Advertisement

Complexity Reduction in Fuzzy Systems Using Functional Principal Component Analysis

  • Juan Manuel Escaño
  • Carlos Bordons
Chapter
Part of the Atlantis Computational Intelligence Systems book series (ATLANTISCIS, volume 9)

Abstract

The ability to build fuzzy logic applications for control problems has been hindered by well-known problem of combinatorial rules explosion, causing complexity in modeling

Keywords

Membership Function Fuzzy System Fuzzy Model Fuzzy Control Fuzzy Inference System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Part of the work was supported by the project DPI2010-21589-C05-01 of the Spanish Ministry of Economy and Competitiveness.

References

  1. Bai, Y., Zhuang, H., & Wang, D. (2006). Advanced fuzzy logic technologies in industrial applications (advances in industrial control). Secaucus: Springer. ISBN 1846284686.Google Scholar
  2. Baranyi, P., & Yam, Y. (1997). Singular value-based approximation with takagi-sugeno type fuzzy rule base. In: Proceedings of the Sixth IEEE International Conference on in Fuzzy Systems, vol. 1, pp. 265–270. doi: 10.1109/FUZZY.1997.616379.
  3. Camacho, E., & Bordons, C. (2004). Model predictive control, advanced textbooks in control and signal processing. Springer. ISBN 9781852336943. http://books.google.es/books?id=Sc1H3f3E8CQC
  4. CENELEC. (2000). Programmable controllers - Part 7: Fuzzy control programming (CENELEC).Google Scholar
  5. CENELEC. (2013). Programmable controllers - Part 3: Programming languages. ed 3.0 (CENELEC).Google Scholar
  6. Chen, Y.-J., & Teng, C.-C. (1996). Rule combination in a fuzzy neural network. Fuzzy Sets System, 82, 161–166. doi: 10.1016/0165-0114(95)00252-9.CrossRefMathSciNetGoogle Scholar
  7. Ciftcioglu, O. (2002). Studies on the complexity reduction with orthogonal transformation. In: Proceedings of the 2002 IEEE International Conference on Fuzzy Systems, FUZZ-IEEE’02, vol. 2, pp. 1476–1481. doi: 10.1109/FUZZ.2002.1006724.
  8. Deville, J. (1974). Méthodes statistiques et numériques de l’analyse harmonique, Annales de l’inséé, 15, 3, 5–101.Google Scholar
  9. Escaño, J., Bordons, C., Vilas, C., García, M., & Alonso, A. (2009). Neurofuzzy model based predictive control for thermal batch processes. Journal of Process Control, 19(9), 1566–1575.CrossRefGoogle Scholar
  10. Gegov, A. (2007). Complexity management in fuzzy systems: A rule base compression approach, studies in fuzziness and soft computing, vol. 211. Springer. ISBN 978-3-540-38883-8.Google Scholar
  11. Gruber, J. K., Bordons, C., Bars, R. and Haber, R. (2010). Nonlinear predictive control of smooth nonlinear systems based on volterra models. application to a pilot plant. International Journal of Robust and Nonlinear Control 20(16), 1817–1835. doi: 10.1002/rnc.1549. http://dx.doi.org/10.1002/rnc.1549
  12. Jang, J., Sun, C., & Mizutani, E. (1997). Neuro-fuzzy and soft computing: A computational approach to learning and machine intelligence, MATLAB curriculum series. Prentice Hall. ISBN 9780132610667, http://books.google.es/books?id=vN5QAAAAMAAJ
  13. Jin, Y. (2000). Fuzzy modeling of high-dimensional systems: Complexity reduction and interpretability improvement. IEEE Transactions on Fuzzy Systems, 8(2), 212–221. doi: 10.1109/91.842154.CrossRefGoogle Scholar
  14. Kiriakidis, K. (1998). Fuzzy model-based control of complex plants. IEEE Transactions on Fuzzy Systems, 6(4), 517–529. doi: 10.1109/91.728444.CrossRefGoogle Scholar
  15. Lu, C.-H., & Tsai, C.-C. (2007). Generalized predictive control using recurrent fuzzy neural networks for industrial processes. Journal of Process Control 17(1), 83–92. doi: 10.1016/j.jprocont.2006.08.003. http://www.sciencedirect.com/science/article/pii/S0959152406000904
  16. Marusak, P., & Tatjewski, P. (2009). Effective dual-mode fuzzy dmc algorithms with on-line quadratic optimization and guaranteed stability. Internaitonal Journal of Application of Mathmatics and Computer Science, 19(1), 127–142. doi: 10.2478/v10006-009-0012-8. http://dx.doi.org/10.2478/v10006-009-0012-8
  17. Ross, T. J. (2004). Fuzzy logic with engineering applications. Wiley. ISBN 0470860758. http://www.worldcat.org/isbn/0470860758
  18. Schneider. (2009). Fuzzy control library v1.2, Technical Report 33004219.02, Schneider Electric.Google Scholar
  19. Setnes, M., Babuška, R., & Verbruggen, H. B. (1998). Complexity reduction in fuzzy modeling. Mathematics and Computer Simulation, 46, 507–516. doi: 10.1016/S0378-4754(98)00079-2. http://dl.acm.org/citation.cfm?id=284142.284163
  20. Simon, D. (2000). Design and rule base reduction of a fuzzy filter for the estimation of motor currents. International Journal of Approximation Reasoning, 25(2), 145–167.CrossRefzbMATHGoogle Scholar
  21. Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, 15(1), 116–132.CrossRefzbMATHGoogle Scholar
  22. Tatjewski, P. (2007). Advanced control of industrial processes: Structures and algorithms, advances in industrial control. Springer. ISBN 9781846286346. http://books.google.es/books?id=e_QEnZB0PLoC.
  23. Yam, Y. (1997). Fuzzy approximation via grid point sampling and singular value decomposition. IEEE Transactions on Systems, Man, and Cybernetics Part B, 27(6), 933–951. doi: 10.1109/3477.650055. http://dx.doi.org/10.1109/3477.650055
  24. Yen, J., & Wang, L. (1999). Simplifying fuzzy rule-based models using orthogonal transformation methods. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 29(1), 13–24. doi: 10.1109/3477.740162.CrossRefGoogle Scholar

Copyright information

© Atlantis Press and the authors 2014

Authors and Affiliations

  1. 1.Nimbus CentreCork Institute of TechnologyCorkIreland
  2. 2.Department of Systems Engineering and Automatic ControlUniversity of SevilleSevilleSpain

Personalised recommendations