Tailoring and Processing of Defect Free Barium Titanate Stannate Functionally Graded Ceramics: BTS2.5/BTS5/BTS7/BTS10 FGMs

  • Smilja MarkovićEmail author
  • Dragan Uskoković
Conference paper


Four-component barium titanate stannate (BaTi1−x Sn x O3, BTS) functionally graded materials (FGMs) were designed, processed and examined. BTS powders with different tin content (x = 0.025, 0.05, 0.07 and 0.10, abbreviated as BTS2.5, BTS5, BTS7 and BTS10, respectively) were used as ingredient materials. Four-layered samples, produced by powder-stacking method and uniaxial pressing, were consolidated in BTS2.5/BTS5/BTS7/BTS10 FGMs by sintering at 1420 °C with dwell time of 2 h. To achieve high-quality FGMs, without structural or microstructural damages, the master sintering curve (MSC) approach were used. In this study, the MSC was constructed for four-layered FGMs using shrinkage data obtained by a heating microscope during non-isothermal part of the sintering up to 1420 °C with heating rates of 2, 5, 10 and 30°/min. To prepare FGMs with desired final density the corresponding Θ value was estimated from the abscissa of the master sintering curve. Estimated Θ value was used in Φ(ρ) = logΘ(t,T(t)) equation, which correlate density (ρ) and the time and temperature dependent parameter Θ(t,T(t)). This calculation allowed us to determine experimental parameters which should be applied in sintering procedure to obtain FGMs with projected density. According to constructed MSC, four different sintering schedules were designed and applied where four BTS2.5/BTS5/BTS7/BTS10 FGMs were prepared. To validate the constructed MSC, the microstructure and chemical (Ti/Sn) gradient in the prepared FGMs were examined by SEM–EDS methods.


Barium titanate stannate Functionally graded materials Master sintering curve Microstructure 



This study was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia under grant no III45004. Part of the results was obtained at Jožef Stefan Institute in Ljubljana, Slovenia, owing the bilateral cooperation program between the Republic of Serbia and the Republic of Slovenia. The authors are grateful to Prof. Dr. Danilo Suvorov and Prof. Dr. Srečo Škapin for their precious and selfless help during the period 2009-2016.


  1. 1.
    M. Koizumi, FGM activities in Japan. Compos. B B28, 1–4 (1997)CrossRefGoogle Scholar
  2. 2.
    M. Koizumi, M. Nino, Overview of FGM research in Japan, MRS Bull. 20(1), 19–21 (1995). (Special Issue, Functionally Gradient Materials, ed. by E.L. Fleischer)Google Scholar
  3. 3.
    B. Kieback, A. Neubrand, H. Riedel, Processing techniques for functionally graded materials. Mat. Sci. Eng. A 362, 81–105 (2003)CrossRefGoogle Scholar
  4. 4.
    K. Pietrzak, D. Kalinski, M. Chmielewski, Interlayer of Al2O3-Cr functionally graded material for reduction of thermal stresses in alumina-heat resisting steel joints. J. Eur. Ceram. Soc. 27(2–3), 1281–1286 (2007)CrossRefGoogle Scholar
  5. 5.
    B.H. Rabin, I. Shiota (Guest Editors), Functionally gradient materials. MRS Bull. 20(1), 14–18 (1995). (Special Issue, Functionally Gradient Materials, ed. by E.L. Fleischer)Google Scholar
  6. 6.
    S. Amada, Hierarchical functionally gradient structures of bamboo, barley, and corn. MRS Bull. 20(1), 35–36 (1995). (Special Issue, Functionally Gradient Materials, ed. by E.L. Fleischer)Google Scholar
  7. 7.
    M. Koizumi, Recent progress of functionally gradient materials in Japan, Ceram. Eng. Sci. Proc. 13, 337–347 (1992)Google Scholar
  8. 8.
    K. Morsi, H. Keshavan, S. Bal, Processing of grain-size functionally gradient bioceramics for implant applications. J. Mater. Sci. Mater. Med. 15, 191–197 (2004)CrossRefGoogle Scholar
  9. 9.
    S. Marković, M.J. Lukić, S.D. Škapin, B. Stojanović, D. Uskoković, Designing, fabrication and characterization of nanostructured functionally graded HAp/BCP ceramics. Ceram. Inter. 41, 2654–2667 (2015)CrossRefGoogle Scholar
  10. 10.
    S. Marković, D. Uskoković, Sintering of defect-free BaTi0.975Sn0.025O3/BaTi0.85Sn0.15O3 functionally graded materials, in Advances and Applications in Electroceramics: Ceramic Transactions, vol. 226, ed. by K.M. Nair, S. Priya, Q. Jia (Wiley, New York, 2011), pp. 97–106. ISBN: 978-1-1180-5999-9Google Scholar
  11. 11.
    S. Marković, D. Uskoković, Barium titanate stannate functionally graded materials: choosing of the Ti/Sn concentration gradient and the influence of the gradient on electrical properties, in Advances in Electroceramic Materials II: Ceramic Transactions, vol. 221, ed. by K.M. Nair, S. Priya (Wiley, New York, 2010), pp. 3–17. ISBN: 978-0-470-92716-8Google Scholar
  12. 12.
    S. Marković, Č. Jovalekic, Lj. Veselinović, S. Mentus, D. Uskoković, Electrical properties of barium titanate stannate functionally graded materials. J. Eur. Ceram. Soc. 30, 1427–1435 (2010)Google Scholar
  13. 13.
    S. Marković, D. Uskoković, The master sintering curves for BaTi0.985Sn0.025O3/BaTi0.85Sn0.15O3 functionally graded materials. J. Eur. Ceram. Soc. 29, 2309–2316 (2009)CrossRefGoogle Scholar
  14. 14.
    S. Marković, M. Mitrić, N. Cvjetićanin, D. Uskoković, Preparation and properties of BaTi1−xSnxO3 multilayered ceramics. J. Eur. Ceram. Soc. 27, 505–509 (2007)CrossRefGoogle Scholar
  15. 15.
    S. Marković, M. Mitrić, Č. Jovalekić, M. Miljković, Dielectric and Ferroelectric Properties of BaTi1−xSnxO3 Multilayered Ceramics. Mater. Sci. Forum 555, 249–254 (2007)CrossRefGoogle Scholar
  16. 16.
    V. Mueller, H. Beige, H.-P. Abicht, Non-Debye dielectric dispersion of barium titanate stannate in the relaxor and diffuse phase-transition state. App. Phys. Lett. 84(8), 1341–1344 (2004)CrossRefGoogle Scholar
  17. 17.
    X. Wei, Y. Feng, X. Yao, Slow relaxation of fiel-induced piezoelectric resonance in paraelectric barium stannate titanate. App. Phys. Lett. 84(9), 1534–1536 (2004)CrossRefGoogle Scholar
  18. 18.
    T. Wang, X.M. Chen, X.H. Zheng, Dielectric characteristics and tenability of barium stannate titanate ceramics. J. Electroceram. 11, 173–178 (2003)CrossRefGoogle Scholar
  19. 19.
    L.J. Veselinović, M. Mitrić, L. Mančić, M. Vukomanović, B. Hadžić, S. Marković, D. Uskoković, The effect of Sn for Ti substitution on the average and local crystal structure of BaTi1-xSnxO3 (0 ≤ x ≤ 0.20). J. Appl. Crystallogr. 47, 999–1007 (2014)Google Scholar
  20. 20.
    S. Marković, M. Mitrić, N. Cvjetićanin, D. Uskoković, Structural and dielectric properties of BaTi1-xSnxO3 ceramics. Mater. Sci. Forum 518, 241–246 (2006)CrossRefGoogle Scholar
  21. 21.
    S. Marković, M. Mitrić, G. Starčević, D. Uskoković, Ultrasonic de-agglomeration of barium titanate powder. Ultrason. Sonochem. 15, 16–20 (2008)CrossRefGoogle Scholar
  22. 22.
    S. Marković, M. Miljković, Č. Jovalekić, S. Mentus, D. Uskoković, “Densification, microstructure, and electrical properties of BaTiO3 (BT) ceramics prepared from ultrasonically de-agglomerated BT powders. Mater. Manuf. Processes 24(11), 1114–1123 (2009)CrossRefGoogle Scholar
  23. 23.
    A. Shui, N. Uchida, K. Uematsu, Origin of shrinkage anisotropy during sintering for uniaxially pressed alumina compacts. Powder Technol. 127, 9–18 (2002)CrossRefGoogle Scholar
  24. 24.
    A. Shui, Z. Kato, N. Uchida, K. Uematsu, Sintering deformation caused by particle orientation in uniaxially and isostatically pressed alumina compacts. J. Eur. Ceram. Soc. 22, 311–316 (2002)CrossRefGoogle Scholar
  25. 25.
    P. Balaž, J. Briančin, Z. Bastl, L. Medvecky, V. Šepelak, Properties of mechanochemically pretreated precursors of doped BaTiO3 ceramics. J. Mater. Sci. 29, 4847–4851 (1994)CrossRefGoogle Scholar
  26. 26.
    H. Ferkel, R. Hellmig, Effects of nanopowders deagglomeration on the densities of nanocrystalline ceramics green body and their sintering behavior. Nanostruct. Mater. 11, 617–622 (1999)CrossRefGoogle Scholar
  27. 27.
    J.R. Groza, Nanosintering. Nanostruct. Mater. 12, 987–992 (1999)CrossRefGoogle Scholar
  28. 28.
    D. Li, S.O. Chen, X.Q. Sun, W.Q. Shao, Y.C. Zhang, S.S. Zhang, Construction and validation of master sintering curve for TiO2 for pressureless sintering. Adv. Appl. Ceram. 107(1), 52–56 (2008)CrossRefGoogle Scholar
  29. 29.
    T.R.G. Kutty, P.V. Hegde, K.B. Khan, U. Basak, S.N. Pillai, A.K. Sengupta et al., Densification behaviour of UO2 in six different atmospheres. J. Nucl. Mater. 305, 159–168 (2002)CrossRefGoogle Scholar
  30. 30.
    H. Su, D.L. Johnson, Master sintering curve: a practical approach to sintering. J. Am. Ceram. Soc. 79(12), 3211–3217 (1996)CrossRefGoogle Scholar

Copyright information

© Atlantis Press and the author(s) 2017

Authors and Affiliations

  1. 1.Institute of Technical Sciences of SASABelgradeSerbia

Personalised recommendations