IDyOT: A Computational Theory of Creativity as Everyday Reasoning from Learned Information

Chapter
Part of the Atlantis Thinking Machines book series (ATLANTISTM, volume 7)

Abstract

We present progress towards a computational cognitive architecture, IDyOT (Information Dynamics of Thinking) that is intended to account for certain aspects of human creativity and other forms of cognitive processing in terms of a pre-conscious predictive loop. The theory is motivated in terms of the evolutionary pressure to be efficient. It makes several predictions that may be tested by building computational implementations and studying their behaviour.

References

  1. 1.
    Baars, B.J.: A Cognitive Theory of Consciousness. Cambridge University Press, Cambridge (1988)Google Scholar
  2. 2.
    Bengio, Y.: Learning deep architectures for ai. Found. Trends Mach. Learn. 2(1), 1–127 (2009). doi:10.1561/2200000006 CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Boden, M.A.: The Creative Mind: Myths and Mechanisms. Weidenfield and Nicholson, London (1990)Google Scholar
  4. 4.
    Brooks, R., Meltzoff, A.N.: The development of gaze following and its relation to language. Dev. Sci. 8(6), 535–543 (2005). doi:10.1111/j.1467-7687.2005.00445.x CrossRefGoogle Scholar
  5. 5.
    Chalmers, D.J.: The Conscious Mind: In Search of a Fundamental Theory. Oxford University Press, Oxford (1996)MATHGoogle Scholar
  6. 6.
    Cohen, P., Adams, N.: An algorithm for segmenting categorical time series into meaningful episodes. In: Hoffmann, F., Hand, D., Adams, N., Fisher, D., Guimaraes, G. (eds.) Advances in Intelligent Data Analysis. Lecture Notes in Computer Science, pp. 198–207. Springer, Berlin (2001). doi:10.1007/3-540-44816-0_20
  7. 7.
    Conklin, D.: Prediction and entropy of music. Master’s thesis, Department of Computer Science, University of Calgary, Canada (1990). http://pharos.cpsc.ucalgary.ca:80/Dienst/UI/2.0/Describe/ncstrl.ucalgary_cs/1989-352-14?abstract=
  8. 8.
    Conklin, D., Witten, I.H.: Multiple viewpoint systems for music prediction. J. New Music Res. 24, 51–73 (1995)CrossRefGoogle Scholar
  9. 9.
    Corkill, D.D.: Blackboard systems. AI Expert 6(9), 40–47 (1991)Google Scholar
  10. 10.
    Egermann, H., Pearce, M., Wiggins, G., McAdams, S.: Probabilistic models of expectation violation predict psychophysiological emotional responses to live concert music. Cognit. Affect. Behav. Neurosci. 13(3), 533–553 (2013). doi:10.3758/s13415-013-0161-y CrossRefGoogle Scholar
  11. 11.
    Eshghi, A., Purver, M., Hough, J.: Probabilistic induction for an incremental semantic grammar. In: Proceedings of the 10th International Conference on Computational Semantics (IWCS 2013)—Long Papers, pp. 107–118. Association for Computational Linguistics, Potsdam, Germany (2013). http://www.aclweb.org/anthology/W13-0110
  12. 12.
    Fairbanks, G., Grubb, P.: A psychophysical investigation of vowel formants. J. Speech Hear. Res. 4, 203–219 (1961)CrossRefGoogle Scholar
  13. 13.
    Fink, A., Grabner, R.H., Benedek, M., Reishofer, G., Hauswirth, V., Fally, M., Neuper, C., Ebner, F., Neubauer, A.C.: The creative brain: investigation of brain activity during creative problem solving by means of eeg and fmri. Hum. Brain Map. 30, 734–748 (2009)CrossRefGoogle Scholar
  14. 14.
    Fitch, W.T., Hauser, M.D., Chomsky, N.: The evolution of the language faculty: clarifications and implications. Cognition 97, 179–210 (2005)CrossRefGoogle Scholar
  15. 15.
    Fodor, J.: Special sciences: or the disunity of science as a working hypothesis. Synthese 28, 97–115 (1974)CrossRefGoogle Scholar
  16. 16.
    Forth, J., Wiggins, G., McLean, A.: Unifying conceptual spaces: concept formation in musical creative systems. Mind. Mach. 20, 503–532 (2010). doi:10.1007/s11023-010-9207-x CrossRefGoogle Scholar
  17. 17.
    Gärdenfors, P.: Conceptual Spaces: The Geometry of Thought. MIT Press, Cambridge (2000)Google Scholar
  18. 18.
    Gobet, F., Lane, P.C.R., Croker, S., Cheng, P.C.H., Jones, G., Oliver, I., Pine, J.M.: Chunking mechanisms in human learning. TRENDS Cognit. Sci. 5(6), 236–243 (2001)CrossRefGoogle Scholar
  19. 19.
    Hale, J.: A probabilistic earley parser as a psycholinguistic model. In: Proceedings of NACL, pp. 159–166 (2001)Google Scholar
  20. 20.
    Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Holmes, E.: The Life of Mozart: Including His Correspondence. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  22. 22.
    Honing, H.: Computational modeling of music cognition: a case study on model selection. Music Percept. 23(5), 365–376 (2006)CrossRefGoogle Scholar
  23. 23.
    Huron, D.: Sweet Anticipation: Music and the Psychology of Expectation. Bradford Books. MIT Press, Cambridge (2006)Google Scholar
  24. 24.
    Luck, M., McBurney, P., Preist, C.: Agent technology: enabling next generation computing. Agentlink. http://calcium.dcs.kcl.ac.uk/841/1/al2roadmap.pdf (2003)
  25. 25.
    Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Processing. MIT Press, Cambridge (1999)MATHGoogle Scholar
  26. 26.
    Marr, D.: Vision: A Computational Approach. Freeman & Co., San Francisco (1982)Google Scholar
  27. 27.
    Marsden, A.: Response to Geraint Wiggins. J. Math. Music 6(2), 125–128 (2012)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Marslen-Wilson, W.D.: Function and process in spoken word recognition. In: Bouma, H., Bouwhuis, D. (eds.) Attention and Performance X: Control of Language Processes, pp. 125–150. Erlbaum, Hillsdale (1984)Google Scholar
  29. 29.
    McClamrock, R.: Marr’s three levels: a re-evaluation. Mind. Mach. 1(2), 185–196 (1991)CrossRefGoogle Scholar
  30. 30.
    Merker, B.: The efference cascade, consciousness, and its self: naturalizing the first person pivot of action control. Front. Psychol. 4(501) (2013). doi:10.3389/fpsyg.2013.00501
  31. 31.
    Meyer, L.B.: Emotion and Meaning in Music. University of Chicago Press, Chicago (1956)Google Scholar
  32. 32.
    Narayanan, S., Jurafsky, D.: A bayesian model predicts human parse preference and reading time in sentence processing. In: Advances in Neural Information Processing Systems, vol. 14, pp. 59–65. MIT Press, Cambridge (2002)Google Scholar
  33. 33.
    Pearce, M.T.: The construction and evaluation of statistical models of melodic structure in music perception and composition. Ph.D. thesis, Department of Computing, City University, London (2005)Google Scholar
  34. 34.
    Pearce, M.T., Conklin, D., Wiggins, G.A.: Methods for combining statistical models of music. In: Wiil, U.K. (ed.) Computer Music Modelling and Retrieval, pp. 295–312. Springer, Heidelberg, Germany (2005). http://www.doc.gold.ac.uk/mas02gw/papers/cmmr04.pdf
  35. 35.
    Pearce, M.T., Herrojo Ruiz, M., Kapasi, S., Wiggins, G.A., Bhattacharya, J.: Unsupervised statistical learning underpins computational, behavioural and neural manifestations of musical expectation. NeuroImage 50(1), 303–314 (2010). doi:10.1016/j.neuroimage.2009.12.019 CrossRefGoogle Scholar
  36. 36.
    Pearce, M.T., Müllensiefen, D., Wiggins, G.A.: The role of expectation and probabilistic learning in auditory boundary perception: a model comparison. Perception 39(10), 1367–1391 (2010)CrossRefGoogle Scholar
  37. 37.
    Pearce, M.T., Wiggins, G.A.: Expectation in melody: the influence of context and learning. Music Percept. 23(5), 377–405 (2006)CrossRefGoogle Scholar
  38. 38.
    Pearce, M.T., Wiggins, G.A.: Evaluating cognitive models of musical composition. In: Cardoso, A., Wiggins, G.A. (eds.) Proceedings of the 4th International Joint Workshop on Computational Creativity, pp. 73–80. Goldsmiths, University of London, London (2007)Google Scholar
  39. 39.
    Pearce, M.T., Wiggins, G.A.: Auditory expectation: the information dynamics of music perception and cognition. Top. Cognit. Sci. 4(4), 625–652 (2012)CrossRefGoogle Scholar
  40. 40.
    Perruchet, P., Vinter, A.: Parser: a model for word segmentation. J. Mem. Lang. 39, 246–263 (1998)CrossRefGoogle Scholar
  41. 41.
    Ponsford, D., Wiggins, G.A., Mellish, C.: Statistical learning of harmonic movement. J. New Music Res. 28(2), 150–177 (1999). http://www.soi.city.ac.uk/geraint/papers/JNMR97.pdf
  42. 42.
    Reynar, J.C., Ratnaparkhi, A.: A maximum entropy approach to identifying sentence boundaries. In: Proceedings of the 5th Conference on Applied Natural Language Processing, ANLC’97, pp. 16–19. Association for Computational Linguistics, Stroudsburg (1997). doi:10.3115/974557.974561
  43. 43.
    Saffran, J.R., Griepentrog, G.J.: Absolute pitch in infant auditory learning: evidence for developmental reorganization. Dev. Psychol. 37(1), 74–85 (2001). http://www.waisman.wisc.edu/infantlearning/publications/DevPsychAP.pdf
  44. 44.
    Servan-Schreiber, E., Anderson, J.R.: Learning artificial grammars with competitive chunking. J. Exp. Psychologyrimeatal Psychol. 16(4), 592–608 (1990)Google Scholar
  45. 45.
    Shanahan, M.: Embodiment and the Inner Life: Cognition and Consciousness in the Space of Possible Minds. Oxford University Press, Oxford (2010)CrossRefGoogle Scholar
  46. 46.
    Shannon, C.: A mathematical theory of communication. Bell Syst. Tech. J. 27(379–423), 623–656 (1948)CrossRefMathSciNetGoogle Scholar
  47. 47.
    Wallas, G.: The Art of Thought. Harcourt Brace, New York (1926)Google Scholar
  48. 48.
    Whorley, R.P., Wiggins, G.A., Rhodes, C., Pearce, M.T.: Multiple viewpoint systems: time complexity and the construction of domains for complex musical viewpoints in the harmonization problem. J. New Music Res. 42(3), 237–266 (2013). doi:10.1080/09298215.2013.831457. http://www.tandfonline.com/doi/abs/10.1080/09298215.2013.831457
  49. 49.
    Wiggins, G.A.: A preliminary framework for description, analysis and comparison of creative systems. J. Knowl. Based Syst. 19(7), 449–458 (2006). doi:10.1016/j.knosys.2006.04.009 CrossRefGoogle Scholar
  50. 50.
    Wiggins, G.A.: Searching for computational creativity. New Gener. Comput. 24(3), 209–222 (2006)CrossRefMATHGoogle Scholar
  51. 51.
    Wiggins, G.A.: Models of musical similarity. Musicae Sci. Discuss. Forum 4A, 315–338 (2007)Google Scholar
  52. 52.
    Wiggins, G.A.: Computer models of (music) cognition. In: Rebuschat, P., Rohrmeier, M., Cross, I., Hawkins, J. (eds.) Language and Music as Cognitive Systems. Oxford University Press, Oxford (2011)Google Scholar
  53. 53.
    Wiggins, G.A.: Defining inspiration? modelling non-conscious creative process. In: Collins, D. (ed.) The Act of Musical Composition: Studies in the Creative Process. Ashgate, Aldershot (2012)Google Scholar
  54. 54.
    Wiggins, G.A.: I let the music speak: cross-domain application of a cognitive model of musical learning. In: Rebuschat, P., Williams, J. (eds.) Statistical Learning and Language Acquisition. Mouton De Gruyter, Amsterdam (2012)Google Scholar
  55. 55.
    Wiggins, G.A.: The mind’s chorus: creativity before consciousness. Cognit. Comput. 4(3), 306–319 (2012). doi:10.1007/s12559-012-9151-6 CrossRefMathSciNetGoogle Scholar

Copyright information

© Atlantis Press and the authors 2015

Authors and Affiliations

  1. 1.Queen Mary University of LondonLondonUK

Personalised recommendations