Microwave Electro Ceramic Based on Magnesium Titanate Compounds

  • S. FilipovićEmail author
Conference paper


The intensive progress in electronics, especially telecommunication and mobile phone in 1990s, was the main driving force for the extensive research and development of microwave ceramics. These materials are often used in manufacturing resonators and antennas, filters and oscillators, etc. For suitable usage of these components, their dielectric properties such as relative dielectric permittivity and dielectric loss are crucial parameters. From that point of view it is necessary to determine property-structure relationship in order to clarify which structure parameter has the dominant influence on each final property. In this paper it was summarized influence of synthesis parameters on the final properties of magnesium titanates based microwave electro ceramic, prepared by solid state reaction.


Magnesium titanate Mechanical activation Sintering Electrical properties 



This research was performed within the project 172057 financed by the Ministry of Education, Science and Technological Development of the Republic of Serbia.


  1. 1.
    N. Setter, R. Waser, Electroceramic materials. Acta Mater. 48, 151–178 (2000)CrossRefGoogle Scholar
  2. 2.
    N. Setter, Electroceramics: looking ahead. J. Eur. Ceram. Soc. 21, 1279–1293 (2001)CrossRefGoogle Scholar
  3. 3.
    B. Melnick, J. Cuchiro, L. Mcmillian, C. Paz de Araujo, J. Scott, Process optimization and characterization of device worthy sol-gel based PZT for ferroelectric memories. Ferroelectrics 112, 329–351 (1990)CrossRefGoogle Scholar
  4. 4.
    I.M. Reaney, D. Iddles, Microwave dielectric ceramics for resonators and filters in mobile phone networks. J. Am. Ceram. Soc. 89(7), 2063–2072 (2006)Google Scholar
  5. 5.
    M. Onoda, J. Kuwata, K. Ksnets, K. Toyama, S. Nomura, Ba(Zn1/3Nb2/3)O3-Sr(Zn1/3Nb2/3)O3 solid solution ceramics with temperature-stable high dielectric constant and low microwave loss. Jpn. J. Appl. Phys. 21, 1707–1710 (1982)CrossRefGoogle Scholar
  6. 6.
    W. Wersing, Microwave ceramics for resonators and filters. Curr. Opin. Solid State Mater. Sci. 1(5), 715–731 (1996)CrossRefGoogle Scholar
  7. 7.
    R. Piagai, T. Kim, J.G. Park, Y. Kim, Microwave dielectric properties of magnesium calcium titanate ceramics prepared by semi-alkoxide methods. J. Korean Ceram. Soc. 32, S367–S370 (1998)Google Scholar
  8. 8.
    S. Filipović, N. Obradović, V.B. Pavlović, M. Mitrić, A. Đorđević, M. Kachlik, K. Maca, Effect of consolidation parameters on structural, microstructural and electrical properties of magnesium titanate ceramics. Ceram. Int. 42, 9887–9898 (2016)CrossRefGoogle Scholar
  9. 9.
    E.S. Kim, S.N. Seo, Evaluation of microwave dielectric properties of MgO-TiO2 system by dielectric mixing rules. J. Korean Ceram. Soc. 47, 163–168 (2010)CrossRefGoogle Scholar
  10. 10.
    Y.M. Miao, Q.L. Zhang, H. Yang, H.P. Wang, Low-temperature synthesis of nano-crystalline magnesium titanate materials by the sol-gel method. Mater. Sci. Eng., B 128, 103–106 (2006)CrossRefGoogle Scholar
  11. 11.
    A. Belous, O. Ovchar, D. Durilin, M.M. Krzmanac, M. Valant, D. Suvorov, High-Q microwave dielectric materials based on the spinel Mg2TiO4. J. Am. Ceram. Soc. 89, 3441–3445 (2006)CrossRefGoogle Scholar
  12. 12.
    A. Belous, O. Ovchar, D. Durylin, M. Valant, M.M. Krzmanac, D. Suvorov, Microwave composite dielectrics based on magnesium titanates. J. Eur. Ceram. Soc. 27, 2966–3963 (2007)Google Scholar
  13. 13.
    Y.B. Chen, Dielectric properties and crystal structure of Mg2TiO4 ceramics substituting Mg2+ with Zn2+ and Co2+. J. Alloys Comp. 523, 481–486 (2012)CrossRefGoogle Scholar
  14. 14.
    M.A. Reis, L.C. Alves, N.P. Barradas, P.C. Chaves, B. Nunes, A. Taborda, K.P. Surendran, A. Wu, P.M. Vilarinho, E. Alves, High resolution and differential PIXE combined with RBS, EBS and AFM analyses of magnesium titanate (MgTiO3) multilayer structures. Nucl. Instrum. Methods Phys. Res. B 268, 1980–1985 (2010)CrossRefGoogle Scholar
  15. 15.
    J. Bernard, F. Belnou, D. Houivet, J.M. Haussonne, Low sintering temperature of MgTiO3 for type I capacitors. J. Eur. Ceram. Soc. 25, 2779–2783 (2005)CrossRefGoogle Scholar
  16. 16.
    B.A. Wechsler, A. Navrotsky, Thermodynamics and structural chemistry of compounds in the system MgO-TiO2. J. Solid State Chem. 55, 165–180 (1984)CrossRefGoogle Scholar
  17. 17.
    J. Zabicky, G. Kimmel, E. Goncharov, F. Guirado, Magnesium titanate, phases from xerogels by hot stage, X-ray powder diffractometry. Zeitschrift für Kristallographie Supplements 30, 347–352 (2009)CrossRefGoogle Scholar
  18. 18.
    R.C. Ropp, Encyclopedia of the alkaline earth compounds (Elsevier, Amsterdam, 2013)Google Scholar
  19. 19.
    H.S.C. O’Neill, D.R. Scott, The free energy of formation of Mg2TiO4 (synthetic qandilite), an inverse spinel with configurational entropy. Eur. J. Miner. 17, 315–323 (2005)CrossRefGoogle Scholar
  20. 20.
    V. Parvanova, M. Maneva, Thermal decomposition of magnesium peroxotitanate to MgTiO3. Thermochim. Acta 279, 137–141 (1996)CrossRefGoogle Scholar
  21. 21.
    H. Kang, L. Wang, D. Xue, K. Li, C. Liu, Synthesis of tetragonal flake-like magnesium titanate nanocrystallites. J. Alloys Comp. 460, 160–163 (2008)CrossRefGoogle Scholar
  22. 22.
    S. Filipović, N. Obradović, V.B. Pavlović, S. Marković, M. Mitrić, M.M. Ristić, Influence of mechanical activation on microstructure and crystal structure of sintered MgO-TiO2 system. Sci. Sint. 42, 143–151 (2010)CrossRefGoogle Scholar
  23. 23.
    N. Obradović, S. Filipović, V.B. Pavlović, A. Maričić, N. Mitrović, I. Balać, M.M. Ristić, Sintering of mechanically activated magnesium-titanate and barium-zinc-titanate ceramics. Sci. Sint. 43, 145–151 (2011)CrossRefGoogle Scholar
  24. 24.
    S. Filipovic, N. Obradovic, D. Kosanovic, V. Pavlovic, A. Djordjevic, Sintering of the mechanically activated MgO-TiO2 system. J. Ceram. Process. Res. 14(1), 31–34 (2013)Google Scholar
  25. 25.
    S. Filipović, N. Obradović, J. Krstić, M. Šćepanović, V. Pavlović, V. Paunović, M.M. Ristić, Structural characterization and electrical properties of sintered magnesium-titanate ceramics. J. Alloys Comp. 555, 39–44 (2013)CrossRefGoogle Scholar
  26. 26.
    C.H. Wang, X.P. Jing, W. Feng, J. Lu, Assignment of Raman-active vibrational modes of MgTiO3. J. Appl. Phys. 104, 034112–034116 (2008)CrossRefGoogle Scholar
  27. 27.
    T. Hirata, K. Ishioka, M. Kitajima, Vibrational spectroscopy and X-ray diffraction of perovskite compounds Sr1-xMxTiO3 (M = Ca, Mg; 0 ≤ x ≤ 1). J. Solid State Chem. 124, 353–359 (1996)CrossRefGoogle Scholar
  28. 28.
    N. Obradović, M.V. Nikolić, N. Nikolić, S. Filipović, M. Mitrić, V. Pavlović, P.M. Nikolić, A.R. Đorđević, M.M. Ristić, Synthesis of barium-zinc-titanate ceramics. Sci. Sint. 44, 65–71 (2012)CrossRefGoogle Scholar
  29. 29.
    N. Obradovic, S. Filipovic, V. Pavlovic, V. Paunovic, M. Mitric, M.M. Ristic, Structural and electrical properties of sintered barium-zinc-titanate ceramics. Acta Phys. Pol., A 120, 322–325 (2011)CrossRefGoogle Scholar
  30. 30.
    S. Filipović, Ph.D. thesis, Čačak (2015)Google Scholar

Copyright information

© Atlantis Press and the author(s) 2017

Authors and Affiliations

  1. 1.Institute of Technical Science of Serbian Academy of Science and ArtsBelgradeSerbia

Personalised recommendations