The Influence of Nanomaterial Calcium Phosphate/poly-(dl-lactide-co-glycolide) on Proliferation and Adherence of HeLa Cells

  • Jelena G. Najdanović
  • Stevo J. Najman
  • Sanja Stojanović
  • Jelena M. Živković
  • Nenad Ignjatović
  • Dragan Uskoković
  • Miroslav Trajanović
Conference paper

Abstract

Nanomaterials are nowadays widely used in various fields of biomedicine. Before the application of biomaterials they have to be tested and fulfill some criteria. The first tests that should be performed after synthesis of some new nanomaterial with potential application in biomedical fields are biocompatibility tests. The aim of this study was to examine the influence of nanomaterial calcium phosphate/poly-(dl-lactide-co-glycolide) (CP/PLGA) on proliferation and adherence of HeLa cells in culture. For both proliferation and adherence examination, cells were treated with suspension of nanomaterial CP/PLGA at concentrations 5, 50 and 500 µg/mL, made in cell culture medium. There were four different types of treatment: (1) cells incubated with CP/PLGA for 3 days; (2) cells incubated with CP/PLGA for 6 days; (3) cells incubated first with CP/PLGA for 3 days and then for the next 3 days with medium and (4) cells incubated first with medium for 3 days and then for the next 3 days with CP/PLGA. Three days after incubation of HeLa cells with different concentrations of CP/PLGA nanoparticles’ suspension, the concentration of 5 µg/mL had mild inhibitory effect on proliferation. Increasing CP/PLGA concentration, there was stimulatory effect on cells’ proliferation. With prolonged incubation period, this dose dependence is lost. The highest adherence of HeLa cells was observed when cells were incubated with the highest examined concentration of CP/PLGA suspension, in both 3-day and 6-day incubation period. Based on the results obtained in our study, we can conclude that the effect of the suspension of nanomaterial CP/PLGA on proliferation and adherence of HeLa cells depends on the duration of incubation with the cells as well as the material concentration and type of the treatment.

Keywords

Nanomaterial CP/PLGA Hela cells Proliferation Adherence 

References

  1. 1.
    L. Zhang, F.X. Gu, J.M. Chan, A.Z. Wang, R.S. Langer, O.C. Farokhzad, Nanoparticles in medicine: therapeutic applications and developments. Clin. Pharmacol. Ther. 83(5), 761–769 (2008)CrossRefGoogle Scholar
  2. 2.
    E.K. Yim, K.W. Leong, Significance of synthetic nanostructures in dictating cellular response. Nanomedicine 1(1), 10–21 (2005)Google Scholar
  3. 3.
    C. Medina, M.J. Santos-Martinez, A. Radomski, O.I. Corrigan, M.W. Radomski, Nanoparticles: pharmacological and toxicological significance. Br. J. Pharmacol. 150(5), 552–558 (2007)CrossRefGoogle Scholar
  4. 4.
    W.H. de Jong, P.J. Borm, Drug delivery and nanoparticles: applications and hazards. Int. J. Nanomed. 3(2), 133–149 (2008)CrossRefGoogle Scholar
  5. 5.
    V.L. Savić, V.D. Nikolić, I.A. Arsić, L.P. Stanojević, S.J. Najman, S. Stojanović, I.I. Mladenović-Ranisavljević, Comparative study of the biological activity of allantoin and aqueous extract of the comfrey root. Phytother. Res. 29(8), 1117–1122 (2015)Google Scholar
  6. 6.
    N. Krunić, Lj. Nikolić, M. Kostić, S. Najman, V. Nikolić, J. Najdanović, In vitro ispitivanje potencijalne toksičnosti oralno tkivnih kondicionera. Hem. Ind. 65(6), 697–706 (2011)Google Scholar
  7. 7.
    M. Kostić, S. Najman, J. Najdanović, N. Krunić, I. Kostić, Application of direct contact test in evaluation of cytotoxicity of acrylic denture base resins. Acta Medica Medianae 51(1), 66–72 (2012)CrossRefGoogle Scholar
  8. 8.
    C.J. Kirkpatrick, C. Mittermayer, Theoretical and practical aspects of testing potential biomaterials in vitro. J. Mater. Sci: Mater. M. 1(1), 9–13 (1990)Google Scholar
  9. 9.
    C.S.S.R. Kumar, Nanomaterials for cancer therapy, Nanotechnologies for lifes sciences (Wiley-VCH Verlag, Weinheim, Germany, 2006)Google Scholar
  10. 10.
    N. Ignjatović, S. Tomić, M. Dakić, M. Miljković, M. Plavšić, D. Uskoković, Synthesis and properties of hydroxyapatite/poly-L-lactide composite biomaterials. Biomaterials 20(9), 809–816 (1999)CrossRefGoogle Scholar
  11. 11.
    N. Ignjatović, V. Savić, S. Najman, M. Plavšić, D. Uskoković, A study of HAp/PLLA composite as a substitute for bone powder, using FT-IR spectroscopy. Biomaterials 22(6), 571–575 (2001)CrossRefGoogle Scholar
  12. 12.
    N. Ignjatović, C. Liu, J. Czernuszka, D. Uskoković, Micro and nano-injectable composite biomaterials containing calcium phosphate coated with poly(dl-lactyde-co-glycolide). Acta Biomater. 3(6), 927–935 (2007)CrossRefGoogle Scholar
  13. 13.
    I.E. Kochanowska, K. Wlodarski, A. Wojtowicz, K. Niemira, K. Ostrowski, Osteogenic properties of various HeLa cell lines and the BMP family genes expression. Ann. Transplant. 7(4), 58–62 (2002)Google Scholar
  14. 14.
    U. Bank, D. Reinhold, S. Ansorge, Measurement of cellular activity with the MTT test. Optimization of the method. Allerg. Immunol. (Leipz) 37(3–4), 119–123 (1991)Google Scholar
  15. 15.
    H.W. Jones Jr., V.A. McKusick, P.S. Harper, K.D. Wuu, G.O. Gey, The HeLa cell and reappraisal of its origin. Obstet. Gynecol. 38(6), 945–949 (1971)Google Scholar
  16. 16.
    J.N. Vournakis, J. Eldridge, M. Demcheva, R.C. Muise-Helmericks, Poly-N-acetyl glucosamine nanofibers regulate endothelial cell movement and angiogenesis: dependency on integrin activation of Ets1. J. Vasc. Res. 45(3), 222–232 (2008)CrossRefGoogle Scholar
  17. 17.
    C.R. Patra, R. Bhattacharya, E. Wang, A. Katarya, J.S. Lau, S. Dutta, M. Muders, S. Wang, S.A. Buhrow, S.L. Safgren, M.J. Yaszemski, J.M. Reid, M.M. Ames, P. Mukherjee, D. Mukhopadhyay, Targeted delivery of gemcitabine to pancreatic adenocarcinoma using cetuximab as a targeting agent. Cancer Res. 68(6), 1970–1978 (2008)CrossRefGoogle Scholar
  18. 18.
    G. Wei, Q. Jin, W.V. Giannobile, P.X. Ma, Nano-fibrous scaffold for controlled delivery of recombinant human PDGF-BB. J. Control Release 112(1), 103–110 (2006)CrossRefGoogle Scholar
  19. 19.
    A. Nemmar, K. Melghit, B.H. Ali, The acute proinflammatory and prothrombotic effects of pulmonary exposure to rutile TiO2 nanorods in rats. Exp. Biol. Med. (Maywood) 233(5), 610–619 (2008)CrossRefGoogle Scholar
  20. 20.
    J.M. Janićijević, S.J. Najman, N.L. Ignjatović, V.P. Savić, J.S. Kocić, P.J. Vasiljević, M.Đ. Vukelić, D.P. Uskoković, Nanomaterial N–CP/DLPLG as potentional tissue graft in osteoreparation in combination with bone marrow cells on subcutaneous implantation model. Hem. Ind. 62(3), 205–210 (2008)CrossRefGoogle Scholar
  21. 21.
    D.C. Miller, A. Thapa, K.M. Haberstroh, T.J. Webster, Enhanced functions of vascular and bladder cells on poly-lactic-co-glycolic acid polymers with nanostructured surfaces. IEEE T. Nanobiosci. 1(2), 61–66 (2002)CrossRefGoogle Scholar
  22. 22.
    R.A.D. Carano, E.H. Filvaroff, Angiogenesis and bone repair. Drug Discov. Today 8(21), 980–989 (2003)CrossRefGoogle Scholar
  23. 23.
    H. Liu, E.B. Slamovich, T.J. Webster, Less harmful acidic degradation of poly(lacticco-glycolic acid) bone tissue engineering scaffolds through titania nanoparticle addition. Int. J. Nanomed. 1(4), 541–545 (2006)CrossRefGoogle Scholar
  24. 24.
    M. Amaral, A.G. Dias, P.S. Gomes, M.A. Lopes, R.F. Silva, J.D. Santos, M.H. Fernandes, Nanocrystalline diamond: in vitro biocompatibility assessment by MG63 and human bone marrow cells cultures. J. Biomed. Mater. Res. A 87(1), 91–99 (2008)CrossRefGoogle Scholar
  25. 25.
    R.A. Hule, R.P. Nagarkar, A. Altunbas, H.R. Ramay, M.C. Branco, J.P. Schneider, D.J. Pochan, Correlations between structure, material properties and bioproperties in self-assembled beta-hairpin peptide hydrogels. Faraday Discuss. 139, 251–264 (2008)CrossRefGoogle Scholar
  26. 26.
    C.K. Hashi, Y. Zhu, G. Yang, W.L. Young, B.S. Hsiao, K. Wang, B. Chu, S. Li, Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts. PNAS 104(29), 11915–11920 (2007)CrossRefGoogle Scholar
  27. 27.
    H. Liu, H. Yazici, C. Ergun, T.J. Webster, H. Bermek, An in vitro evaluation of the Ca/P ratio for the cytocompatibility of nano-to-micron particulate calcium phosphates for bone regeneration. Acta Biomater. 4(5), 1472–1479 (2008)CrossRefGoogle Scholar
  28. 28.
    S.W. Tsai, F.Y. Hsu, P.L. Chen, Beads of collagen-nanohydroxyapatite composites prepared by a biomimetic process and the effects of their surface texture on cellular behavior in MG63 osteoblast-like cells. Acta Biomater. 4(5), 1332–1341 (2008)CrossRefGoogle Scholar
  29. 29.
    M.J. Dalby, G.E. Marshall, H.J. Johnstone, S. Affrossman, M.O. Riehle, Interactions of human blood and tissue cell types with 95-nm-high nanotopography. IEEE T. Nanobiosci. 1(1), 18–23 (2002)CrossRefGoogle Scholar

Copyright information

© Atlantis Press and the author(s) 2017

Authors and Affiliations

  • Jelena G. Najdanović
    • 1
  • Stevo J. Najman
    • 1
  • Sanja Stojanović
    • 1
  • Jelena M. Živković
    • 1
  • Nenad Ignjatović
    • 2
  • Dragan Uskoković
    • 2
  • Miroslav Trajanović
    • 3
  1. 1.Faculty of MedicineUniversity of NišNišSerbia
  2. 2.Institute of Technical Sciences of the Serbian Academy of Sciences and ArtsBelgradeSerbia
  3. 3.Faculty of Mechanical EngineeringUniversity of NišNišSerbia

Personalised recommendations