Skip to main content

Evolution and Ecological Change During the New Zealand Quaternary

  • Chapter
  • First Online:
Landscape and Quaternary Environmental Change in New Zealand

Part of the book series: Atlantis Advances in Quaternary Science ((AAQS,volume 3))

Abstract

The biotic- and ecological-changes of the New Zealand Quaternary unfolded against a background of mountain-building, marine transgression and volcanism—a legacy of the mid-Tertiary that continued unabated through the Plio-Pleistocene. In the stable, warm northern regions much of the old Tertiary biota survives; in the mountainous, glaciated south, species-rich clades have radiated into the mountains and dry, lee-side habitats of the Quaternary. During cold glacial periods, forest was sparse in the southern two-thirds of the archipelago, but nowhere was it eliminated. Forest blanketed all regions below treeline during interglacials. The repeated climate fluctuations of the Quaternary left a strong imprint on biotic distributions. In southern districts, we infer widespread glacial survival of nearly the entire biota with rapid local spread during interglacial warmings, and only limited invasion from more distant areas. However, not all species distributions can be attributed to recent Quaternary glacial cycles. Molecular studies of numerous invertebrate, vertebrate and plant groups have shown that biotic patterns may just as easily reflect mountain building, Pliocene island formation and reabsorption, and long-distance trans-oceanic dispersal. Human settlement in the 13th century destroyed more than one third of the lowland forests and eliminated a large proportion of the terrestrial bird fauna including the large herbivorous moa. The current biota is still adjusting to the consequences of increased fire in an archipelago where fire was not naturally common, loss of avian browsers and pollinators, and introduction of invasive species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alloway BV, Stewart RB, Neall VE, Vucetich CG (1992) Climate of the Last Glaciation in New Zealand, based on aerosolic quartz influx in an andesitic terrain Quat Res 38:170-179

    Google Scholar 

  • Alloway BV, Lowe DJ, Barrell DJA, et al. (2007) Towards a climate event stratigraphy for New Zealand over the past 30 000 years (NZ-INTIMATE project) J Quat Sci 22:9-35 doi:10.1002/jqs.1079

  • Anderson RF, Ali S, Bradtmiller LI, et al. (2009) Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2 Science 323:1443-1448

    Google Scholar 

  • Anderson SH, Kelly D, Ladley JJ, et al. (2011) Cascading effects of bird functional extinction reduce pollination and plant density Science 331:1068-1071 doi:10.1126/science.1199092

  • Atkinson IAE, Greenwood RM (1989) Relationships between moas and plants N Z J Ecol 12:67-96

    Google Scholar 

  • Augustinus P, D’Costa D, Deng YB, et al. (2011) A multi-proxy record of changing environments from ca. 30 000 to 9000 cal. a BP: Onepoto maar palaeolake, Auckland, New Zealand J Quat Sci 26:389-401 doi:10.1002/jqs.1463

  • Bannister JM, Conran JG, Lee DE (2012) Lauraceae from rainforest surrounding an early Miocene maar lake, Otago, southern New Zealand Rev Palaeobot Palynol 178:13-34 doi:10.1016/j.revpalbo.2012.03.015

  • Beale CM, Lennon JL, Gimona A (2008) Opening the climate envelope reveals no macroscale associations with climate in European birds Proc Natl Acad Sci USA 105:14908–14912

    Google Scholar 

  • Bee JN, Kunstler G, Coomes DA (2007) Resistance and resilience of New Zealand tree species to browsing J Ecol 95:1014-1026 doi:10.1111/j.1365-2745.2007.01261.x

  • Bennett KD, Provan J (2008) What do we mean by ‘refugia? Quat Sci Rev 27:2449-2455 doi:10.1016/j.quascirev.2008.08.019

  • Bond WJ, Lee WG, Craine JM (2004) Plant structural defences against browsing birds: a legacy of New Zealand’s extinct moas Oikos 104:500-508 doi:10.1111/j.0030-1299.2004.12720.x

  • Boucher-Lalonde V, Morin A, Currie D (2012) How are tree species distributed in climatic space? A simple and general pattern Glob Ecol Biogeogr 21:1157–1166

    Google Scholar 

  • Buckley TR, Leschen RAB (2013) Comparative phylogenetic analysis reveals long-term isolation of lineages on the Three Kings Islands, New Zealand Biol J Linn Soc 108:361-377 doi:10.1111/j.1095-8312.2012.02009.x

  • Buckley TR, Simon C, Chambers GK (2001) Phylogeography of the New Zealand cicada Maoricicada campbelli based on mitochondrial DNA sequences: Ancient clades associated with cenozoic environmental change Evolution 55:1395-1407

    Google Scholar 

  • Buckley TR, Marske KA, Attanayake D (2009) Identifying glacial refugia in a geographic parthenogen using palaeoclimate modelling and phylogeography: the New Zealand stick insect Argosarchus horridus (White) Mol Ecol 18:4650-4663 doi:10.1111/j.1365-294X.2009.04396.x

  • Buckley TR, Marske K, Attanayake D (2010) Phylogeography and ecological niche modelling of the New Zealand stick insect Clitarchus hookeri (White) support survival in multiple coastal refugia J Biogeogr 37:682-695 doi:10.1111/j.1365-2699.2009.02239.x

  • Buckley TR, Krosch M, Leschen RAB (2015) Evolution of New Zealand insects: summary and prospectus for future research Austral Entomol 54:1-27 doi:10.1111/aen.12116

  • Burge PI, Shulmeister J (2007) Re-envisioning the structure of last glacial vegetation in New Zealand using beetle fossils Quat Res 68:121-132 doi:10.1016/j.yqres.2007.03.009

  • Burrows C (1965) Some discontinuous distributions of plants within New Zealand and their ecological significance. 11: Disjunctions between Otago-Southland and Nelson-Marlborough and related distribution patterns Tuatara 13: 9 29

    Google Scholar 

  • Bussell MR, Mildenhall DC (1990) Extinct palynomorph from Middle and Late Pleistocene terrestrial sediments, south Wanganui basin, New Zealand N Z J Geol Geophys 33:439-447

    Google Scholar 

  • Callard SL, Newnham RM, Vandergoes MJ, et al. (2013) The vegetation and climate during the Last Glacial Cold Period, northern South Island, New Zealand Quat Sci Rev 74:230-244 doi:10.1016/j.quascirev.2012.12.007

  • Chapple DG, Ritchie PA, Daugherty CH (2009) Origin, diversification, and systematics of the New Zealand skink fauna (Reptilia: Scincidae) Mol Phylogen Evol 52:470-487 doi:10.1016/j.ympev.2009.03.021

  • Christian HJ, Blakeslee RJ, Boccippio DJ, Boeck WL, Buechler DE, Driscoll KT, Goodman SJ, Hall JM, Koshak WJ, Mach DM, Stewart MF (2003) Global frequency and distribution of lightning as observed from space by the Optical Transient Detector J Geophys Res 108:ACL4.1-ACL4.15

    Google Scholar 

  • Clayton-Greene KA (1977) Structure and origin of Libocedrus bidwillii stands in Waikato district, New Zealalnd N Z J Bot 15:19-28

    Google Scholar 

  • Climo FM (1975) Biogeography and ecology in New Zealand. The land snail fauna Monographiae Biologicae 27:459-492

    Google Scholar 

  • Cockayne L (1928) The Vegetation of New Zealand. 2nd Rev edn. Engelmann, Leipzig

    Google Scholar 

  • Conran JG et al. (2014) Subtropical rainforest vegetation from Cosy Dell, Southland: plant fossil evidence for Late Oligocene terrestrial ecosystems N Z J Geol Geophys 57:236-252 doi:10.1080/00288306.2014.888357

  • Cooke PJ, Nelson CS, Crundwell MP (2008) Miocene isotope zones, paleotemperatures, and carbon maxima events at intermediate water-depth, Site 593, Southwest Pacific N Z J Geol Geophys 51:1-22

    Google Scholar 

  • Coomes DA, Allen RB, Bentley WA, et al. (2005) The hare, the tortoise and the crocodile: the ecology of angiosperm dominance, conifer persistence and fern filtering J Ecol 93:918-935

    Google Scholar 

  • Craw D, Druzbicka J, Rufaut C, et al. (2013) Geological controls on palaeo-environmental change in a tectonic rain shadow, southern New Zealand Palaeogeogr, Palaeoclimatol, Palaeoecol 370:103-116 doi:http://dx.doi.org/10.1016/j.palaeo.2012.11.024

  • Crisp MD, Arroyo MTK, Cook LG, et al. (2009) Phylogenetic biome conservatism on a global scale Nature 458:754-756

    Google Scholar 

  • D’Costa D, Boswijk G, Ogden J (2009) Holocene vegetation and environmental reconstructions from swamp deposits in the Dargaville region of the North Island, New Zealand: implications for the history of kauri (Agathis australis) Holocene 19:559-574 doi:10.1177/0959683609104026

  • Diamond JM (1974) Colonization of exploded volcanic islands by birds - supertramp strategy Science 184:803-806 doi:10.1126/science.184.4138.803

  • Dormann CF, Schymanski SJ, Cabral J, Chuine I, Graham C, Hartig F, Kearney M, Morin X, Römermann C, Schröder B, Singer A (2012) Correlation and process in species distribution models: bridging a dichotomy J Biogeog 39:2119-2131

    Google Scholar 

  • Duncan RP, Cassey P, Blackburn TM (2009) Do climate envelope models transfer? A manipulative test using dung beetle introductions Proc R Soc B Biol Sci 276:1449-1457 doi:10.1098/rspb.2008.1801

  • Eden DN, Hammond AP (2003) Dust accumulation in the New Zealand region since the last glacial maximum Quat Sci Rev 22:2037-2052 doi:10.1016/s0277-3791(03)00168-9

  • Eden DN, Palmer AS, Cronin SJ, et al. (2001) Dating the culmination of river aggradation at the end of the last glaciation using distal tephra compositions, eastern North Island, New Zealand Geomorphology 38:133-151 doi:http://dx.doi.org/10.1016/S0169-555X(00)00077-5

  • Elith J, Leathwick JR (2009) Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. In: Annual Review of Ecology Evolution and Systematics, vol 40. Annual Review of Ecology Evolution and Systematics. pp 677-697. doi:10.1146/annurev.ecolsys.110308.120159

  • Elliot MB (1998) Late Quaternary pollen records of vegetation and climate change from Kaitaia Bog, far northern New Zealand Rev Palaeobot Palynol 99:189-202

    Google Scholar 

  • Flannery T (1994) The Future Eaters. Reed Books, Melbourne

    Google Scholar 

  • Forsyth DM, Wilmshurst JM, Allen RB, et al. (2010) Impacts of introduced deer and extinct moa on New Zealand ecosystems N Z J Ecol 34:48-65

    Google Scholar 

  • Froggatt PC, Rogers GM (1990) Tephrostratigraphy of high altitude peat bogs along the axial ranges, North Island, New Zealand N Z J Geol Geophys 33:111-124

    Google Scholar 

  • Gardner RC, De Lange PJ, Keeling DJ, et al. (2004) A late Quaternary phylogeography for Metrosideros (Myrtaceae) in New Zealand inferred from chloroplast DNA haplotypes Biol J Linn Soc 83:399-412

    Google Scholar 

  • Gavin DG et al. (2014) Climate refugia: joint inference from fossil records, species distribution models and phylogeography New Phytol 204:37-54 doi:10.1111/nph.12929

  • Gerhart LM, Ward JK (2010) Plant responses to low CO2 of the past New Phytol 188:674-695 doi:10.1111/j.1469-8137.2010.03441.x

  • Gersonde R, Crosta X, Abelmann A, et al. (2005) Sea-surface temperature and sea ice distribution of the Southern Ocean at the EPILOG Last Glacial Maximum—a circum-Antarctic view based on siliceous microfossil records Quat Sci Rev 24:869-896 doi:http://dx.doi.org/10.1016/j.quascirev.2004.07.015

  • Gibbard PL, Head MJ, Walker MJC, The Subcommission on Quaternary Stratigraphy (2010) Formal ratification of the Quaternary System/Period and the Pleistocene Series/Epoch with a base at 2.58 Ma J Quat Sci 25:96–102

    Google Scholar 

  • Gillespie RG (2016) Island time and the interplay between ecology and evolution in species diversification Evolutionary Applications 9:53-73 doi:10.1111/eva.12302

  • Goldberg J, Trewick SA, Paterson AM (2008) Evolution of New Zealand’s terrestrial fauna: a review of molecular evidence Philos Trans R Soc B Sci 363:3319-3334 doi:10.1098/rstb.2008.0114

  • Golledge NR, Mackintosh AN, Anderson BM, Buckley KM, Doughty AM, Barrell DJA, Denton GH, Vandergoes MJ, Anderson BG, Schaefer JM (2012) Last Glacial Maximum climate in New Zealand inferred from a modelled Southern Alps icefield Quat Sci Rev 46:30-45

    Google Scholar 

  • Haase M, Marshall B, Hogg I (2007) Disentangling causes of disjunction on the South Island of New Zealand: the Alpine fault hypothesis of vicariance revisited Biol J Linn Soc 91:361-374 doi:10.1111/j.1095-8312.2007.00801.x

  • Hall GMJ, McGlone MS (2006) Potential forest cover of New Zealand as determined by an ecosystem process model N Z J Bot 44:211-232

    Google Scholar 

  • Hawke DJ, Holdaway RN (2009) Nutrient sources for forest birds captured within an undisturbed petrel colony, and management implications Emu 109:163-169 doi:10.1071/mu08035

  • Heenan PB, McGlone MS (2013) Evolution of New Zealand alpine and open-habitat plant species during the late Cenozoic N Z J Ecol 37:105-113

    Google Scholar 

  • Heusser LE, Vandegeer G (1994) Direct correlation of terrestrial and marine paleoclimatic records from 4 glacial-interglacial cycles - DSDP site 594, southwest Pacific Quat Sci Rev 13:273-282 doi:10.1016/0277-3791(94)90030-2

  • Ho SL, Mollenhouer G, Lamy F, et al. (2012) Sea surface temperature variability in the Pacific sector of the Southern Ocean over the past 700 kyr Paleoceanography 27 doi:10.1029/2012pa002317

  • Hornibrook NdB (1992) New Zealand Cenozoic marine paleoclimates: a review based on the distribution of some shallow water and terrestrial biota Pacific Neogene: environment, evolution, and events University of Tokyo Press, Tokyo:83-106

    Google Scholar 

  • Horrocks M, Ogden J (1998) Fine resolution palynology of Erua Swamp, Tongaririo, New Zealand, since the Taupo Tephra eruption of c.1718 BP N Z J Bot 36:285-293

    Google Scholar 

  • Horrocks M, Ogden J (2000) Evidence for Lateglacial and Holocene tree-line fluctuations from pollen diagrams from the Subalpine zone on Mt Hauhungatahi, Tongariro National Park, New Zealand Holocene 10:61-73 doi:10.1191/095968300667751080

  • Horrocks M, Irwin GJ, McGlone MS, et al. (2003) Pollen, phytoliths and diatoms in prehistoric coprolites from Kohika, Bay of Plenty, New Zealand J Archaeol Sci 30:13-20 doi:10.1006/jasc.2001.0714

  • Hughes CE, Atchison GW (2015) The ubiquity of alpine plant radiations: from the Andes to the Hengduan Mountains New Phytol 207:275-282 doi:10.1111/nph.13230

  • Hulme PE (2005) Adapting to climate change: is there scope for ecological management in the face of a global threat? J Appl Ecol 42:784–794

    Google Scholar 

  • Humphreys AM, Pirie MD, Linder HP (2010) A plastid tree can bring order to the chaotic generic taxonomy of Rytidosperma Steud. s.l. (Poaceae) Mol Phylogen Evol 55:911-928 doi:10.1016/j.ympev.2009.12.010

  • Jara IA, Newnham RM, Vandergoes M, et al. (2015) Pollen-climate reconstruction from northern South Island, New Zealand (41 degrees S), reveals varying high- and low-latitude teleconnections over the last 16 000 years J Quat Sci 30:817-829 doi:10.1002/jqs.2818

  • Keppel G, Van Niel KP, Wardell-Johnson GW, Yates CJ, Byrne M, Mucina L, Schut AGT, Hopper SD, Franklin SE (2012) Refugia: identifying and understanding safe havens for biodiversity under climate change Global Ecol Biogeog 21:393-404

    Google Scholar 

  • Kgope BS, Bond WJ, Midgley GF (2010) Growth responses of African savanna trees implicate atmospheric CO2 as a driver of past and current changes in savanna tree cover Austral Ecol 35:451-463 doi:10.1111/j.1442-9993.2009.02046.x

  • King WM, Wilson JB (2006) Differentiation between native and exotic plant species from a dry grassland: fundamental responses to resource availability, and growth rates Austral Ecol 31:996-1004 doi:10.1111/j.1442-9993.2006.01693.x

  • Kooyman RM, Wilf P, Barreda VD, et al. (2014) Paleo-Antarctic rainforest into the modern Old World tropics: the rich past and threatened future of the “southern wet forest survivors” Am J Bot 101:2121-2135 doi:10.3732/ajb.1400340

  • Korner C, Paulsen J (2004) A world-wide study of high altitude treeline temperatures J Biogeogr 31:713-732

    Google Scholar 

  • Leathwick JR (1995) Climatic relationships of some New Zealand forest tree species J Veg Sci 6:237-248

    Google Scholar 

  • Leathwick JR (2001) New Zealand’s potential forest pattern as predicted from current species-environment relationships N Z J Bot 39:447-464

    Google Scholar 

  • Leathwick JR, Whitehead D (2001) Soil and atmospheric water deficits and the distribution of New Zealand’s indigenous tree species Funct Ecol 15:233-242

    Google Scholar 

  • Ledgard N (2001) The spread of lodgepole pine (Pinus contorta, Dougl.) in New Zealand For Ecol Manag 141:43-57

    Google Scholar 

  • Lee DE, Lee WG, Mortimer N (2001) Where and why have all the flowers gone? Depletion and turnover in the New Zealand Cenozoic angiosperm flora in relation to palaeogeography and climate Aust J Bot 49:341-356 doi:10.1071/bt00031

  • Lee WG, Wood JR, Rogers GM (2010) Legacy of avian-dominated plant-herbivore systems in New Zealand N Z J Ecol 34:28-47

    Google Scholar 

  • Lee DE, Conran JG, Lindqvist JK, et al. (2012) New Zealand Eocene, Oligocene and Miocene macrofossil and pollen records and modern plant distributions in the Southern Hemisphere Bot Rev 78:235-260 doi:10.1007/s12229-012-9102-7

  • Lees CM, Neall VE (1993) Vegetation response to volcanic eruptions on Egmont volcano, New Zealand, during the last 1500 years J R Soc N Z 23:91-127

    Google Scholar 

  • Lees CM, Neall VE, Palmer AS (1998) Forest persistence at coastal Waikato, 24000 years BP to present J R Soc N Z 28:55-81

    Google Scholar 

  • Leschen RAB, Buckley TR (2015) Revision and phylogeny of Syrphetodes (Coleoptera: Ulodidae): implications for biogeography, alpinization and conservation Syst Entomol 40:143-168 doi:10.1111/syen.12094

  • Leschen RAB, Buckley TR, Harman HM, et al. (2008) Determining the origin and age of the Westland beech (Nothofagus) gap, New Zealand, using fungus beetle genetics Mol Ecol 17:1256-1276

    Google Scholar 

  • Leslie DM, McGlone MS (1973) Relict periglacial landforms at Clarks Junction, Otago N Z J Geol Geophys 16:575-583 doi:10.1080/00288306.1973.10431380

  • Lockhart PJ, McLenachan PA, Harell D, et al. (2001) Phylogeny, radiation, and transoceanic dispersal of New Zealand alpine buttercups: Molecular evidence under split decomposition Ann Mo Bot Gard 88:458-477 doi:10.2307/3298586

  • Macphail MK, McQueen DR (1983) The value of New Zealand pollen and spores as indicators of Cenozoic vegetation and climates Tuatara 26:37-56

    Google Scholar 

  • Marden M, Mazengarb C, Palmer A, et al. (2008) Last glacial aggradation and postglacial sediment production from the non-glacial Waipaoa and Waimata catchments, Hikurangi Margin, North Island, New Zealand Geomorphology 99:404-419 doi:10.1016/j.geomorph.2007.12.003

  • Mark AF (2012) Above the treeline: a nature guide to alpine New Zealand. Craig Potton Publishing, Nelson

    Google Scholar 

  • Marra MJ (2003) Last interglacial beetle fauna from new Zealand Quat Res 59:122-131 doi:10.1016/s0033-5894(02)00022-4

  • Marra M (2013) New Zealand Pleistocene Beetles. Elsevier, Amsterdam

    Google Scholar 

  • Marra M, Leschen RAB (2004) Late Quaternary paleoecology from fossil beetle communities in the Awatere Valley, South Island, New zealand J Biogeogr 31:571-586

    Google Scholar 

  • Marra MJ, Leschen RAB (2011) Persistence of New Zealand Quaternary beetles N Z J Geol Geophys 54:403-413 doi:10.1080/00288306.2011.599399

  • Marra MJ, Thackray GD (2010) Glacial forest refugium in Howard Valley, South Island, New Zealand J Quat Sci 25:309-319 doi:10.1002/jqs.1339

  • Marra MJ, Shulmeister J, Smith EGC (2006) Reconstructing temperature during the Last Glacial Maximum from Lyndon Stream, South Island, New Zealand using beetle fossils and maximum likelihood envelopes Quat Sci Rev 25:1841-1849 doi:10.1016/j.quascirev.2006.01.016

  • Marshall DC, Hill KBR, Fontaine KM, Buckley TR, Simon C (2009) Glacial refugia in a maritime temperate climate: Cicada (Kikihia subalpina) mtDNA phylogeography in New Zealand Mol Ecol 18:1995-2009 doi:10.1111/j.1365-294X.2009.04155.x

  • Marshall DC, Hill KBR, Marske KA, et al. (2012) Limited, episodic diversification and contrasting phylogeography in a New Zealand cicada radiation BMC Evol Biol 12 doi:10.1186/1471-2148-12-177

  • Marske KA, Leschen RAB, Buckley TR (2011) Reconciling phylogeography and ecological niche models for New Zealand beetles: Looking beyond glacial refugia Mol Phylogen Evol 59:89-102 doi:http://dx.doi.org/10.1016/j.ympev.2011.01.005

  • Martin TJ, Ogden J (2005) Experimental studies on the drought, waterlogging, and frost tolerance of Ascarina lucida Hook. f (Chloranthaceae) seedlings N Z J Ecol 29:53-59

    Google Scholar 

  • McCulloch GA, Wallis GP, Waters JM (2010) Onset of glaciation drove simulanteous vicariant isolation of alpine insects in New Zealand Evolution 64:2033-2043 doi:10.1111/j.1558-5646.2010.00980.x

  • McGlone M (1983a) Polynesian deforestation of New Zealand: a preliminary synthesis Archaeol Ocean 18:11-25

    Google Scholar 

  • McGlone MS (1983b) Holocene pollen diagrams, Lake Rotorua, North Island, New Zealand J R Soc N Z 13:53-65

    Google Scholar 

  • McGlone MS (1985) Plant biogeography and the late Cenozoic history of New Zealand N Z J Bot 23:723-749

    Google Scholar 

  • McGlone MS (1989) The Polynesian settlement of New Zealand in relation to environmental and biotic changes N Z J Ecol 12:115-129

    Google Scholar 

  • McGlone MS (2001a) A late Quaternary pollen record from marine core P69, southeastern North Island, New Zealand N Z J Geol Geophys 44:69-77

    Google Scholar 

  • McGlone MS (2001b) The origin of the indigenous grasslands of southeastern South Island in relation to pre-human woody ecosystems N Z J Ecol 25:1-15

    Google Scholar 

  • McGlone MS (2002) A Holocene and latest Pleistocene pollen record from Lake Poukawa, Hawke’s Bay, New Zealand Global Planet Change 33:283-299

    Google Scholar 

  • McGlone MS (2006) Becoming New Zealanders: immigration and the formation of the biota. In: Allen RB, Lee WG (eds) Biological Invasions in New Zealand, vol 186. Ecological Studies. Springer-Verlag, Berlin, pp 17-32

    Google Scholar 

  • McGlone MS (2009) Postglacial history of New Zealand wetlands and implications for their conservation N Z J Ecol 33:1-23

    Google Scholar 

  • McGlone MS, Basher L (2012) Holocene vegetation change at treeline, Cropp Valley, Southern Alps, New Zealand vol 34. ANU E Press, Canberra

    Google Scholar 

  • McGlone MS, Moar NT (1977) Ascarina decline and postglacial climatic change in New Zealand N Z J Bot 15:485-489

    Google Scholar 

  • McGlone MS, Moar NT (1998) Dryland Holocene vegetation history, Central Otago and the Mackenzie Basin, South Island, New Zealand N Z J Bot 36:91-111

    Google Scholar 

  • McGlone MS, Neall VE (1994) The late Pleistocene and Holocene vegetation history of Taranaki, North Island, New Zealand N Z J Bot 32:251-269

    Google Scholar 

  • McGlone MS, Topping WW (1977) Aranuian (postglacial) pollen diagrams from Tongariro region, North Island, New Zealand N Z J Bot 15:749-760

    Google Scholar 

  • McGlone MS, Topping WW (1983) Late Quaternary vegetation, Tongariro region, central North Island, New Zealand N Z J Bot 21:53-76

    Google Scholar 

  • McGlone MS, Wilmshurst JM (1999) A Holocene record of climate, vegetation change and peat bog development, east Otago, South Island, New Zealand J Quat Sci 14:239-254

    Google Scholar 

  • McGlone MS, Wilson HD (1996) Holocene vegetation and climate of Stewart Island, New Zealand N Z J Bot 34:369-388

    Google Scholar 

  • McGlone MS, Nelson CS, Hume TM (1978) Palynology, age and environmental significance of some peat beds in the Upper Pleistocene Hinuera Formation, south Auckland, New Zealand J R Soc N Z 8:385-393

    Google Scholar 

  • McGlone MS, Howorth R, Pullar WA (1984a) Late Peistocene stratigraphy, vegetation and climate of the Bay of Plenty and Gisborne regions, New Zealand N Z J Geol Geophys 27:327-350

    Google Scholar 

  • McGlone MS, Neall VE, Pillans BJ (1984b) Inaha terrace deposits - a late Quaternary terrestrial record in south Taranaki, New Zealand N Z J Geol Geophys 27:35-49

    Google Scholar 

  • McGlone MS, Nelson CS, Todd AJ (1984c) Vegetation history and environmental significance of pre-peat and surficial peat deposits at Ohinewai, lower Waikato lowland J R Soc N Z 14:233-244

    Google Scholar 

  • McGlone MS, Neall VE, Clarkson BD (1988) The effect of recent volcanic events and climatic changes on the vegetation of Mt Egmont (Mt Taranaki), New Zealand N Z J Bot 26:123-144 doi:10.1080/0028825x.1988.10410105

  • McGlone M, Anderson A, Holdaway R (1994a) An ecological approach to the Polynesian settlement of New Zealand. In: Sutton DG (ed) The origins of the first New Zealanders. Auckland University Press, Auckland, pp 136-163

    Google Scholar 

  • McGlone MS, Anderson AJ, Holdaway RN (1994b) An ecological approach to the Polynesian settlement of New Zealand. In: Sutton DG (ed) The Origins of the First New Zealanders. Auckland University Press, Auckland pp 136-163

    Google Scholar 

  • McGlone MS, Mark AF, Bell D (1995) Late Peistocene and Holocene vegetation history, central Otago, South Island, New Zealand J R Soc N Z 25:1-22

    Google Scholar 

  • McGlone MS, Mildenhall DC, Pole MS (1996) History and palaeoecology of New Zealand Nothofagus forests. In: Veblen TT, Hill RS, Read J (eds) The Ecology and Biogeography of Nothofagus forest. Yale University Press, New Haven, pp 83-130

    Google Scholar 

  • McGlone MS, Moar NT, Meurk CD (1997) Growth and vegetation history of alpine mires on the Old Man Range, Central Otago, New Zealand Arct Alp Res 29:32-44 doi:10.2307/1551834

  • McGlone MS, Duncan RP, Heenan PB (2001) Endemism, species selection and the origin and distribution of the vascular plant flora of New Zealand J Biogeogr 28:199-216

    Google Scholar 

  • McGlone M, Wardle P, Worthy T (2003) Environmental change since the Last Glaciation. In: John D, Fordyce RE, Mark A, Probert K, Townshend C (eds) The Natural History of Southern New Zealand. Otago University Press, Dunedin, pp 105-128

    Google Scholar 

  • McGlone MS, Turney CSM, Wilmshurst JM (2004) Late-glacial and Holocene vegetation and climatic history of the Cass basin, central south island, New Zealand Quat Res 62:267-279 doi:10.1016/j.yqres.2004.09.003

  • McGlone MS, Newnham RM, Moar NT (2010a) The vegetation cover of New Zealand during the Last Glacial Maximum: do pollen records under-represent woody vegetation? In: Haberle S, Stevenson J, Prebble M (eds) Altered fire ecologies: fire, climate and human influences on terrestrial landscapes, vol 32. Terra Australis. ANU Press, Canberra pp 49-68

    Google Scholar 

  • McGlone MS, Richardson SJ, Jordan GJ (2010b) Comparative biogeography of New Zealand trees: species richness, height, leaf traits and range sizes. N Z J Ecol 34:137-151

    Google Scholar 

  • McGlone MS, Turney CSM, Wilmshurst JM, et al. (2010c) Divergent trends in land and ocean temperature in the Southern Ocean over the past 18,000 years Nature Geoscience 3:622-626 doi:10.1038/ngeo931

  • McGlone MS, Hall GMJ, Wilmshurst JM (2011) Seasonality in the early Holocene: Extending fossil-based estimates with a forest ecosystem process model Holocene 21:517-526 doi:10.1177/0959683610385717

  • McGlone MS, Buitenwerf R, Richardson SJ (2016) The formation of the oceanic temperate forests of New Zealand NZ J Bot 54:128-155

    Google Scholar 

  • McIntosh PD, Eden DN, Burgham SJ (1990) Quaternary deposits and landscape evolution in northeast Southland, New Zealand Palaeogeogr, Palaeoclimatol, Palaeoecol 81:95-113

    Google Scholar 

  • McLaren BE, Cameron KC (1996) Soil Science: sustainable production and environmental protection. Oxford University Press, Auckland

    Google Scholar 

  • McLea WL (1990) Palynology of Pohehe Swamp, northwest Wairarapa, New Zealand - a study of climatic and vegetation changes during the last 41,000 years J R Soc N Z 20:205-220

    Google Scholar 

  • McLea WL (1996) The Late Quaternary pollen record of South-East Nelson, South Island, New Zealand N Z J Bot 34:523-538

    Google Scholar 

  • McWethy DB, Whitlock C, Wilmshurst JM, et al. (2010) Rapid landscape transformation in South Island, New Zealand, following initial Polynesian settlement Proc Natl Acad Sci U S A 107:21343-21348 doi:10.1073/pnas.1011801107

  • McWethy DB, Wilmshurst JM, Whitlock C,et al. (2014) A high-resolution chronology of rapid forest transitions following Polynesian arrival in New Zealand Plos One 9:e111328

    Google Scholar 

  • Meffre S, Crawford AJ, Quilty PG (2006) Arc-continent collision forming a large island between New Caledonia and New Zealand in the Oligocene ASEG Extended abstracts 2006:1-3

    Google Scholar 

  • Mildenhall DC (1980) New Zealand Late Cretaceous and Cenozoic plant biogeography - a contribution Palaeogeogr Palaeoclimatol Palaeoecol 31:197-233 doi:10.1016/0031-0182(80)90019-x

  • Mildenhall D (1986) Middle Quaternary pollen diagrams from Judgeford, Lower Hutt, and the significance of kauri pollen in a herbaceous assemblage New Zealand Geological Survey Record 8:76-81

    Google Scholar 

  • Mildenhall DC (2001) Pollen analysis of Pliocene-Pleistocene Kowai Formation (Kurow Group), Mackenzie Basin, South Canterbury, New Zealand N Z J Geol Geophys 44:97-104

    Google Scholar 

  • Mildenhall DC (2003) Deep-sea record of Pliocene and Pleistocene terrestrial palynomorphs from offshore eastern New Zealand (ODP Site 1123, Leg 181) N Z J Geol Geophys 46:343-361

    Google Scholar 

  • Mildenhall DC, Pocknall DT (1984) Palaeobotanical evidence for changes in Miocene and Pliocene climates in New Zealand. In: Vogel JC (ed) Late Cainozoic palaeoclimates of the Southern Hemisphere. South African Society of Quaternary Research International Symposium, Swaziland, 29 August-2nd September, 1983. A.A. Balkema, Rotterdam,

    Google Scholar 

  • Mildenhall DC, Williams DN, Seward D (1977) Ohariu Tephra and associated pollen-bearing sedimetns near Wellington, New Zealand N Z J Geol Geophys 20:157-164

    Google Scholar 

  • Mildenhall DC, Hollis CJ, Naish TR (2004) Orbitally-influenced vegetation record of the Mid-Pleistocene climate transition, offshore eastern New Zealand (ODP Leg 181, Site 1123) Mar Geol 205:87-111 doi:10.1016/s0025-3227(04)00019-2

  • Moar NT (1971) Contributions to the Quaternary history of the New Zealand flora. 6. Aranuian pollen diagrams from Canterbury, Nelson, and north Westland, South Island N Z J Bot 9:80-145

    Google Scholar 

  • Moar NT (1980) Late Otiran and early Aranuian grassland in central South Island N Z J Ecol 3:4-12

    Google Scholar 

  • Moar NT (2008) Late Quaternary Vegetation. In: Winterbourn M, Knox G, Burrows C, Marsden I (eds) The Natural History of Canterbury. Third edn. Canterbury University Press, Christchurch, pp 169-192

    Google Scholar 

  • Moar NT, Suggate RP, Burrows C (2008) Environments during the Kaihinu Interglacial and Otira Glaciation, coastal north Westland, New Zealand N Z J Bot 46:49-63

    Google Scholar 

  • Moar NT, Wilmshurst J, McGlone M (2011) Standardizing names applied to pollen and spores in New Zealand Quaternary palynology N Z J Bot 49:201-229

    Google Scholar 

  • Morgan-Richards M, Smissen RD, Shepherd LD, et al. (2009) A review of genetic analyses of hybridisation in New Zealand J R Soc N Z 39:15-34

    Google Scholar 

  • Mosblech NAS, Bush MB, van Woesik R (2011) On metapopulations and microrefugia: palaeoecological insights J Biogeogr 38:419-429 doi:10.1111/j.1365-2699.2010.02436.x

  • Nelson CS, Cooke PJ (2001) History of oceanic front development in the New Zealand sector of the Southern Ocean during the Cenozoic—a synthesis N Z J Geol Geophys 44:535-553

    Google Scholar 

  • Newnham RM (1992) A 30,000 year pollen, vegetation and climate record from Otakairangi (Hikurangi), Northland, New Zealand J Biogeogr 19:541-554

    Google Scholar 

  • Newnham R (1999) Environmental change in Northland, New Zealand during the last glacial and Holocene Quat Int 57-8:61-70 doi:10.1016/s1040-6182(98)00050-0

  • Newnham RM, Lowe DJ, Green JD (1989) Palynology, vegetation and climate of the Waikato lowlands, North Island, New Zealand, since c. 18,000 years ago J R Soc N Z 19:127-150

    Google Scholar 

  • Newnham RM, Delange PJ, Lowe DJ (1995) Holocene vegetation, climate and history of a raised bog complex, northern New Zealand based on palynology, plant macrofossils and tephrochronology Holocene 5:267-282

    Google Scholar 

  • Newnham RM, Lowe DJ, Williams PW (1999) Quaternary environmental change in New Zealand: a review Progress in Physical Geography 23:567-610

    Google Scholar 

  • Newnham RM, Eden DN, Lowe DJ, et al. (2003) Rerewhakaaitu Tephra, a land-sea marker for the Last Termination in New Zealand, with implications for global climate change Quat Sci Rev 22:289-308

    Google Scholar 

  • Newnham RM, Lowe DJ, Giles T, et al. (2007a) Vegetation and climate of Auckland, New Zealand, since ca.32 000 cal. yr ago: support for an extended LGM J Quat Sci 22:517-534 doi:10.1002/jqs.1137

  • Newnham RM, Vandergoes MJ, Hendy CH, et al. (2007b) A terrestrial palynological record for the last two glacial cycles from southwestern New Zealand Quat Sci Rev 26:517-535 doi:10.1016/j.quascirev.2006.05.005

  • Newnham R, McGlone M, Moar N, et al. (2013) The vegetation cover of New Zealand at the Last Glacial Maximum Quat Sci Rev 74:202-214 doi:http://dx.doi.org/10.1016/j.quascirev.2012.08.022

  • Nielsen SV, Bauer AM, Jackman TR, et al. (2011) New Zealand geckos (Diplodactylidae): Cryptic diversity in a post-Gondwanan lineage with trans-Tasman affinities Mol Phylogen Evol 59:1-22 doi:10.1016/j.ympev.2010.12.007

  • Ogden J (1989) On the coenospecies concept and tree migrations during the oscillations of the Pleistocene climate J R Soc N Z 19:249-262

    Google Scholar 

  • Ogden J, Fordham R, Pilkington S, et al. (1991) Forest gap formation and closure along an altitudinal gradient in Tongariro National Park, New Zealand J Veg Sci 2:165-172

    Google Scholar 

  • Ogden J, Wilson A, Hendy C, et al. (1992) The late Quaternary history of kauri (Agathis australis) in New Zealand and its climatic significance J Biogeogr 19:611-622

    Google Scholar 

  • Ogden J, Basher L, McGlone M (1998) Fire, forest regeneration and links with early human habitation: Evidence from New Zealand Ann Bot 81:687-696

    Google Scholar 

  • O’Neill SB, Buckley TR, Jewell TR, et al. (2009) Phylogeographic history of the New Zealand stick insect Niveaphasma annulata (Phasmatodea) estimated from mitochondrial and nuclear loci Mol Phylogen Evol 53:523-536 doi:10.1016/j.ympev.2009.07.007

  • Pedro JB, van Ommen TD, Rasmussen SO, et al. (2011) The last deglaciation: timing the bipolar seesaw Climate of the Past 7:671-683 doi:10.5194/cp-7-671-2011

  • Perrie LR, Brownsey PJ (2005) Insights into the biogeography and polyploid evolution of New Zealand Asplenium from chloroplast DNA sequence data Am Fern J 95:1-21

    Google Scholar 

  • Perry GLW, Wilmshurst JM, McGlone MS (2014) Ecology and long-term history of fire in New Zealand N Z J Ecol 38:157-176

    Google Scholar 

  • Phillips CJ, Campbell IB (1983) Regolith profiles on slopes underlain by Moutere Gravel Formation, Big Bush State Forest: hydrologic and geomorphic implications N Z J Geol Geophys 26:57-70 doi:10.1080/00288306.1983.10421522

  • Pickrill RA, Fenner JM, McGlone MS (1992) Late Quaternary evolution of a fjord environment in Preservation Inlet, New Zealand Quat Res 38:331-346

    Google Scholar 

  • Pillans B, McGlone M, Palmer A, et al. (1991) The Last Glacial Maximum in central and southernmost North Island, New Zealand - a paleoenvironmental reconstruction using the Kawakawa Tephra Formation as a chronostratigraphic marker. Palaeogeogr Paleoclimatol Palaeoecol 101:283-304

    Google Scholar 

  • Pole M (2003) New Zealand climate in the Neogene and implications for global atmospheric circulation Palaeogeogr Palaeoclimatol Palaeoecol 193:269-284 doi:10.1016/s0031-0182(03)00232-3

  • Pole M (2007) Conifer and cycad distribution in the Miocene of southern New Zealand Aust J Bot 55:143-164 doi:10.1071/bt06056

  • Pole M (2014) The Miocene climate in New Zealand: Estimates from paleobotanical data Palaeontologia Electronica 17

    Google Scholar 

  • Pons J, Fujisawa T, Claridge EM, et al. (2011) Deep mtDNA subdivision within Linnean species in an endemic radiation of tiger beetles from New Zealand (genus Neocicindela) Mol Phylogen Evol 59:251-262 doi:10.1016/j.ympev.2011.02.013

  • Pugh J, Shulmeister J (2010) Holocene vegetation history of a high-elevation (1200 m) site in the Lake Heron Basin, inland Canterbury, New Zealand. In: Altered Ecologies: Fire, climate and human influence on terrestrial landscapes, vol 32. Terra Australis. ANU E Press, Canberra, pp 69-81

    Google Scholar 

  • Rattenbury JA (1962) Cyclical hybridization as a survival mechanism in New Zealand forest flora Evolution 16:348-363 doi:10.2307/2406284

  • Rawlence NJ, Scofield RP, Wood JR, et al. (2011) New palaeontological data from the excavation of the Late Glacial Glencrieff miring bone deposit, North Canterbury, South Island, New Zealand J R Soc N Z 41:217-236 doi:10.1080/03036758.2011.559663

  • Rawlence NJ, Metcalf JL, Wood JR, et al. (2012) The effect of climate and environmental change on the megafaunal moa of New Zealand in the absence of humans Quat Sci Rev 50:141-153 doi:10.1016/j.quascirev.2012.07.004

  • Reichgelt T, Kennedy EM, Mildenhall DC, et al. (2013) Quantitative palaeoclimate estimates for Early Miocene southern New Zealand: Evidence from Foulden Maar Palaeogeogr Palaeoclimatol Palaeoecol 378:36-44 doi:10.1016/j.palaeo.2013.03.019

  • Reichgelt T, Jones WA, Jones DT, et al. (2014) The flora of Double Hill (Dunedin Volcanic Complex, Middle-Late Miocene) Otago, New Zealand J R Soc N Z 44:105-135 doi:10.1080/03036758.2014.923476

  • Richardson SJ, Laughlin DC, Lawes MJ, et al. (2015) Functional and environmental determinants of bark thickness in fire-free temperate rain forest communities Am J Bot doi:10.3732/ajb.1500157

  • Roff DA, Roff RJ (2003) Of rats and Maoris: a novel method for the analysis of patterns of extinction in the New Zealand avifauna before European contact Evol Ecol Res 5:759-779

    Google Scholar 

  • Rogers GM, McGlone MS (1989) A postglacial vegetation history of the southern-central uplands of North Island, New Zealand J R Soc N Z 19:229-248

    Google Scholar 

  • Rogers G, Overton JMc (2007) Land use effects on “spring annual” herbs in rare non-forest ecosystems of New Zealand NZ J Bot 45:317-327

    Google Scholar 

  • Rother H, Fink D, Shulmeister J, et al. (2014) The early rise and late demise of New Zealand’s last glacial maximum. Proc Natl Acad Sci USA 111:11630-11635.

    Google Scholar 

  • Rother H, Shulmeister J, Fink D, et al. (2015) Surface exposure chronology of the Waimakariri glacial sequence in the Southern Alps of New Zealand: Implications for MIS-2 ice extent and LGM glacial mass balance. Earth and Planetary Science Letters 429: 69-81.

    Google Scholar 

  • Ryan MT, Dunbar GB, Vandergoes MJ, et al. (2012) Vegetation and climate in Southern Hemisphere mid-latitudes since 210 ka: new insights from marine and terrestrial pollen records from New Zealand Quat Sci Rev 48:80-98 doi:10.1016/j.quascirev.2012.06.001

  • Sabaa AT, Sikes EL, Hayward BW, et al. (2004) Pliocene sea surface temperature changes in ODP Site 1125, Chatham Rise, east of New Zealand Mar Geol 205:113-125

    Google Scholar 

  • Sakai A, Wardle P (1978) Freezing resistance of New Zealand trees and shrubs N Z J Ecol 1:51-61

    Google Scholar 

  • Sandiford A, Horrocks M, Newnham R, et al. (2002) Environmental change during the last glacial maximum (c. 25 000-c. 16 500 years BP) at Mt Richmond, Auckland Isthmus, New Zealand J R Soc N Z 32:155-167

    Google Scholar 

  • Sandiford A, Newnham R, Alloway B, et al. (2003) A 28 000-7600 cal yr BP pollen record of vegetation and climate change from Pukaki Crater, northern New Zealand Palaeogeogr Palaeoclimatol Palaeoecol 201:235-247 doi:10.1016/s0031-0182(03)00611-4

  • Sanmartin I, Wanntorp L, Winkworth RC (2007) West Wind Drift revisited: testing for directional dispersal in the Southern Hemisphere using event-based tree fitting J Biogeogr 34:398-416 doi:10.1111/j.1365-2699.2006.01655.x

  • Scott JM, Lee DE, Fordyce RE, et al. (2014) A possible Late Oligocene-Early Miocene rocky shoreline on Otago Schist N Z J Geol Geophys 57:185-194 doi:10.1080/00288306.2013.814575

  • Seddon JM, Santucci F, Reeve NJ, et al. (2001) DNA footprints of European hedgehogs, Erinaceus europaeus and E-concolor. Pleistocene refugia, postglacial expansion and colonization routes Mol Ecol 10:2187-2198 doi:10.1046/j.0962-1083.2001.01357.x

  • Shepherd LD, Perrie LR (2011) Microsatellite DNA analyses of a highly disjunct New Zealand tree reveal strong differentiation and imply a formerly more continuous distribution Mol Ecol 20:1389-1400 doi:10.1111/j.1365-294X.2011.05017.x

  • Shulmeister J Goodwin I, Renwick J, et al. (2004) The Southern Hemisphere westerlies in the Australasian sector over the last glacial cycle: a synthesis Quat Int 118:23-53 doi:10.1016/s1040-6182(03)00129-0

  • Shulmeister J, McKay R, Singer C, McLea W (2001) Glacial geology of the Cobb valley, northwest Nelson N Z J Geol Geophys 44:47-54

    Google Scholar 

  • Shulmeister J, McLea WL, Singer C, et al. (2003) Late Quaternary pollen records from the Lower Cobb Valley and adjacent areas, North-West Nelson, New Zealand N Z J Bot 41:503-533

    Google Scholar 

  • Sikes EL, Medeiros PM, Augustinus P, Wilmshurst JM, Freeman K (2013) Seasonal variations in aridity and temperature characterize changing climate during the last deglaciation in New Zealand. Quat Sci Rev 74:245–256

    Google Scholar 

  • Smale MC, Fitzgerald NB, Richardson SJ (2011) Resilience to fire of Dracophyllum subulatum (Ericaceae) frost flat heathland, a rare ecosystem in central North Island, New Zealand N Z J Bot 49:231-241 doi:10.1080/0028825x.2010.526950

  • Smissen RD, Richardson SJ, Morse CW, et al. (2014) Relationships, gene flow and species boundaries among New Zealand Fuscospora (Nothofagaceae: southern beech) N Z J Bot 52:389-406 doi:10.1080/0028825x.2014.960946

  • Sperry JS, Hacke UG, Feild TS, et al. (2007) Hydraulic Consequences of Vessel Evolution in Angiosperms Int J Plant Sci 168:1127-1139 doi:10.1086/520726

  • Stewart JR, Lister AM (2001) Cryptic northern refugia and the origins of the modern biota Trends Ecol Evol 16:608-613 doi:10.1016/s0169-5347(01)02338-2

  • Suggate RP, Moar NT (1970) Revision of the chronology of the late Otira Glacial N Z J Geol Geophys 13:742-746

    Google Scholar 

  • Tanentzap AJ, Lee WG, Monks A (2013) Increased nitrogen cycling facilitates native forest regeneration: Potential for restoring extinct ecological processes? Ecol Appl 23:36-45

    Google Scholar 

  • Temme AA, Liu JC, Cornwell WK, et al. (2015) Winners always win: growth of a wide range of plant species from low to future high CO2 Ecol Evol 5:4949-4961 doi:10.1002/ece3.1687

  • Tennyson AJD (2010) The origin and history of New Zealand’s terrestrial vertebrates N Z J Ecol 34:6-27

    Google Scholar 

  • Trewick SA, Bland KJ (2012) Fire and slice: palaeogeography for biogeography at New Zealand’s North Island/South Island juncture J R Soc N Z 42:153-183 doi:10.1080/03036758.2010.549493

  • Trewick SA, Wallis GP, Morgan-Richards M (2000) Phylogeographical pattern correlates with Pliocene mountain building in the alpine scree weta (Orthoptera, Anostostomatidae) Mol Ecol 9:657-666 doi:10.1046/j.1365-294x.2000.00905.x

  • Trewick SA, Wallis GP, Morgan-Richards M (2011) The Invertebrate Life of New Zealand: A Phylogeographic Approach Insects 2:297-325

    Google Scholar 

  • Vandergoes MJ (2000) A high resolution record of Late Quaternary vegetation and climate change, South Westland, New Zealand. PhD dissertation, University of Otago

    Google Scholar 

  • Vandergoes MJ, Fitzsimons SJ (2003) The Last Glacial–Interglacial Transition (LGIT) in south Westland, New Zealand: paleoecological insight into mid-latitude Southern Hemisphere climate change Quat Sci Rev 22:1461-1476 doi:10.1016/s0277-3791(03)00074-x

  • Vandergoes MJ, Fitzsimons SJ, Newnham RM (1997) Late glacial to Holocene vegetation and climate change in the eastern Takitimu Mountains, western Southland, New Zealand J R Soc N Z 27:53-66

    Google Scholar 

  • Vandergoes MJ, Newnham RM, Preusser F, et al. (2005) Regional insolation forcing of late Quaternary climate change in the Southern Hemisphere Nature 436:242-245 doi:10.1038/nature03826

  • Vandergoes MJ, Dieffenbacher-Krall AC, Newnham RM, et al. (2008) Cooling and changing seasonality in the Southern Alps, New Zealand during the Antarctic Cold Reversal Quat Sci Rev 27:589-601 doi:10.1016/j.quascirev.2007.11.015

  • Vandergoes MJ, Newnham RM, Denton GH, et al. (2013) The anatomy of Last Glacial Maximum climate variations in south Westland, New Zealand, derived from pollen records Quat Sci Rev 74:215-229 doi:10.1016/j.quascirev.2013.04.015

  • Veblen TT, Stewart GH (1982) On the conifer regeneratin gap in New Zealand - the dynamics of Libocedrus bidwillii stands on South Island. J Ecol 70:413-436 doi:10.2307/2259912

  • Vera FWM, Bakker ES, Olff H (2006) Large herbivores: missing partners of western European light-demanding tree and shrub species? In: Danell K, Duncan P, R. B, Pastor J (eds) Large Herbivore Ecology, Ecosystem Dynamics and Conservation. Cambridge University Press, Cambridge, pp 203-321

    Google Scholar 

  • Wagstaff SJ, Bayly MJ, Garnock-Jones PJ, et al. (2002) Classification, origin, and diversification of the New Zealand hebes (Scrophulariaceae) Ann Mo Bot Gard 89:38-63 doi:10.2307/3298656

  • Walker S, Lee WG, Rogers GM (2004) Pre-settlement woody vegetation of Central Otago, New Zealand N Z J Bot 42:613-646

    Google Scholar 

  • Walker MJC, Berkelhammer M, Björck S, et al. (2012) Formal subdivision of the Holocene Series/Epoch: a Discussion Paper by a Working Group of INTIMATE (Integration of ice-core, marine and terrestrial records) and the Subcommission on Quaternary Stratigraphy (International Commission on Stratigraphy) J Quat Sci 27:649-659 doi:10.1002/jqs.2565

  • Wallis GP, Trewick SA (2009) New Zealand phylogeography: evolution on a small continent Mol Ecol 18:3548-3580 doi:10.1111/j.1365-294X.2009.04294.x

  • Wardle P (1963) Evolution and distribution of the New Zealand flora, as affected by Quaternary climates N Z J Bot 1:3-17

    Google Scholar 

  • Wardle P (1968) Evidence for an indigenous pre-quaternary element in the mountain flora of New Zealand N Z J Bot 6:120-125 doi:10.1080/0028825x.1968.10429825

  • Wardle P (1985) New Zealand timberlines. 2. A study of forest limits in the Crow Valley near Arthur’s Pass, Canterbury. N Z J Bot 23:235-261

    Google Scholar 

  • Wardle P (1991) Vegetation of New Zealand. Cambridge University Press, Cambridge

    Google Scholar 

  • Whitlock C, McWethy DB, Tepley AJT, et al. (2015) Past and present vulnerability of closed-canopy temperate forests to altered fire regimes: a comparison of the Pacific Northwest, New Zealand, and Patagonia Bioscience 65:151-163 doi:10.1093/biosci/biu194

  • Wichman SR, Wright SD, Cameron EK, et al. (2002) Elevated genetic heterogeneity and Pleistocene climatic instability: inferences from nrDNA in New Zealand Coprosma (Rubiaceae) J Biogeogr 29:943-954 doi:10.1046/j.1365-2699.2002.00727.x

  • Wilmshurst JM, McGlone MS, Charman DJ (2002) Holocene vegetation and climate change in southern New Zealand: Linkages between forest composition and quantitative surface moisture reconstructions from an ombrogenous bog J Quat Sci 17:653-666 doi:10.1002/jqs.689

  • Wilmshurst JM, McGlone MS, Leathwick JR, et al. (2007) A pre-deforestation pollen-climate calibration model for New Zealand and quantitative temperature reconstructions for the past 18 000 years BP J Quat Sci 22:535-547 doi:10.1002/jqs.1135

  • Wilmshurst JM, Anderson AJ, Higham TFG, et al. (2008) Dating the late prehistoric dispersal of polynesians to New Zealand using the commensal Pacific rat Proc Nat Acad Sci U S A 105:7676-7680 doi:10.1073/pnas.0801507105

  • Wood JR (2013) New Zealand, 500 years ago. In: MacLeod, N. (ed) Grzimek’s Animal Life Encyclopedia: Extinction. Gale, Farmington Hills, USA. Pp. 595-604.

    Google Scholar 

  • Wood JR, De Pietri VL (2015) Next-generation paleornithology: technological and methodological advances allow new insights into the evolutionary and ecological histories of living birds. The Auk 132:486-506.

    Google Scholar 

  • Wood JR, Rawlence NJ, Rogers GM, et al. (2008) Coprolite deposits reveal the diet and ecology of the extinct New Zealand megaherbivore moa (Aves, Dinornithiformes) Quat Sci Rev 27:2593-2602 doi:10.1016/j.quascirev.2008.09.019

  • Wood JR, Walker S (2008) Macrofossil evidence for pre-settlement vegetation of Central Otago's basin floors and gorges NZ J Bot 46:239-255

    Google Scholar 

  • Wood JR, Wilmshurst JM (In press) Changes in New Zealand forest plant communities following the prehistoric extinction of avian megaherbivores J Veg Sci

    Google Scholar 

  • Wood JR, Wilmshurst JM, Wagstaff SJ, Worthy TH, Rawlence NJ, Cooper A (2012) High-Resolution Coproecology: Using Coprolites to Reconstruct the Habits and Habitats of New Zealand’s Extinct Upland Moa (Megalapteryx didinus) PLoS ONE 7:e40025

    Google Scholar 

  • Woodward C, Shulmeister J, Larsen J, et al. (2014) The hydrological legacy of deforestation on global wetlands Science 346:844-847 doi:10.1126/science.1260510

  • Worthy TH (1987) Palaeoecological information concerning members of the frog genus Leiopelma: Leiopelmatidae in New Zealand J R Soc N Z 17:409-420

    Google Scholar 

  • Worthy TH (1993) A review of fossil bird bones from loess deposits in eastern South Island, New Zealand Rec Cant Mus 10:95-106

    Google Scholar 

  • Worthy TH (1998) The Quaternary fossil avifauna of Southland, South Island, New Zealand J R Soc N Z 28:537-589

    Google Scholar 

  • Worthy TH, Grant-Mackie JA (2003) Late-Pleistocene avifaunas from Cape Wanbrow, Otago, South Island, New Zealand J Roy Soc NZ 33:427-485

    Google Scholar 

  • Worthy T, Holdaway RN (1994) Quaternary fossil faunas from caves in Takaka Valley and on Takaka Hill, northwest Nelson, South Island, New Zealand J R Soc N Z 24:297-391

    Google Scholar 

  • Worthy TH, Holdaway RN (1995) Quaternary fossil faunas from caves on Mt. Cookson, North Canterbury, South Island, New Zealand J Roy Soc NZ 25:333-370

    Google Scholar 

  • Worthy TH, Holdaway RN (2002) The Lost World of the Moa: prehistoric life of New Zealand. Canterbury University Press, Christchurch

    Google Scholar 

  • Worthy TH, Tennyson AJD, Jones C, et al. (2007) Miocene waterfowl and other birds from central Otago, New Zealand Journal of Systematic Palaeontology 5:1-39 doi:10.1017/s1477201906001957

  • Worthy TH, Tennyson AJD, Hand SJ, et al. (2011a) Terrestrial Turtle Fossils from New Zealand Refloat Moa’s Ark Copeia:72-76 doi:10.1643/ch-10-113

  • Worthy TH, Tennyson AJD, Scofield RP (2011b) Fossils reveal an early Miocene presence of the aberrant gruiform Aves: Aptornithidae in New Zealand Journal of Ornithology 152:669-680 doi:10.1007/s10336-011-0649-6

  • Worthy TH, Zhao JX (2006) Late Pleistocene predator-accumulated avifauna from Kid’s Cave, west coast, South Island, New Zealand Alcheringa Special Issue 1:389-408

    Google Scholar 

  • Wotton DM, Kelly D (2011) Frugivore loss limits recruitment of large-seeded trees Proc R Soc B Biol Sci 278:3345-3354 doi:10.1098/rspb.2011.0185

  • Wotton DM, Kelly D (2012) Do larger frugivores move seeds further? Body size, seed dispersal distance, and a case study of a large, sedentary pigeon J Biogeogr 39:1973-1983 doi:10.1111/jbi.12000

  • Wotton DM, Clout MN, Kelly D (2008) Seed retention times in the New Zealand pigeon (Hemiphaga novaezeelandiae novaeseelandiae) N Z J Ecol 32:1-6

    Google Scholar 

  • Wright IC, McGlone MS, Nelson CS, et al. (1995) An integrated latest Quaternary (Stage 3 to present) paleoclimatic and paleoceanographic record from offshore northern New Zealand Quat Res 44:283-293

    Google Scholar 

  • Young LM, Kelly D, Nelson XJ (2012) Alpine flora may depend on declining frugivorous parrot for seed dispersal Biol Conserv 147:133-142 doi:10.1016/j.biocon.2011.12.023

  • Zhu K, Woodall CW, Clark JS (2012) Failure to migrate: lack of tree range expansion in response to climate change Global Change Biol 18:1042-1052 doi:10.1111/j.1365-2486.2011.02571.x

Download references

Acknowledgments

We thank Rich Leschen for his very helpful comments on the text, and George Perry for providing Fig. 7.13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamie Wood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Atlantis Press and the author(s)

About this chapter

Cite this chapter

Wood, J., Wilmshurst, J., Newnham, R., McGlone, M. (2017). Evolution and Ecological Change During the New Zealand Quaternary. In: Shulmeister, J. (eds) Landscape and Quaternary Environmental Change in New Zealand. Atlantis Advances in Quaternary Science , vol 3. Atlantis Press, Paris. https://doi.org/10.2991/978-94-6239-237-3_7

Download citation

Publish with us

Policies and ethics