Confined Aqueous Media for the Cleaning of Cultural Heritage: Innovative Gels and Amphiphile-Based Nanofluids

  • Nicole Bonelli
  • David Chelazzi
  • Michele Baglioni
  • Rodorico Giorgi
  • Piero Baglioni


This chapter presents the applicative potentialities of gels for the cleaning of artworks surfaces. In particular, innovative physical and chemical gels, with high water retention capability, high responsiveness to external stimuli, and suitable mechanical properties, are described. The high solvent retention capability and the specific mechanical properties of these gels allow the safe cleaning of artifacts, even including water-sensitive substrates. In fact, the cleaning action is limited to the contact surface, and the complete removal of soil is achieved while avoiding solvent spreading and absorption within the substrate. In particular, the use of gels based on semi-interpenetrating (IPN) polymer networks provides great advantages because these gels are able to load water-based detergent systems, such as micellar solutions and microemulsions, which are effective in removing synthetic adhesives and highly hydrophobic detrimental materials. The combination of semi-IPN polymer networks with these detergents allows the cleaning of sensitive substrates such as canvas paintings and manuscripts.


Cultural Heritage Cleaning Action Cleaning Tool Cleaning Fluid Calcium Acetate Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Aurelia Chevalier is acknowledged for her help in the assessment of acrylamide-based hydrogels for the removal of polymeric coatings from relining canvases. Florence Gorel is acknowledged for the preparation of samples for the assessment of p(HEMA)/PVP hydrogels. Vittoria Castoldi and Luciano Formica (Studio Restauri Formica s.r.l.) are gratefully acknowledged for giving us the opportunity to test the nanofluid-loaded hydrogels on an extremely interesting conservation case. Patrizia Buratti (Studio Restauri Formica s.r.l.) is acknowledged for the assistance during the cleaning test on the painting by E. Castellani. This work was partly funded by NANOFORART—Nano-materials for the conservation and preservation of movable and immovable artworks, FP7-NMP European project ( and NANORESTART—NANOmaterials for the REStoration of works of ART, EU programme Horizon 2020 (


  1. Alemán JV, Chadwick AV, He J et al (2007) Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC Recommendations 2007). Pure Appl Chem. doi: 10.1351/pac200779101801 Google Scholar
  2. Almdal K, Dyre J, Hvidt S, Kramer O (1993) Towards a phenomenological definition of the term “gel”. Polym Gels Netw 1:5–17. doi: 10.1016/0966-7822(93)90020-I CrossRefGoogle Scholar
  3. Angelova LV, Terech P, Natali I et al (2011) Cosolvent gel-like materials from partially hydrolyzed poly(vinyl acetate)s and borax. Langmuir ACS J Surf Colloids 27:11671–11682. doi: 10.1021/la202179e CrossRefGoogle Scholar
  4. Arnott S, Fulmer A, Scott WE et al (1974) The agarose double helix and its function in agarose gel structure. J Mol Biol 90:269–284. doi: 10.1016/0022-2836(74)90372-6 CrossRefGoogle Scholar
  5. Baglioni P, Chelazzi D (2013) Nanoscience for the conservation of works of art. Royal Society of ChemistryGoogle Scholar
  6. Baglioni M, Rengstl D, Berti D et al (2010) Removal of acrylic coatings from works of art by means of nanofluids: understanding the mechanism at the nanoscale. Nanoscale 2:1723. doi: 10.1039/c0nr00255k CrossRefGoogle Scholar
  7. Baglioni M, Giorgi R, Berti D, Baglioni P (2012) Smart cleaning of cultural heritage: a new challenge for soft nanoscience. Nanoscale 4:42. doi: 10.1039/c1nr10911a CrossRefGoogle Scholar
  8. Baglioni M, Raudino M, Berti D et al (2014a) Nanostructured fluids from degradable nonionic surfactants for the cleaning of works of art from polymer contaminants. Soft Matter 10:6798–6809. doi: 10.1039/C4SM01084A CrossRefGoogle Scholar
  9. Baglioni P, Chelazzi D, Giorgi R (2014b) Nanotechnologies in the conservation of cultural heritage: a compendium of materials and techniques. Springer, BerlinGoogle Scholar
  10. Baglioni M, Jàidar Benavides Y, Berti D et al (2015) An amine-oxide surfactant-based microemulsion for the cleaning of works of art. J Colloid Interface Sci 440:204–210. doi: 10.1016/j.jcis.2014.10.003 CrossRefGoogle Scholar
  11. Banik G, Cremonesi P, de la Chappelle A, Montalbano L (2003) Nuove metodologie nel resaturo del materiale cartaceo. Il Prato, PadovaGoogle Scholar
  12. Bonini M, Lenz S, Giorgi R, Baglioni P (2007) Nanomagnetic sponges for the cleaning of works of art. Langmuir 23:8681–8685. doi: 10.1021/la701292d CrossRefGoogle Scholar
  13. Bonini M, Lenz S, Falletta E et al (2008) Acrylamide-based magnetic nanosponges: a new smart nanocomposite material. Langmuir 24:12644–12650. doi: 10.1021/la802425k CrossRefGoogle Scholar
  14. Borgioli L, Caminati G, Gabrielli G, Ferroni E (1995) Removal of hydrophobic impurities from pictorial surfaces by means of heterogeneous systems. Sci Technol Cult Herit J 4:67–74Google Scholar
  15. Burnstock A, Kieslich T (1996) A study of the clearance of solvent gels used for varnish removal from paintings. James & James, London, pp 253–262Google Scholar
  16. Burnstock A, White R (2000) A preliminary assessment of the aging/degradation of Ethomeen C-12 residues from solvent gel formulations and their potential for inducing changes in resinous paint mediaGoogle Scholar
  17. Burnstock A, Learner T, Learner T, Learner T (1992) Changes in the surface characteristics of artificially aged mastic varnishes after cleaning using alkaline reagents. Stud Conserv 37:165–184Google Scholar
  18. Carretti E, Dei L, Miliani C, Baglioni P (2001) Oil-in-water microemulsions to solubilize acrylic copolymers: application in cultural heritage conservation. In: Koutsoukos PPG (ed) Trends in colloid and interface science XV. Springer, Berlin, pp 63–67CrossRefGoogle Scholar
  19. Carretti E, Dei L, Baglioni P (2003a) Solubilization of acrylic and vinyl polymers in nanocontainer solutions. application of microemulsions and micelles to cultural heritage conservation. Langmuir 19:7867–7872. doi: 10.1021/la034757q CrossRefGoogle Scholar
  20. Carretti E, Dei L, Baglioni P, Weiss RG (2003b) Synthesis and characterization of gels from polyallylamine and carbon dioxide as gellant. J Am Chem Soc 125:5121–5129. doi: 10.1021/ja034399d CrossRefGoogle Scholar
  21. Carretti E, Dei L, Macherelli A, Weiss RG (2004) Rheoreversible polymeric organogels: the art of science for art conservation. Langmuir ACS J Surf Colloids 20:8414–8418. doi: 10.1021/la0495175 CrossRefGoogle Scholar
  22. Carretti E, Dei L, Weiss RG (2005) Soft matter and art conservation. Rheoreversible gels and beyond. Soft Matter 1:17–22. doi: 10.1039/b501033k CrossRefGoogle Scholar
  23. Carretti E, Giorgi R, Berti D, Baglioni P (2007) Oil-in-water nanocontainers as low environmental impact cleaning tools for works of art: two case studies. Langmuir 23:6396–6403. doi: 10.1021/la700487s CrossRefGoogle Scholar
  24. Carretti E, Dei L, Weiss RG, Baglioni P (2008) A new class of gels for the conservation of painted surfaces. J Cult Herit 9:386–393. doi: 10.1016/j.culher.2007.10.009 CrossRefGoogle Scholar
  25. Carretti E, Grassi S, Cossalter M et al (2009) Poly(vinyl alcohol)—borate hydro/cosolvent gels: viscoelastic properties, solubilizing power, and application to art conservation. Langmuir 25:8656–8662. doi: 10.1021/la804306w CrossRefGoogle Scholar
  26. Carretti E, Bonini M, Dei L et al (2010a) New frontiers in materials science for art conservation: responsive gels and beyond. Acc Chem Res 43:751–760. doi: 10.1021/ar900282h CrossRefGoogle Scholar
  27. Carretti E, Natali I, Matarrese C et al (2010b) A new family of high viscosity polymeric dispersions for cleaning easel paintings. J Cult Herit 11:373–380. doi: 10.1016/j.culher.2010.04.002 CrossRefGoogle Scholar
  28. Casoli A, Di Diego Z, Isca C (2014) Cleaning painted surfaces: evaluation of leaching phenomenon induced by solvents applied for the removal of gel residues. Environ Sci Pollut Res Int 21:13252–13263. doi: 10.1007/s11356-014-2658-5 CrossRefGoogle Scholar
  29. Chevalier A, Chelazzi D, Baglioni P et al (2008) Extraction d’adhésifs de rentoilage en peinture de chevalet: nouvelle approche. Allied Publishers, New Delhi, pp 581–589Google Scholar
  30. Cosgrove T (2010) Colloid science: principles, methods and applications. Wiley, LondonGoogle Scholar
  31. Cremonesi P (2006) Applicazione di metodologie di intervento più recenti per la pulitura del materiale cartaceo. In: Atti delle giornate di studio Problemi di Restauro. Il Prato, pp 39–46Google Scholar
  32. Danielsson I, Lindman B (1981) The definition of microemulsion. Colloids Surf 3:391–392. doi: 10.1016/0166-6622(81)80064-9 CrossRefGoogle Scholar
  33. Djabourov M, Nishinari K, Ross-Murphy SB (2013) Physical gels from biological and synthetic polymers. Cambridge University Press, CambridgeGoogle Scholar
  34. Domingues JAL, Bonelli N, Giorgi R et al (2013) Innovative hydrogels based on semi-interpenetrating p(HEMA)/PVP networks for the cleaning of water-sensitive cultural heritage artifacts. Langmuir 29:2746–2755. doi: 10.1021/la3048664 CrossRefGoogle Scholar
  35. Domingues J, Bonelli N, Giorgi R, Baglioni P (2014) Chemical semi-IPN hydrogels for the removal of adhesives from canvas paintings. Appl Phys A 114:705–710. doi: 10.1007/s00339-013-8150-0 CrossRefGoogle Scholar
  36. Evans DF, Wennerström H (1999) The colloidal domain: where physics, chemistry, biology, and technology meet. Wiley, LondonGoogle Scholar
  37. Fanun M (2008) Microemulsions: properties and applications. CRC Press, Boca RatonGoogle Scholar
  38. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, IthacaGoogle Scholar
  39. Giorgi R, Baglioni M, Berti D, Baglioni P (2010) New methodologies for the conservation of cultural heritage: micellar solutions, microemulsions, and hydroxide nanoparticles. Acc Chem Res 43:695–704. doi: 10.1021/ar900193h CrossRefGoogle Scholar
  40. Goldberg LA (1989) A fresh face for Samuel Gompers: methyl cellulose poultice cleaning. J Am Inst Conserv 28:19–29. doi: 10.1179/019713689806046228 CrossRefGoogle Scholar
  41. Gorel F (2010) Assessment of agar gel loaded with micro-emulsion for the cleaning of porous surfacesGoogle Scholar
  42. Grassi S, Favaro M, Tomasin P, Dei L (2009) Nanocontainer aqueous systems for removing polymeric materials from marble surfaces: a new and promising tool in cultural heritage conservation. J Cult Herit 10:347–355. doi: 10.1016/j.culher.2008.10.003 CrossRefGoogle Scholar
  43. Gulotta D, Saviello D, Gherardi F et al (2014) Setup of a sustainable indoor cleaning methodology for the sculpted stone surfaces of the Duomo of Milan. Herit Sci 2:1–13. doi: 10.1186/2050-7445-2-6 CrossRefGoogle Scholar
  44. Hermans PH (1949) Gels. In: Kruyt HR (ed) Colloid science. Elsevier Publishing Company, Amsterdam, pp 483–651Google Scholar
  45. Holmberg K, Jönsson B, Kronberg B, Lindman B (2002) Surfactants and polymers in aqueous solution. Wiley, LondonGoogle Scholar
  46. Khandekar N, Phenix A, Sharp J (1994) Pilot study into the effects of solvents on artificially aged egg tempera films. Conservator 18:62–72. doi: 10.1080/01410096.1994.9995086 CrossRefGoogle Scholar
  47. Kopeček J, Yang J (2007) Hydrogels as smart biomaterials. Polym Int 56:1078–1098. doi: 10.1002/pi.2253 CrossRefGoogle Scholar
  48. Langevin D (1988) Microemulsions. Acc Chem Res 21:255–260. doi: 10.1021/ar00151a001 CrossRefGoogle Scholar
  49. Laughlin RG (1994) The aqueous phase behavior of surfactants. Academic Press, LondonGoogle Scholar
  50. Lloyd DJ (1926) The problem of gel structure. In: Alexander J (ed) Colloid chemistry: theoretical and applied. The Chemical Catalogue Company, New York, pp 767–782Google Scholar
  51. LoNostro P, Choi S-M, Ku C-Y, Chen S-H (1999) Fluorinated microemulsions: a study of the phase behavior and structure. J Phys Chem B 103:5347–5352. doi: 10.1021/jp9827025 CrossRefGoogle Scholar
  52. Mao R, Tang J, Swanson BG (2001) Water holding capacity and microstructure of gellan gels. Carbohydr Polym 46:365–371. doi: 10.1016/S0144-8617(00)00337-4 CrossRefGoogle Scholar
  53. Marchiafava V, Bartolozzi G, Cucci C, et al (2014) Colour measurements for monitoring the conservation of contemporary artworksGoogle Scholar
  54. Mazzuca C, Micheli L, Cervelli E et al (2014) Cleaning of paper artworks: development of an efficient gel-based material able to remove starch paste. ACS Appl Mater Interfaces 6:16519–16528. doi: 10.1021/am504295n CrossRefGoogle Scholar
  55. Micheli L, Mazzuca C, Cervelli E, Palleschi A (2014) New strategy for the cleaning of paper artworks: a smart combination of gels and biosensors. Adv Chem 2014:e385674. doi: 10.1155/2014/385674 CrossRefGoogle Scholar
  56. Mitchell DJ, Ninham BW (1981) Micelles, vesicles and microemulsions. J Chem Soc Faraday Trans 2 Mol Chem Phys 77:601–629. doi: 10.1039/F29817700601 CrossRefGoogle Scholar
  57. Natali I, Carretti E, Angelova L et al (2011) Structural and mechanical properties of “peelable” organoaqueous dispersions with partially hydrolyzed Poly(vinyl acetate)-Borate networks: applications to cleaning painted surfaces. Langmuir 27:13226–13235. doi: 10.1021/la2015786 CrossRefGoogle Scholar
  58. Phenix A, Sutherland K (2001) The cleaning of paintings: effects of organic solvents on oil paint films. Rev Conserv 2:47–60Google Scholar
  59. Pizzorusso G, Fratini E, Eiblmeier J et al (2012) Physicochemical characterization of acrylamide/bisacrylamide hydrogels and their application for the conservation of easel paintings. Langmuir 28:3952–3961. doi: 10.1021/la2044619 CrossRefGoogle Scholar
  60. Qiu Z, Texter J (2008) Ionic liquids in microemulsions. Curr Opin Colloid Interface Sci 13:252–262. doi: 10.1016/j.cocis.2007.10.005 CrossRefGoogle Scholar
  61. Robinson BH (2003) Self-assembly. IOS PressGoogle Scholar
  62. Stauffer D, Coniglio A, Adam M (1982) Gelation and critical phenomena. In: Dušek K (ed) Polymer networks. Springer, Berlin, pp 103–158CrossRefGoogle Scholar
  63. Stavroudis C, Doherty T, Wolbers R (2005) A new approach to cleaning i: using mixtures of concentrated stock solutions and a database to arrive at an optimal aqueous cleaning system. WAAC Newsl 27:17–28Google Scholar
  64. Stockmayer WH (1944) Theory of molecular size distribution and gel formation in branched polymers II. General cross linking. J Chem Phys 12:125–131. doi: 10.1063/1.1723922 CrossRefGoogle Scholar
  65. Stubenrauch C (2008) Microemulsions: background, new concepts, applications, perspectives. Wiley, LondonGoogle Scholar
  66. Stulik D, Miller D, Khandekar N et al (2004) Solvent gels for the cleaning of works of art: the residue question. Getty Publications, Los AngelesGoogle Scholar
  67. Takahashi R, Akutu M, Kubota K, Nakamura K (1999) Characterization of gellan gum in aqueous NaCl solution. In: Nishinari K (ed) Physical chemistry and industrial application of gellan gum. Springer, Berlin, pp 1–7CrossRefGoogle Scholar
  68. Wichterle O, Lím D (1960) Hydrophilic gels for biological use. Nature 185:117–118. doi: 10.1038/185117a0 CrossRefGoogle Scholar
  69. Wolbers R (2000) Cleaning painted surfaces: aqueous methods. Archetype, LondonGoogle Scholar
  70. Wolbers R, Sterman N, Stavroudis C (1988) Notes for the workshop on new methods in the cleaning of paintings. The Getty Conservation Institute, Marina del ReyGoogle Scholar
  71. Zallen R (1983) The physics of amorphous solids. Wiley, New YorkCrossRefGoogle Scholar
  72. Zana R (1987) Surfactant solutions: new methods of investigation. M. DekkerGoogle Scholar

Copyright information

© Atlantis Press and the author(s) 2016

Authors and Affiliations

  • Nicole Bonelli
    • 1
  • David Chelazzi
    • 1
  • Michele Baglioni
    • 1
  • Rodorico Giorgi
    • 1
  • Piero Baglioni
    • 1
  1. 1.Department of Chemistry and CSGIUniversity of FlorenceFlorenceItaly

Personalised recommendations