749-760Google Scholar
  111. McGlone MS, Topping WW (1983) Late Quaternary vegetation, Tongariro region, central North Island, New Zealand N Z J Bot 21:53-76Google Scholar
  112. McGlone MS, Wilmshurst JM (1999) A Holocene record of climate, vegetation change and peat bog development, east Otago, South Island, New Zealand J Quat Sci 14:239-254Google Scholar
  113. McGlone MS, Wilson HD (1996) Holocene vegetation and climate of Stewart Island, New Zealand N Z J Bot 34:369-388Google Scholar
  114. McGlone MS, Nelson CS, Hume TM (1978) Palynology, age and environmental significance of some peat beds in the Upper Pleistocene Hinuera Formation, south Auckland, New Zealand J R Soc N Z 8:385-393Google Scholar
  115. McGlone MS, Howorth R, Pullar WA (1984a) Late Peistocene stratigraphy, vegetation and climate of the Bay of Plenty and Gisborne regions, New Zealand N Z J Geol Geophys 27:327-350Google Scholar
  116. McGlone MS, Neall VE, Pillans BJ (1984b) Inaha terrace deposits - a late Quaternary terrestrial record in south Taranaki, New Zealand N Z J Geol Geophys 27:35-49Google Scholar
  117. McGlone MS, Nelson CS, Todd AJ (1984c) Vegetation history and environmental significance of pre-peat and surficial peat deposits at Ohinewai, lower Waikato lowland J R Soc N Z 14:233-244Google Scholar
  118. McGlone MS, Neall VE, Clarkson BD (1988) The effect of recent volcanic events and climatic changes on the vegetation of Mt Egmont (Mt Taranaki), New Zealand N Z J Bot 26:123-144 doi: 10.1080/0028825x.1988.10410105
  119. McGlone M, Anderson A, Holdaway R (1994a) An ecological approach to the Polynesian settlement of New Zealand. In: Sutton DG (ed) The origins of the first New Zealanders. Auckland University Press, Auckland, pp 136-163Google Scholar
  120. McGlone MS, Anderson AJ, Holdaway RN (1994b) An ecological approach to the Polynesian settlement of New Zealand. In: Sutton DG (ed) The Origins of the First New Zealanders. Auckland University Press, Auckland pp 136-163Google Scholar
  121. McGlone MS, Mark AF, Bell D (1995) Late Peistocene and Holocene vegetation history, central Otago, South Island, New Zealand J R Soc N Z 25:1-22Google Scholar
  122. McGlone MS, Mildenhall DC, Pole MS (1996) History and palaeoecology of New Zealand Nothofagus forests. In: Veblen TT, Hill RS, Read J (eds) The Ecology and Biogeography of Nothofagus forest. Yale University Press, New Haven, pp 83-130Google Scholar
  123. McGlone MS, Moar NT, Meurk CD (1997) Growth and vegetation history of alpine mires on the Old Man Range, Central Otago, New Zealand Arct Alp Res 29:32-44 doi: 10.2307/1551834
  124. McGlone MS, Duncan RP, Heenan PB (2001) Endemism, species selection and the origin and distribution of the vascular plant flora of New Zealand J Biogeogr 28:199-216Google Scholar
  125. McGlone M, Wardle P, Worthy T (2003) Environmental change since the Last Glaciation. In: John D, Fordyce RE, Mark A, Probert K, Townshend C (eds) The Natural History of Southern New Zealand. Otago University Press, Dunedin, pp 105-128Google Scholar
  126. McGlone MS, Turney CSM, Wilmshurst JM (2004) Late-glacial and Holocene vegetation and climatic history of the Cass basin, central south island, New Zealand Quat Res 62:267-279 doi: 10.1016/j.yqres.2004.09.003
  127. McGlone MS, Newnham RM, Moar NT (2010a) The vegetation cover of New Zealand during the Last Glacial Maximum: do pollen records under-represent woody vegetation? In: Haberle S, Stevenson J, Prebble M (eds) Altered fire ecologies: fire, climate and human influences on terrestrial landscapes, vol 32. Terra Australis. ANU Press, Canberra pp 49-68Google Scholar
  128. McGlone MS, Richardson SJ, Jordan GJ (2010b) Comparative biogeography of New Zealand trees: species richness, height, leaf traits and range sizes. N Z J Ecol 34:137-151Google Scholar
  129. McGlone MS, Turney CSM, Wilmshurst JM, et al. (2010c) Divergent trends in land and ocean temperature in the Southern Ocean over the past 18,000 years Nature Geoscience 3:622-626 doi: 10.1038/ngeo931
  130. McGlone MS, Hall GMJ, Wilmshurst JM (2011) Seasonality in the early Holocene: Extending fossil-based estimates with a forest ecosystem process model Holocene 21:517-526 doi: 10.1177/0959683610385717
  131. McGlone MS, Buitenwerf R, Richardson SJ (2016) The formation of the oceanic temperate forests of New Zealand NZ J Bot 54:128-155Google Scholar
  132. McIntosh PD, Eden DN, Burgham SJ (1990) Quaternary deposits and landscape evolution in northeast Southland, New Zealand Palaeogeogr, Palaeoclimatol, Palaeoecol 81:95-113Google Scholar
  133. McLaren BE, Cameron KC (1996) Soil Science: sustainable production and environmental protection. Oxford University Press, AucklandGoogle Scholar
  134. McLea WL (1990) Palynology of Pohehe Swamp, northwest Wairarapa, New Zealand - a study of climatic and vegetation changes during the last 41,000 years J R Soc N Z 20:205-220Google Scholar
  135. McLea WL (1996) The Late Quaternary pollen record of South-East Nelson, South Island, New Zealand N Z J Bot 34:523-538Google Scholar
  136. McWethy DB, Whitlock C, Wilmshurst JM, et al. (2010) Rapid landscape transformation in South Island, New Zealand, following initial Polynesian settlement Proc Natl Acad Sci U S A 107:21343-21348 doi: 10.1073/pnas.1011801107
  137. McWethy DB, Wilmshurst JM, Whitlock C,et al. (2014) A high-resolution chronology of rapid forest transitions following Polynesian arrival in New Zealand Plos One 9:e111328Google Scholar
  138. Meffre S, Crawford AJ, Quilty PG (2006) Arc-continent collision forming a large island between New Caledonia and New Zealand in the Oligocene ASEG Extended abstracts 2006:1-3Google Scholar
  139. Mildenhall DC (1980) New Zealand Late Cretaceous and Cenozoic plant biogeography - a contribution Palaeogeogr Palaeoclimatol Palaeoecol 31:197-233 doi: 10.1016/0031-0182(80)90019-x
  140. Mildenhall D (1986) Middle Quaternary pollen diagrams from Judgeford, Lower Hutt, and the significance of kauri pollen in a herbaceous assemblage New Zealand Geological Survey Record 8:76-81Google Scholar
  141. Mildenhall DC (2001) Pollen analysis of Pliocene-Pleistocene Kowai Formation (Kurow Group), Mackenzie Basin, South Canterbury, New Zealand N Z J Geol Geophys 44:97-104Google Scholar
  142. Mildenhall DC (2003) Deep-sea record of Pliocene and Pleistocene terrestrial palynomorphs from offshore eastern New Zealand (ODP Site 1123, Leg 181) N Z J Geol Geophys 46:343-361Google Scholar
  143. Mildenhall DC, Pocknall DT (1984) Palaeobotanical evidence for changes in Miocene and Pliocene climates in New Zealand. In: Vogel JC (ed) Late Cainozoic palaeoclimates of the Southern Hemisphere. South African Society of Quaternary Research International Symposium, Swaziland, 29 August-2nd September, 1983. A.A. Balkema, Rotterdam,Google Scholar
  144. Mildenhall DC, Williams DN, Seward D (1977) Ohariu Tephra and associated pollen-bearing sedimetns near Wellington, New Zealand N Z J Geol Geophys 20:157-164Google Scholar
  145. Mildenhall DC, Hollis CJ, Naish TR (2004) Orbitally-influenced vegetation record of the Mid-Pleistocene climate transition, offshore eastern New Zealand (ODP Leg 181, Site 1123) Mar Geol 205:87-111 doi: 10.1016/s0025-3227(04)00019-2
  146. Moar NT (1971) Contributions to the Quaternary history of the New Zealand flora. 6. Aranuian pollen diagrams from Canterbury, Nelson, and north Westland, South Island N Z J Bot 9:80-145Google Scholar
  147. Moar NT (1980) Late Otiran and early Aranuian grassland in central South Island N Z J Ecol 3:4-12Google Scholar
  148. Moar NT (2008) Late Quaternary Vegetation. In: Winterbourn M, Knox G, Burrows C, Marsden I (eds) The Natural History of Canterbury. Third edn. Canterbury University Press, Christchurch, pp 169-192Google Scholar
  149. Moar NT, Suggate RP, Burrows C (2008) Environments during the Kaihinu Interglacial and Otira Glaciation, coastal north Westland, New Zealand N Z J Bot 46:49-63Google Scholar
  150. Moar NT, Wilmshurst J, McGlone M (2011) Standardizing names applied to pollen and spores in New Zealand Quaternary palynology N Z J Bot 49:201-229Google Scholar
  151. Morgan-Richards M, Smissen RD, Shepherd LD, et al. (2009) A review of genetic analyses of hybridisation in New Zealand J R Soc N Z 39:15-34Google Scholar
  152. Mosblech NAS, Bush MB, van Woesik R (2011) On metapopulations and microrefugia: palaeoecological insights J Biogeogr 38:419-429 doi: 10.1111/j.1365-2699.2010.02436.x
  153. Nelson CS, Cooke PJ (2001) History of oceanic front development in the New Zealand sector of the Southern Ocean during the Cenozoic—a synthesis N Z J Geol Geophys 44:535-553Google Scholar
  154. Newnham RM (1992) A 30,000 year pollen, vegetation and climate record from Otakairangi (Hikurangi), Northland, New Zealand J Biogeogr 19:541-554Google Scholar
  155. Newnham R (1999) Environmental change in Northland, New Zealand during the last glacial and Holocene Quat Int 57-8:61-70 doi: 10.1016/s1040-6182(98)00050-0
  156. Newnham RM, Lowe DJ, Green JD (1989) Palynology, vegetation and climate of the Waikato lowlands, North Island, New Zealand, since c. 18,000 years ago J R Soc N Z 19:127-150Google Scholar
  157. Newnham RM, Delange PJ, Lowe DJ (1995) Holocene vegetation, climate and history of a raised bog complex, northern New Zealand based on palynology, plant macrofossils and tephrochronology Holocene 5:267-282Google Scholar
  158. Newnham RM, Lowe DJ, Williams PW (1999) Quaternary environmental change in New Zealand: a review Progress in Physical Geography 23:567-610Google Scholar
  159. Newnham RM, Eden DN, Lowe DJ, et al. (2003) Rerewhakaaitu Tephra, a land-sea marker for the Last Termination in New Zealand, with implications for global climate change Quat Sci Rev 22:289-308Google Scholar
  160. Newnham RM, Lowe DJ, Giles T, et al. (2007a) Vegetation and climate of Auckland, New Zealand, since ca.32 000 cal. yr ago: support for an extended LGM J Quat Sci 22:517-534 doi: 10.1002/jqs.1137
  161. Newnham RM, Vandergoes MJ, Hendy CH, et al. (2007b) A terrestrial palynological record for the last two glacial cycles from southwestern New Zealand Quat Sci Rev 26:517-535 doi: 10.1016/j.quascirev.2006.05.005
  162. Newnham R, McGlone M, Moar N, et al. (2013) The vegetation cover of New Zealand at the Last Glacial Maximum Quat Sci Rev 74:202-214 doi:
  163. Nielsen SV, Bauer AM, Jackman TR, et al. (2011) New Zealand geckos (Diplodactylidae): Cryptic diversity in a post-Gondwanan lineage with trans-Tasman affinities Mol Phylogen Evol 59:1-22 doi: 10.1016/j.ympev.2010.12.007
  164. Ogden J (1989) On the coenospecies concept and tree migrations during the oscillations of the Pleistocene climate J R Soc N Z 19:249-262Google Scholar
  165. Ogden J, Fordham R, Pilkington S, et al. (1991) Forest gap formation and closure along an altitudinal gradient in Tongariro National Park, New Zealand J Veg Sci 2:165-172Google Scholar
  166. Ogden J, Wilson A, Hendy C, et al. (1992) The late Quaternary history of kauri (Agathis australis) in New Zealand and its climatic significance J Biogeogr 19:611-622Google Scholar
  167. Ogden J, Basher L, McGlone M (1998) Fire, forest regeneration and links with early human habitation: Evidence from New Zealand Ann Bot 81:687-696Google Scholar
  168. O’Neill SB, Buckley TR, Jewell TR, et al. (2009) Phylogeographic history of the New Zealand stick insect Niveaphasma annulata (Phasmatodea) estimated from mitochondrial and nuclear loci Mol Phylogen Evol 53:523-536 doi: 10.1016/j.ympev.2009.07.007
  169. Pedro JB, van Ommen TD, Rasmussen SO, et al. (2011) The last deglaciation: timing the bipolar seesaw Climate of the Past 7:671-683 doi: 10.5194/cp-7-671-2011
  170. Perrie LR, Brownsey PJ (2005) Insights into the biogeography and polyploid evolution of New Zealand Asplenium from chloroplast DNA sequence data Am Fern J 95:1-21Google Scholar
  171. Perry GLW, Wilmshurst JM, McGlone MS (2014) Ecology and long-term history of fire in New Zealand N Z J Ecol 38:157-176Google Scholar
  172. Phillips CJ, Campbell IB (1983) Regolith profiles on slopes underlain by Moutere Gravel Formation, Big Bush State Forest: hydrologic and geomorphic implications N Z J Geol Geophys 26:57-70 doi: 10.1080/00288306.1983.10421522
  173. Pickrill RA, Fenner JM, McGlone MS (1992) Late Quaternary evolution of a fjord environment in Preservation Inlet, New Zealand Quat Res 38:331-346Google Scholar
  174. Pillans B, McGlone M, Palmer A, et al. (1991) The Last Glacial Maximum in central and southernmost North Island, New Zealand - a paleoenvironmental reconstruction using the Kawakawa Tephra Formation as a chronostratigraphic marker. Palaeogeogr Paleoclimatol Palaeoecol 101:283-304Google Scholar
  175. Pole M (2003) New Zealand climate in the Neogene and implications for global atmospheric circulation Palaeogeogr Palaeoclimatol Palaeoecol 193:269-284 doi: 10.1016/s0031-0182(03)00232-3
  176. Pole M (2007) Conifer and cycad distribution in the Miocene of southern New Zealand Aust J Bot 55:143-164 doi: 10.1071/bt06056
  177. Pole M (2014) The Miocene climate in New Zealand: Estimates from paleobotanical data Palaeontologia Electronica 17Google Scholar
  178. Pons J, Fujisawa T, Claridge EM, et al. (2011) Deep mtDNA subdivision within Linnean species in an endemic radiation of tiger beetles from New Zealand (genus Neocicindela) Mol Phylogen Evol 59:251-262 doi: 10.1016/j.ympev.2011.02.013
  179. Pugh J, Shulmeister J (2010) Holocene vegetation history of a high-elevation (1200 m) site in the Lake Heron Basin, inland Canterbury, New Zealand. In: Altered Ecologies: Fire, climate and human influence on terrestrial landscapes, vol 32. Terra Australis. ANU E Press, Canberra, pp 69-81Google Scholar
  180. Rattenbury JA (1962) Cyclical hybridization as a survival mechanism in New Zealand forest flora Evolution 16:348-363 doi: 10.2307/2406284
  181. Rawlence NJ, Scofield RP, Wood JR, et al. (2011) New palaeontological data from the excavation of the Late Glacial Glencrieff miring bone deposit, North Canterbury, South Island, New Zealand J R Soc N Z 41:217-236 doi: 10.1080/03036758.2011.559663
  182. Rawlence NJ, Metcalf JL, Wood JR, et al. (2012) The effect of climate and environmental change on the megafaunal moa of New Zealand in the absence of humans Quat Sci Rev 50:141-153 doi: 10.1016/j.quascirev.2012.07.004
  183. Reichgelt T, Kennedy EM, Mildenhall DC, et al. (2013) Quantitative palaeoclimate estimates for Early Miocene southern New Zealand: Evidence from Foulden Maar Palaeogeogr Palaeoclimatol Palaeoecol 378:36-44 doi: 10.1016/j.palaeo.2013.03.019
  184. Reichgelt T, Jones WA, Jones DT, et al. (2014) The flora of Double Hill (Dunedin Volcanic Complex, Middle-Late Miocene) Otago, New Zealand J R Soc N Z 44:105-135 doi: 10.1080/03036758.2014.923476
  185. Richardson SJ, Laughlin DC, Lawes MJ, et al. (2015) Functional and environmental determinants of bark thickness in fire-free temperate rain forest communities Am J Bot doi: 10.3732/ajb.1500157
  186. Roff DA, Roff RJ (2003) Of rats and Maoris: a novel method for the analysis of patterns of extinction in the New Zealand avifauna before European contact Evol Ecol Res 5:759-779Google Scholar
  187. Rogers GM, McGlone MS (1989) A postglacial vegetation history of the southern-central uplands of North Island, New Zealand J R Soc N Z 19:229-248Google Scholar
  188. Rogers G, Overton JMc (2007) Land use effects on “spring annual” herbs in rare non-forest ecosystems of New Zealand NZ J Bot 45:317-327 Google Scholar
  189. Rother H, Fink D, Shulmeister J, et al. (2014) The early rise and late demise of New Zealand’s last glacial maximum. Proc Natl Acad Sci USA 111:11630-11635.Google Scholar
  190. Rother H, Shulmeister J, Fink D, et al. (2015) Surface exposure chronology of the Waimakariri glacial sequence in the Southern Alps of New Zealand: Implications for MIS-2 ice extent and LGM glacial mass balance. Earth and Planetary Science Letters 429: 69-81.Google Scholar
  191. Ryan MT, Dunbar GB, Vandergoes MJ, et al. (2012) Vegetation and climate in Southern Hemisphere mid-latitudes since 210 ka: new insights from marine and terrestrial pollen records from New Zealand Quat Sci Rev 48:80-98 doi: 10.1016/j.quascirev.2012.06.001
  192. Sabaa AT, Sikes EL, Hayward BW, et al. (2004) Pliocene sea surface temperature changes in ODP Site 1125, Chatham Rise, east of New Zealand Mar Geol 205:113-125Google Scholar
  193. Sakai A, Wardle P (1978) Freezing resistance of New Zealand trees and shrubs N Z J Ecol 1:51-61Google Scholar
  194. Sandiford A, Horrocks M, Newnham R, et al. (2002) Environmental change during the last glacial maximum (c. 25 000-c. 16 500 years BP) at Mt Richmond, Auckland Isthmus, New Zealand J R Soc N Z 32:155-167Google Scholar
  195. Sandiford A, Newnham R, Alloway B, et al. (2003) A 28 000-7600 cal yr BP pollen record of vegetation and climate change from Pukaki Crater, northern New Zealand Palaeogeogr Palaeoclimatol Palaeoecol 201:235-247 doi: 10.1016/s0031-0182(03)00611-4
  196. Sanmartin I, Wanntorp L, Winkworth RC (2007) West Wind Drift revisited: testing for directional dispersal in the Southern Hemisphere using event-based tree fitting J Biogeogr 34:398-416 doi: 10.1111/j.1365-2699.2006.01655.x
  197. Scott JM, Lee DE, Fordyce RE, et al. (2014) A possible Late Oligocene-Early Miocene rocky shoreline on Otago Schist N Z J Geol Geophys 57:185-194 doi: 10.1080/00288306.2013.814575
  198. Seddon JM, Santucci F, Reeve NJ, et al. (2001) DNA footprints of European hedgehogs, Erinaceus europaeus and E-concolor. Pleistocene refugia, postglacial expansion and colonization routes Mol Ecol 10:2187-2198 doi: 10.1046/j.0962-1083.2001.01357.x
  199. Shepherd LD, Perrie LR (2011) Microsatellite DNA analyses of a highly disjunct New Zealand tree reveal strong differentiation and imply a formerly more continuous distribution Mol Ecol 20:1389-1400 doi: 10.1111/j.1365-294X.2011.05017.x
  200. Shulmeister J Goodwin I, Renwick J, et al. (2004) The Southern Hemisphere westerlies in the Australasian sector over the last glacial cycle: a synthesis Quat Int 118:23-53 doi: 10.1016/s1040-6182(03)00129-0
  201. Shulmeister J, McKay R, Singer C, McLea W (2001) Glacial geology of the Cobb valley, northwest Nelson N Z J Geol Geophys 44:47-54Google Scholar
  202. Shulmeister J, McLea WL, Singer C, et al. (2003) Late Quaternary pollen records from the Lower Cobb Valley and adjacent areas, North-West Nelson, New Zealand N Z J Bot 41:503-533Google Scholar
  203. Sikes EL, Medeiros PM, Augustinus P, Wilmshurst JM, Freeman K (2013) Seasonal variations in aridity and temperature characterize changing climate during the last deglaciation in New Zealand. Quat Sci Rev 74:245–256Google Scholar
  204. Smale MC, Fitzgerald NB, Richardson SJ (2011) Resilience to fire of Dracophyllum subulatum (Ericaceae) frost flat heathland, a rare ecosystem in central North Island, New Zealand N Z J Bot 49:231-241 doi: 10.1080/0028825x.2010.526950
  205. Smissen RD, Richardson SJ, Morse CW, et al. (2014) Relationships, gene flow and species boundaries among New Zealand Fuscospora (Nothofagaceae: southern beech) N Z J Bot 52:389-406 doi: 10.1080/0028825x.2014.960946
  206. Sperry JS, Hacke UG, Feild TS, et al. (2007) Hydraulic Consequences of Vessel Evolution in Angiosperms Int J Plant Sci 168:1127-1139 doi: 10.1086/520726
  207. Stewart JR, Lister AM (2001) Cryptic northern refugia and the origins of the modern biota Trends Ecol Evol 16:608-613 doi: 10.1016/s0169-5347(01)02338-2
  208. Suggate RP, Moar NT (1970) Revision of the chronology of the late Otira Glacial N Z J Geol Geophys 13:742-746Google Scholar
  209. Tanentzap AJ, Lee WG, Monks A (2013) Increased nitrogen cycling facilitates native forest regeneration: Potential for restoring extinct ecological processes? Ecol Appl 23:36-45Google Scholar
  210. Temme AA, Liu JC, Cornwell WK, et al. (2015) Winners always win: growth of a wide range of plant species from low to future high CO2 Ecol Evol 5:4949-4961 doi: 10.1002/ece3.1687
  211. Tennyson AJD (2010) The origin and history of New Zealand’s terrestrial vertebrates N Z J Ecol 34:6-27Google Scholar
  212. Trewick SA, Bland KJ (2012) Fire and slice: palaeogeography for biogeography at New Zealand’s North Island/South Island juncture J R Soc N Z 42:153-183 doi: 10.1080/03036758.2010.549493
  213. Trewick SA, Wallis GP, Morgan-Richards M (2000) Phylogeographical pattern correlates with Pliocene mountain building in the alpine scree weta (Orthoptera, Anostostomatidae) Mol Ecol 9:657-666 doi: 10.1046/j.1365-294x.2000.00905.x
  214. Trewick SA, Wallis GP, Morgan-Richards M (2011) The Invertebrate Life of New Zealand: A Phylogeographic Approach Insects 2:297-325Google Scholar
  215. Vandergoes MJ (2000) A high resolution record of Late Quaternary vegetation and climate change, South Westland, New Zealand. PhD dissertation, University of OtagoGoogle Scholar
  216. Vandergoes MJ, Fitzsimons SJ (2003) The Last Glacial–Interglacial Transition (LGIT) in south Westland, New Zealand: paleoecological insight into mid-latitude Southern Hemisphere climate change Quat Sci Rev 22:1461-1476 doi: 10.1016/s0277-3791(03)00074-x
  217. Vandergoes MJ, Fitzsimons SJ, Newnham RM (1997) Late glacial to Holocene vegetation and climate change in the eastern Takitimu Mountains, western Southland, New Zealand J R Soc N Z 27:53-66Google Scholar
  218. Vandergoes MJ, Newnham RM, Preusser F, et al. (2005) Regional insolation forcing of late Quaternary climate change in the Southern Hemisphere Nature 436:242-245 doi: 10.1038/nature03826
  219. Vandergoes MJ, Dieffenbacher-Krall AC, Newnham RM, et al. (2008) Cooling and changing seasonality in the Southern Alps, New Zealand during the Antarctic Cold Reversal Quat Sci Rev 27:589-601 doi: 10.1016/j.quascirev.2007.11.015
  220. Vandergoes MJ, Newnham RM, Denton GH, et al. (2013) The anatomy of Last Glacial Maximum climate variations in south Westland, New Zealand, derived from pollen records Quat Sci Rev 74:215-229 doi: 10.1016/j.quascirev.2013.04.015
  221. Veblen TT, Stewart GH (1982) On the conifer regeneratin gap in New Zealand - the dynamics of Libocedrus bidwillii stands on South Island. J Ecol 70:413-436 doi: 10.2307/2259912
  222. Vera FWM, Bakker ES, Olff H (2006) Large herbivores: missing partners of western European light-demanding tree and shrub species? In: Danell K, Duncan P, R. B, Pastor J (eds) Large Herbivore Ecology, Ecosystem Dynamics and Conservation. Cambridge University Press, Cambridge, pp 203-321Google Scholar
  223. Wagstaff SJ, Bayly MJ, Garnock-Jones PJ, et al. (2002) Classification, origin, and diversification of the New Zealand hebes (Scrophulariaceae) Ann Mo Bot Gard 89:38-63 doi: 10.2307/3298656
  224. Walker S, Lee WG, Rogers GM (2004) Pre-settlement woody vegetation of Central Otago, New Zealand N Z J Bot 42:613-646Google Scholar
  225. Walker MJC, Berkelhammer M, Björck S, et al. (2012) Formal subdivision of the Holocene Series/Epoch: a Discussion Paper by a Working Group of INTIMATE (Integration of ice-core, marine and terrestrial records) and the Subcommission on Quaternary Stratigraphy (International Commission on Stratigraphy) J Quat Sci 27:649-659 doi: 10.1002/jqs.2565
  226. Wallis GP, Trewick SA (2009) New Zealand phylogeography: evolution on a small continent Mol Ecol 18:3548-3580 doi: 10.1111/j.1365-294X.2009.04294.x
  227. Wardle P (1963) Evolution and distribution of the New Zealand flora, as affected by Quaternary climates N Z J Bot 1:3-17Google Scholar
  228. Wardle P (1968) Evidence for an indigenous pre-quaternary element in the mountain flora of New Zealand N Z J Bot 6:120-125 doi: 10.1080/0028825x.1968.10429825
  229. Wardle P (1985) New Zealand timberlines. 2. A study of forest limits in the Crow Valley near Arthur’s Pass, Canterbury. N Z J Bot 23:235-261Google Scholar
  230. Wardle P (1991) Vegetation of New Zealand. Cambridge University Press, CambridgeGoogle Scholar
  231. Whitlock C, McWethy DB, Tepley AJT, et al. (2015) Past and present vulnerability of closed-canopy temperate forests to altered fire regimes: a comparison of the Pacific Northwest, New Zealand, and Patagonia Bioscience 65:151-163 doi: 10.1093/biosci/biu194
  232. Wichman SR, Wright SD, Cameron EK, et al. (2002) Elevated genetic heterogeneity and Pleistocene climatic instability: inferences from nrDNA in New Zealand Coprosma (Rubiaceae) J Biogeogr 29:943-954 doi: 10.1046/j.1365-2699.2002.00727.x
  233. Wilmshurst JM, McGlone MS, Charman DJ (2002) Holocene vegetation and climate change in southern New Zealand: Linkages between forest composition and quantitative surface moisture reconstructions from an ombrogenous bog J Quat Sci 17:653-666 doi: 10.1002/jqs.689
  234. Wilmshurst JM, McGlone MS, Leathwick JR, et al. (2007) A pre-deforestation pollen-climate calibration model for New Zealand and quantitative temperature reconstructions for the past 18 000 years BP J Quat Sci 22:535-547 doi: 10.1002/jqs.1135
  235. Wilmshurst JM, Anderson AJ, Higham TFG, et al. (2008) Dating the late prehistoric dispersal of polynesians to New Zealand using the commensal Pacific rat Proc Nat Acad Sci U S A 105:7676-7680 doi: 10.1073/pnas.0801507105
  236. Wood JR (2013) New Zealand, 500 years ago. In: MacLeod, N. (ed) Grzimek’s Animal Life Encyclopedia: Extinction. Gale, Farmington Hills, USA. Pp. 595-604.Google Scholar
  237. Wood JR, De Pietri VL (2015) Next-generation paleornithology: technological and methodological advances allow new insights into the evolutionary and ecological histories of living birds. The Auk 132:486-506.Google Scholar
  238. Wood JR, Rawlence NJ, Rogers GM, et al. (2008) Coprolite deposits reveal the diet and ecology of the extinct New Zealand megaherbivore moa (Aves, Dinornithiformes) Quat Sci Rev 27:2593-2602 doi: 10.1016/j.quascirev.2008.09.019
  239. Wood JR, Walker S (2008) Macrofossil evidence for pre-settlement vegetation of Central Otago's basin floors and gorges NZ J Bot 46:239-255Google Scholar
  240. Wood JR, Wilmshurst JM (In press) Changes in New Zealand forest plant communities following the prehistoric extinction of avian megaherbivores J Veg SciGoogle Scholar
  241. Wood JR, Wilmshurst JM, Wagstaff SJ, Worthy TH, Rawlence NJ, Cooper A (2012) High-Resolution Coproecology: Using Coprolites to Reconstruct the Habits and Habitats of New Zealand’s Extinct Upland Moa (Megalapteryx didinus) PLoS ONE 7:e40025Google Scholar
  242. Woodward C, Shulmeister J, Larsen J, et al. (2014) The hydrological legacy of deforestation on global wetlands Science 346:844-847 doi: 10.1126/science.1260510
  243. Worthy TH (1987) Palaeoecological information concerning members of the frog genus Leiopelma: Leiopelmatidae in New Zealand J R Soc N Z 17:409-420Google Scholar
  244. Worthy TH (1993) A review of fossil bird bones from loess deposits in eastern South Island, New Zealand Rec Cant Mus 10:95-106Google Scholar
  245. Worthy TH (1998) The Quaternary fossil avifauna of Southland, South Island, New Zealand J R Soc N Z 28:537-589Google Scholar
  246. Worthy TH, Grant-Mackie JA (2003) Late-Pleistocene avifaunas from Cape Wanbrow, Otago, South Island, New Zealand J Roy Soc NZ 33:427-485Google Scholar
  247. Worthy T, Holdaway RN (1994) Quaternary fossil faunas from caves in Takaka Valley and on Takaka Hill, northwest Nelson, South Island, New Zealand J R Soc N Z 24:297-391Google Scholar
  248. Worthy TH, Holdaway RN (1995) Quaternary fossil faunas from caves on Mt. Cookson, North Canterbury, South Island, New Zealand J Roy Soc NZ 25:333-370Google Scholar
  249. Worthy TH, Holdaway RN (2002) The Lost World of the Moa: prehistoric life of New Zealand. Canterbury University Press, ChristchurchGoogle Scholar
  250. Worthy TH, Tennyson AJD, Jones C, et al. (2007) Miocene waterfowl and other birds from central Otago, New Zealand Journal of Systematic Palaeontology 5:1-39 doi: 10.1017/s1477201906001957
  251. Worthy TH, Tennyson AJD, Hand SJ, et al. (2011a) Terrestrial Turtle Fossils from New Zealand Refloat Moa’s Ark Copeia:72-76 doi: 10.1643/ch-10-113
  252. Worthy TH, Tennyson AJD, Scofield RP (2011b) Fossils reveal an early Miocene presence of the aberrant gruiform Aves: Aptornithidae in New Zealand Journal of Ornithology 152:669-680 doi: 10.1007/s10336-011-0649-6
  253. Worthy TH, Zhao JX (2006) Late Pleistocene predator-accumulated avifauna from Kid’s Cave, west coast, South Island, New Zealand Alcheringa Special Issue 1:389-408Google Scholar
  254. Wotton DM, Kelly D (2011) Frugivore loss limits recruitment of large-seeded trees Proc R Soc B Biol Sci 278:3345-3354 doi: 10.1098/rspb.2011.0185
  255. Wotton DM, Kelly D (2012) Do larger frugivores move seeds further? Body size, seed dispersal distance, and a case study of a large, sedentary pigeon J Biogeogr 39:1973-1983 doi: 10.1111/jbi.12000
  256. Wotton DM, Clout MN, Kelly D (2008) Seed retention times in the New Zealand pigeon (Hemiphaga novaezeelandiae novaeseelandiae) N Z J Ecol 32:1-6Google Scholar
  257. Wright IC, McGlone MS, Nelson CS, et al. (1995) An integrated latest Quaternary (Stage 3 to present) paleoclimatic and paleoceanographic record from offshore northern New Zealand Quat Res 44:283-293Google Scholar
  258. Young LM, Kelly D, Nelson XJ (2012) Alpine flora may depend on declining frugivorous parrot for seed dispersal Biol Conserv 147:133-142 doi: 10.1016/j.biocon.2011.12.023
  259. Zhu K, Woodall CW, Clark JS (2012) Failure to migrate: lack of tree range expansion in response to climate change Global Change Biol 18:1042-1052 doi: 10.1111/j.1365-2486.2011.02571.x

Copyright information

© Atlantis Press and the author(s) 2017

Authors and Affiliations

  • Jamie Wood
    • 1
    Email author
  • Janet Wilmshurst
    • 1
    • 2
  • Rewi Newnham
    • 3
  • Matt McGlone
    • 1
  1. 1.Landcare ResearchLincolnNew Zealand
  2. 2.School of EnvironmentUniversity of AucklandAucklandNew Zealand
  3. 3.School of Geography, Environment and Earth SciencesVictoria University of WellingtonWellingtonNew Zealand

Personalised recommendations