Skip to main content

The Class III Protein Deacetylases

Homologs of Yeast Sir2p

  • Chapter
Histone Deacetylases

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Sirtuins are NAD-dependent protein deacetylases found in organisms ranging from bacteria to humans that share sequence homology with the yeast transcriptional regulator Sir2. In eukaryotes, sirtuins regulate The first two authors contributed equally to this review. transcriptional repression, recombination, cell cycle division, microtubule organization, and cellular responses to DNA-damaging agents. Sir2 proteins have also been implicated in regulating the molecular mechanisms of aging. Eukaryotic sirtuins contain a core catalytic domain and variable amino- and carboxyl-terminal extensions that regulate their subcellular localizations and catalytic activity. This review focuses on the diverse sub-cellular distribution, substrate specificity, and cellular functions of sirtuins with particular emphasis on the biology of mammalian sirtuins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

Abf1:

ARS-binding factor 1 protein

Age-1:

AGEing alteration family member 1

Bax:

BCL2-associated X protein

Daf-2:

Abnormal dauer formation family member 2

GCN5:

General control of amino-acid synthesis 5

Hap4:

Subunit of the heme-activated, glucose-repressed Hap2p/3p/4p/5p CCAAT-binding complex

HES1:

Hairy and enhancer of split 1

HEY2:

Hairy/enhancer-of-split related with YRPW motif 2

HRAS1:

Harvey rat sarcoma virus oncogene 1

MyoD:

Myogenic differentiation 1

Net1p:

Nucleolar protein involved in exit from mitosis; protein 1

Orc:

Origin recognition complex

PGC-1-α:

Peroxisome proliferative activated receptor, gamma, coactivator 1, α

PML:

Promyelocytic leukemia

PNC1:

Pyrazinamidase/nicotinamidase 1

Rap1:

Repressor activator protein 1

RelA:

v-rel reticuloendotheliosis viral oncogene homolog A

SRC-1:

Steroid receptor coactivator-1

TAF:

TBP-associated transcription factor family member

Tat:

Transactivating regulatory protein

References

  1. Rine J, Strathern JN, Hicks JB, Herskowitz I. A suppressor of mating-type locus mutations in Saccharomyces cerevisiae: evidence for and identification of cryptic mating-type loci. Genetics 1979;93:877–901.

    PubMed  CAS  Google Scholar 

  2. Ivy JM, Hicks JB, Klar AJ. Map positions of yeast genes SIR1, SIR3 and SIR4. Genetics 1985;111:735–744.

    PubMed  CAS  Google Scholar 

  3. Ivy JM, Klar A J, Hicks JB. Cloning and characterization of four SIR genes of Saccharomyces cerevisiae. Mol Cell Biol 1986;6:688–702.

    PubMed  CAS  Google Scholar 

  4. Rine J, Herskowitz I. Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae. Genetics 1987; 116:9–22.

    PubMed  CAS  Google Scholar 

  5. Landry J, Sutton A, Tafrov ST, et al. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci USA2000;97: 5807–5811.

    Article  PubMed  CAS  Google Scholar 

  6. Smith JS, Brachmann CB, Celic I, et al. A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. Proc Natl Acad Sci U S A2000;97:6658–6663.

    Article  PubMed  CAS  Google Scholar 

  7. Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature2000;403:795–800.

    Article  PubMed  CAS  Google Scholar 

  8. Kupiec M, Byers B, Esposito RE, Mitchell AP. Meiosis and sporulation in Saccharomyces cerevisiae. In: Pringle JR, Broach JR, Jones EW, eds. The Molecular and Cellular Biology of the Yeast Saccharomyces: Cell Cycle and Cell Biology. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press,1997:889–1036.

    Google Scholar 

  9. Triolo T, Sternglanz R. Role of interactions between the origin recognition complex and SIR1 in transcriptional silencing. Nature1996;381:251–253.

    Article  PubMed  CAS  Google Scholar 

  10. Boscheron C, Maillet L, Marcand S, Tsai-Pflugfelder M, Gasser SM, Gilson E. Cooperation at a distance between silencers and proto-silencers at the yeast HML locus. EMBO J1996; 15:2184–2195.

    PubMed  CAS  Google Scholar 

  11. Moretti P, Freeman K, Coodly L, Shore D. Evidence that a complex of SIR proteins interacts with the silencer and telomere-binding protein RAP1. Genes Dev1994;8:2257–2269.

    Article  PubMed  CAS  Google Scholar 

  12. Rusche LN, Kirchmaier AL, Rine J. Ordered nucleation and spreading of silenced chromatin in Saccharomyces cerevisiae. Mol Biol Cell2002; 13: 2207–2222.

    Article  PubMed  CAS  Google Scholar 

  13. Hecht A, Laroche T, Strahl-Bolsinger S, Gasser SM, Grunstein M. Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast. Cell1995;80:583–592.

    Article  PubMed  CAS  Google Scholar 

  14. Braunstein M, Sobel RE, Allis CD, Turner BM, Broach JR. Efficient transcrip-tional silencing in Saccharomyces cerevisiae requires a heterochromatin histone acetylation pattern. Mol Cell Biol1996; 16:4349–4356.

    PubMed  CAS  Google Scholar 

  15. Braunstein M, Rose AB, Holmes SG, Allis CD, Broach JR. Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev1993;7:592–604.

    Article  PubMed  CAS  Google Scholar 

  16. Hoppe GJ, Tanny JC, Rudner AD, et al. Steps in assembly of silent chromatin in yeast: Sir3-independent binding of a Sir2/Sir4 complex to silencers and role for Sir2-dependent deacetylation. Mol Cell Biol2002;22:4167–4180.

    Article  PubMed  CAS  Google Scholar 

  17. Moazed D, Rudner AD, Huang J, Hoppe GJ, Tanny JC. A model for step-wise assembly of heterochromatin in yeast. Novartis Found Symp2004;259:48–56; discussion 56-62, 163-169.

    Article  PubMed  CAS  Google Scholar 

  18. Rusche LN, Kirchmaier AL, Rine J. The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. Annu Rev Biochem2003;72:481–516.

    Article  PubMed  CAS  Google Scholar 

  19. Bi X, Broach JR. DNA in transcriptionally silent chromatin assumes a distinct topology that is sensitive to cell cycle progression. Mol Cell Biol1997; 17: 7077–7087.

    PubMed  CAS  Google Scholar 

  20. Loo S, Rine J. Silencers and domains of generalized repression. Science1994;264:1768–1771.

    Article  PubMed  CAS  Google Scholar 

  21. Bryan TM, Cech TR. Telomerase and the maintenance of chromosome ends. Curr Opin Cell Biol1999;11:318–324.

    Article  PubMed  CAS  Google Scholar 

  22. Wright JH, Gottschling DE, Zakian VA. Saccharomyces telomeres assume a non-nucleosomal chromatin structure. Genes Dev 1992;6:197–210.

    Article  PubMed  CAS  Google Scholar 

  23. Gottschling DE, Aparicio OM, Billington BL, Zakian VA. Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 1990; 63:751–762.

    Article  PubMed  CAS  Google Scholar 

  24. Bourns BD, Alexander MK, Smith AM, Zakian VA. Sir proteins, Rif proteins, and Cdc13p bind Saccharomyces telomeres in vivo. Mol Cell Biol 1998; 18:5600–5608.

    PubMed  CAS  Google Scholar 

  25. Liu C, Lustig AJ. Genetic analysis of Rap1p/Sir3p interactions in telomeric and HML silencing in Saccharomyces cerevisiae. Genetics 1996;143:81–93.

    PubMed  CAS  Google Scholar 

  26. Cockell M, Palladino F, Laroche T, et al. The carboxy termini of Sir4 and Rap1 affect Sir3 localization: evidence for a multicomponent complex required for yeast telomeric silencing. J Cell Biol 1995;129:909–924.

    Article  PubMed  CAS  Google Scholar 

  27. Laroche T, Martin SG, Gotta M, et al. Mutation of yeast Ku genes disrupts the subnuclear organization of telomeres. Curr Biol 1998;8:653–656.

    Article  PubMed  CAS  Google Scholar 

  28. Martin SG, Laroche T, Suka N, Grunstein M, Gasser SM. Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast. Cell 1999;97:621–633.

    Article  PubMed  CAS  Google Scholar 

  29. Mills KD, Sinclair DA, Guarente L. MEC1-dependent redistribution of the Sir3 silencing protein from telomeres to DNA double-strand breaks. Cell 1999;97: 609–620.

    Article  PubMed  CAS  Google Scholar 

  30. Gravel S, Larrivee M, Labrecque P, Wellinger RJ. Yeast Ku as a regulator of chromosomal DNA end structure. Science 1998;280:741–744.

    Article  PubMed  CAS  Google Scholar 

  31. Bryk M, Banerjee M, Murphy M, Knudsen KE, Garfinkel DJ, Curcio MJ. Transcriptional silencing of Ty1 elements in the RDN1 locus of yeast. Genes Dev 1997;11:255–269.

    Article  PubMed  CAS  Google Scholar 

  32. Smith JS, Boeke JD. An unusual form of transcriptional silencing in yeast ribosomal DNA. Genes Dev 1997;11:241–254.

    Article  PubMed  CAS  Google Scholar 

  33. Fritze CE, Verschueren K, Strich R, Easton Esposito R. Direct evidence for SIR2 modulation of chromatin structure in yeast rDNA. EMBO J 1997;16:6495–6509.

    Article  PubMed  CAS  Google Scholar 

  34. Gottlieb S, Esposito RE. A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in ribosomal DNA. Cell 1989;56:771–776.

    Article  PubMed  CAS  Google Scholar 

  35. Straight AF, Shou W, Dowd GJ, et al. Net1, a Sir2-associated nucleolar protein required for rDNA silencing and nucleolar integrity. Cell 1999;97:245–256.

    Article  PubMed  CAS  Google Scholar 

  36. Shou W, Seol JH, Shevchenko A, et al. Exit from mitosis is triggered by Tem1-dependent release of the protein phosphatase Cdc14 from nucleolar RENT complex. Cell 1999;97:233–244.

    Article  PubMed  CAS  Google Scholar 

  37. Brachmann CB, Sherman JM, Devine SE, Cameron EE, Pillus L, Boeke JD. The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes Dev 1995;9: 2888–2902.

    Article  PubMed  CAS  Google Scholar 

  38. Bedalov A, Hirao M, Posakony J, Nelson M, Simon JA. NAD+-dependent deacetylase Hst1p controls biosynthesis and cellular NAD+ levels in Saccharomyces cerevisiae. Mol Cell Biol 2003;23:7044–7054.

    Article  PubMed  CAS  Google Scholar 

  39. Perrod S, Cockell MM, Laroche T, et al. A cytosolic NAD-dependent deacetylase, Hst2p, can modulate nucleolar and telomeric silencing in yeast. EMBO J 2001;20:197–209.

    Article  PubMed  CAS  Google Scholar 

  40. Afshar G, Murnane JP. Characterization of a human gene with sequence homol-ogy to Saccharomyces cerevisiae SIR2.1222Gene 1999;234:161–168.

    CAS  Google Scholar 

  41. North BJ, Marshall BL, Borra MT, Denu JM, Verdin E. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell 2003;11: 437–444.

    Article  PubMed  CAS  Google Scholar 

  42. Sinclair DA, Guarente L. Extrachromosomal rDNA circles-a cause of aging in yeast. Cell 1997;91:1033–1042.

    Article  PubMed  CAS  Google Scholar 

  43. Kennedy BK, Gotta M, Sinclair DA, et al. Redistribution of silencing proteins from telomeres to the nucleolus is associated with extension of life span in S. cerevisiae. Cell 1997;89:381–391.

    Article  PubMed  CAS  Google Scholar 

  44. Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 1999;13:2570–2580.

    Article  PubMed  CAS  Google Scholar 

  45. Masoro EJ. Caloric restriction and aging: an update. Exp Gerontol 2000;35: 299–305.

    Article  PubMed  CAS  Google Scholar 

  46. Lin SJ, Kaeberlein M, Andalis AA, et al. Calorie restriction extends Saccharomyces cerevisiae life span by increasing respiration. Nature 2002;418: 344–348.

    Article  PubMed  CAS  Google Scholar 

  47. Lin SJ, Defossez PA, Guarente L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 2000;289: 2126–2128.

    Article  PubMed  CAS  Google Scholar 

  48. Kaeberlein M, Kirkland KT, Fields S, Kennedy BK. Sir2-independent life span extension by calorie restriction in yeast. PLoS Biol 2004;2:E296.

    Article  PubMed  CAS  Google Scholar 

  49. Kaeberlein M, Andalis AA, Liszt GB, Fink GR, Guarente L. Saccharomyces cerevisiae SSD1-V confers longevity by a Sir2p-independent mechanism. Genetics 2004;166:1661–1672.

    Article  PubMed  CAS  Google Scholar 

  50. Lin SJ, Ford E, Haigis M, Liszt G, Guarente L. Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev 2004;18:12–16.

    Article  PubMed  CAS  Google Scholar 

  51. Landry J, Slama JT, Sternglanz R. Role of NAD(+) in the deacetylase activity of the SIR2-like proteins. Biochem Biophys Res Commun 2000;278:685–690.

    Article  PubMed  CAS  Google Scholar 

  52. Bitterman KJ, Anderson RM, Cohen HY, Latorre-Esteves M, Sinclair DA. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J Biol Chem 2002;277: 45,099–45,107.

    Article  PubMed  CAS  Google Scholar 

  53. Anderson RM, Bitterman KJ, Wood JG, Medvedik O, Sinclair DA. Nicotinamide and PNC1 govern life span extension by calorie restriction in Saccharomyces cerevisiae. Nature 2003;423:181–185.

    Article  PubMed  CAS  Google Scholar 

  54. Anderson RM, Bitterman KJ, Wood JG, et al. Manipulation of a nuclear NAD+ salvage pathway delays aging without altering steady-state NAD+ levels. J Biol Chem 2002;277:18,881–18,890.

    Article  PubMed  CAS  Google Scholar 

  55. Starai VJ, Celic I, Cole RN, Boeke JD, Escalante-SemerenaZ JC. Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine. Science 2002;298:2390–2392.

    Article  PubMed  CAS  Google Scholar 

  56. Starai VJ, Takahashi H, Boeke JD, Escalante-Semerena JC. Short-chain fatty acid activation by acyl-coenzyme A synthetases requires SIR2 protein function in Salmonella enterica and Saccharomyces cerevisiae. Genetics 2003; 163: 545–555.

    PubMed  CAS  Google Scholar 

  57. Horswill AR, Escalante-Semerena JC. Characterization of the propionyl-CoA synthetase (PrpE) enzyme of Salmonella enterica: residue Lys592 is required for propionyl-AMP synthesis. Biochemistry 2002;41:2379–2387.

    Article  PubMed  CAS  Google Scholar 

  58. Bell SD, Botting CH, Wardleworth BN, Jackson SP, White MF. The interaction of Alba, a conserved archaeal chromatin protein, with Sir2 and its regulation by acetylation. Science 2002;296:148–151.

    Article  PubMed  CAS  Google Scholar 

  59. She Q, Singh RK, Confalonieri F, et al. The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc Natl Acad Sci U S A 2001;98:7835–7840.

    Article  PubMed  CAS  Google Scholar 

  60. Tissenbaum HA, Guarente L. Increased dosage of a sir-2 gene extends life span in Caenorhabditis elegans. Nature 2001;410:227–230.

    Article  PubMed  CAS  Google Scholar 

  61. Kawano T, Ito Y, Ishiguro M, Takuwa K, Nakajima T, Kimura Y. Molecular cloning and characterization of a new insulin/IGF-like peptide of the nematode Caenorhabditis elegans. Biochem Biophys Res Commun 2000;273:431–436.

    Article  PubMed  CAS  Google Scholar 

  62. Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R. A C. elegans mutant that lives twice as long as wild type. Nature 1993;366:461–464.

    Article  PubMed  CAS  Google Scholar 

  63. Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 1997;277:942–946.

    Article  PubMed  CAS  Google Scholar 

  64. Paradis S, Ailion M, Toker A, Thomas JH, Ruvkun G. A PDK1 homolog is necessary and sufficient to transduce AGE-1 PI3 kinase signals that regulate diapause in Caenorhabditis elegans. Genes Dev 1999;13:1438–1452.

    PubMed  CAS  Google Scholar 

  65. Friedman DB, Johnson TE. Three mutants that extend both mean and maximum life span of the nematode, Caenorhabditis elegans, define the age-1 gene. J Gerontol 1988;43:B102–B109.

    PubMed  CAS  Google Scholar 

  66. Barlow AL, van Drunen CM, Johnson CA, Tweedie S, Bird A, Turner BM. dSIR2 and dHDAC6: two novel, inhibitor-resistant deacetylases in Drosophila melanogaster. Exp Cell Res 2001;265:90–103.

    Article  PubMed  CAS  Google Scholar 

  67. Rosenberg MI, Parkhurst SM. Drosophila Sir2 is required for heterochromatic silencing and by euchromatic Hairy/E(Spl) bHLH repressors in segmentation and sex determination. Cell 2002;109:447–458.

    Article  PubMed  CAS  Google Scholar 

  68. Newman BL, Lundblad JR, Chen Y, Smolik SM. A Drosophila homologue of Sir2 modifies position-effect variegation but does not affect life span. Genetics 2002;162:1675–1685.

    PubMed  CAS  Google Scholar 

  69. Astrom SU, Cline TW, Rine J. The Drosophila melanogaster sir2+ gene is nonessential and has only minor effects on position-effect variegation. Genetics 2003;163:931–937.

    PubMed  CAS  Google Scholar 

  70. Frye RA. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem Biophys Res Commun 1999;260: 273–279.

    Article  PubMed  CAS  Google Scholar 

  71. Luo J, Nikolaev AY, Imai S, et al. Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 2001;107:137–148.

    Article  PubMed  CAS  Google Scholar 

  72. Vaziri H, Dessain SK, Ng Eaton E, et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 2001; 107:149–159.

    Article  PubMed  CAS  Google Scholar 

  73. Vaquero A, Scher M, Lee D, Erdjument-Bromage H, Tempst P, Reinberg D. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell 2004;16:93–105.

    Article  PubMed  CAS  Google Scholar 

  74. Alcendor RR, Kirshenbaum LA, Imai S, Vatner SF, Sadoshima J. Silent information regulator 2a, a longevity factor and class III histone deacetylase, is an essential endogenous apoptosis inhibitor in cardiac myocytes. Circ Res 2004;95: 971–980.

    Article  PubMed  CAS  Google Scholar 

  75. Langley E, Pearson M, Faretta M, et al. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J 2002;21:2383–2396.

    Article  PubMed  CAS  Google Scholar 

  76. Muth V, Nadaud S, Grummt I, Voit R. Acetylation of TAF(I)68, a subunit of TIF-IB/SL1, activates RNA polymerase I transcription. EMBO J 2001;20: 1353–1362.

    Article  PubMed  CAS  Google Scholar 

  77. Guarente L. Diverse and dynamic functions of the Sir silencing complex. Nat Genet 1999;23:281–285.

    Article  PubMed  CAS  Google Scholar 

  78. Luo J, Li M, Tang Y, Laszkowska M, Roeder RG, Gu W. Acetylation of p53 augments its site-specific DNA binding both in vitro and in vivo. Proc Natl Acad Sci U S A 2004;101:2259–2264.

    Article  PubMed  CAS  Google Scholar 

  79. Luo J, Su F, Chen D, ShilohA, Gu W. Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature 2000;408:377–381.

    Article  PubMed  CAS  Google Scholar 

  80. Ito A, Lai CH, Zhao X, et al. p300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2. EMBO J 2001;20: 1331–1340.

    Article  PubMed  CAS  Google Scholar 

  81. Cheng HL, Mostoslavsky R, Saito S, et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci USA 2003;100:10, 794–10,799.

    Article  CAS  Google Scholar 

  82. McBurney MW, Yang X, Jardine K, et al. The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis. Mol Cell Biol 2003;23:38–54.

    Article  PubMed  CAS  Google Scholar 

  83. Baldwin AS Jr. The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 1996;14:649–683.

    Article  PubMed  CAS  Google Scholar 

  84. Mayo MW, Baldwin AS. The transcription factor NF-kappaB: control of onco-genesis and cancer therapy resistance. Biochim Biophys Acta 2000; 1470: M55–M62.

    PubMed  CAS  Google Scholar 

  85. Na SY, Lee SK, Han SJ, Choi HS, Im SY, Lee JW. Steroid receptor coactivator-1 interacts with the p50 subunit and coactivates nuclear factor kappaB-mediated transactivations. JBiol Chem 1998;273:10,831–10,834.

    Article  CAS  Google Scholar 

  86. Sheppard KA, Phelps KM, Williams AJ, et al. Nuclear integration of glucocorti-coid receptor and nuclear factor-kappaB signaling by CREB-binding protein and steroid receptor coactivator-1. J Biol Chem 1998;273:29,291–29,294.

    Article  PubMed  CAS  Google Scholar 

  87. Sheppard KA, Rose DW, Haque ZK, et al. Transcriptional activation by NF-kappaB requires multiple coactivators. Mol Cell Biol 1999;19:6367–6378.

    PubMed  CAS  Google Scholar 

  88. Zhong H, May MJ, Jimi E, Ghosh S. The phosphorylation status of nuclear NF-kappa B determines its association with CBP/p300 or HDAC-1. Mol Cell 2002;9:625–636.

    Article  PubMed  CAS  Google Scholar 

  89. Chen LF, Mu Y, Greene WC. Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-kappaB. EMBO J 2002;21:6539–6548.

    Article  PubMed  CAS  Google Scholar 

  90. Kiernan R, Bres V, Ng RW, et al. Post-activation turn-off of NF-kappa B-dependent transcription is regulated by acetylation of p65. J Biol Chem 2003;278:2758–2766.

    Article  PubMed  CAS  Google Scholar 

  91. Yeung F, Hoberg JE, Ramsey CS, et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 2004;23: 2369–2380.

    Article  PubMed  CAS  Google Scholar 

  92. Ashburner BP, Westerheide SD, Baldwin AS Jr. The p65 (RelA) subunit of NF-kappaB interacts with the histone deacetylase (HDAC) corepressors HDAC1 and HDAC2 to negatively regulate gene expression. Mol Cell Biol 2001;21:7065–7077.

    Article  PubMed  CAS  Google Scholar 

  93. Senawong T, Peterson VJ, Avram D, et al. Involvement of the histone deacetylase SIRT1 in chicken ovalbumin upstream promoter transcription factor (COUP-TF)-interacting protein 2-mediated transcriptional repression. J Biol Chem 2003;278: 43,041–43,050.

    Article  PubMed  CAS  Google Scholar 

  94. Massari ME, Murre C. Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol Cell Biol 2000;20:429–440.

    Article  PubMed  CAS  Google Scholar 

  95. Kageyama R, Nakanishi S. Helix-loop-helix factors in growth and differentiation of the vertebrate nervous system. Curr Opin Genet Dev 1997;7:659–665.

    Article  PubMed  CAS  Google Scholar 

  96. Takata T, Ishikawa F. Human Sir2-related protein SIRT1 associates with the bHLH repressors HES1 and HEY2 and is involved in HES1-and HEY2-mediated transcriptional repression. Biochem Biophys Res Commun 2003;301:250–257.

    Article  PubMed  CAS  Google Scholar 

  97. Fulco M, Schiltz RL, Iezzi S, et al. Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol Cell 2003;12:51–62.

    Article  PubMed  CAS  Google Scholar 

  98. Motta MC, Divecha N, Lemieux M, et al. Mammalian SIRT1 represses fork-head transcription factors. Cell 2004;116:551–563.

    Article  PubMed  CAS  Google Scholar 

  99. Walker JR, Corpina RA, Goldberg J. Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature 2001;412: 607–614.

    Article  PubMed  CAS  Google Scholar 

  100. Sawada M, Sun W, Hayes P, Leskov K, Boothman DA, Matsuyama S. Ku70 suppresses the apoptotic translocation of Bax to mitochondria. Nat Cell Biol 2003;5:320–329.

    Article  PubMed  CAS  Google Scholar 

  101. Cohen HY, Lavu S, Bitterman KJ, et al. Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Mol Cell 2004;13:627–638.

    Article  PubMed  CAS  Google Scholar 

  102. Cohen HY, Miller C, Bitterman KJ, et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 2004;305:390–392.

    Article  PubMed  CAS  Google Scholar 

  103. Nasrin N, Ogg S, Cahill CM, et al. DAF-16 recruits the CREB-binding protein coactivator complex to the insulin-like growth factor binding protein 1 promoter in HepG2 cells. Proc Natl Acad Sci U S A 2000;97:10,412–10,417.

    Article  PubMed  CAS  Google Scholar 

  104. Daitoku H, Hatta M, Matsuzaki H, et al. Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity. Proc Natl Acad Sci U S A 2004; 101:10,042–10,047.

    Article  PubMed  CAS  Google Scholar 

  105. Brunet A, Sweeney LB, Sturgill JF, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 2004;303:2011–2015.

    Article  PubMed  CAS  Google Scholar 

  106. van der Horst A, Tertoolen LG, de Vries-Smits LM, Frye RA, Medema RH, Burgering BM. FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2(SIRT1). J Biol Chem 2004;279:28,873–28,879.

    Article  PubMed  CAS  Google Scholar 

  107. Fukuoka M, Daitoku H, Hatta M, Matsuzaki H, Umemura S, Fukamizu A. Negative regulation of forkhead transcription factor AFX (Foxo4) by CBP-induced acetylation. Int J Mol Med 2003;12:503–508.

    PubMed  CAS  Google Scholar 

  108. Picard F, Kurtev M, Chung N, et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 2004;429:771–776.

    Article  PubMed  CAS  Google Scholar 

  109. Kaehlcke K, Dorr A, Hetzer-Egger C, et al. Acetylation of Tat defines a cyclinT1-independent step in HIV transactivation. Mol Cell 2003;12:167–176.

    Article  PubMed  Google Scholar 

  110. Dorr A, Kiermer V, Pedal A, et al. Transcriptional synergy between Tat and PCAF is dependent on the binding of acetylated Tat to the PCAF bromodomain. EMBO 2002;21:2715–2723.

    Article  CAS  Google Scholar 

  111. Mujtaba S, He Y, Zeng L, et al. Structural basis of lysine-acetylated HIV-1 Tat recognition by PCAF bromodomain. Mol Cell 2002;9:575–586.

    Article  PubMed  CAS  Google Scholar 

  112. Ott M, Schnolzer M, Garnica J, et al. Acetylation of the HIV-1 Tat protein by p300 is important for its transcriptional activity. Curr Biol 1999;9:1489–1492.

    Article  PubMed  CAS  Google Scholar 

  113. Bres V, Tagami H, Peloponese JM, et al. Differential acetylation of Tat coordinates its interaction with the co-activators cyclin T1 and PCAF. EMBO J 2002;21:6811–6819.

    Article  PubMed  CAS  Google Scholar 

  114. Benkirane M, Chun RF, Xiao H, et al. Activation of integrated provirus requires histone acetyltransferase. p300 and P/CAF are coactivators for HIV-1 Tat. J Biol Chem 1998;273:24,898–24,905.

    Article  PubMed  CAS  Google Scholar 

  115. Kiernan RE, Vanhulle C, Schiltz L, et al. HIV-1 tat transcriptional activity is regulated by acetylation. EMBO J 1999;18:6106–6118.

    Article  PubMed  CAS  Google Scholar 

  116. Marzio G, Tyagi M, Gutierrez MI, Giacca M. HIV-1 tat transactivator recruits p300 and CREB-binding protein histone acetyltransferases to the viral promoter. Proc Natl Acad Sci US A 1998;95:13,519–13,524.

    Article  CAS  Google Scholar 

  117. Pagans S, Pedal A, North BJ, et al. SIRT1 Regulates HIV transcription via Tat deacetylation. PLoS Biol 2005;3:e41.

    Article  PubMed  CAS  Google Scholar 

  118. Jeppesen P, Turner BM. The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression. Cell 1993;74:281–289.

    Article  PubMed  CAS  Google Scholar 

  119. Johnson CA, O’ Neill LP, Mitchell A, Turner BM. Distinctive patterns of histone H4 acetylation are associated with defined sequence elements within both hete-rochromatic and euchromatic regions of the human genome. Nucleic Acids Res 1998;26:994–1001.

    Article  PubMed  CAS  Google Scholar 

  120. Sartorelli V, Puri PL. The link between chromatin structure, protein acetylation and cellular differentiation. Front Biosci 2001;6:D1024–D1047.

    Article  PubMed  CAS  Google Scholar 

  121. McKinsey TA, Zhang CL, Olson EN. Signaling chromatin to make muscle. Curr Opin Cell Biol 2002;14:763–772.

    Article  PubMed  CAS  Google Scholar 

  122. Sartorelli V, Puri PL, Hamamori Y, et al. Acety lation of My oD directed by PCAF is necessary for the execution of the muscle program. Mol Cell 1999;4:725–734.

    Article  PubMed  CAS  Google Scholar 

  123. Das M, Gabriely I, Barzilai N. Caloric restriction, body fat and ageing in experimental models. Obes Rev 2004;5:13–19.

    Article  PubMed  CAS  Google Scholar 

  124. Gabriely I, Ma XH, Yang XM, et al. Removal of visceral fat prevents insulin resistance and glucose intolerance of aging: an adipokine-mediated process? Diabetes 2002;51:2951–2958.

    Article  PubMed  CAS  Google Scholar 

  125. Bluher M, Kahn BB, Kahn CR. Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 2003;299:572–574.

    Article  PubMed  CAS  Google Scholar 

  126. Tyner SD, Venkatachalam S, Choi J, et al. p53 mutant mice that display early ageing-associated phenotypes. Nature 2002;415:45–53.

    Article  PubMed  CAS  Google Scholar 

  127. Campisi J. Cellular senescence as a tumor-suppressor mechanism. Trends Cell Biol 2001;11:S27–S31.

    PubMed  CAS  Google Scholar 

  128. Ferbeyre G, de Stanchina E, Querido E, Baptiste N, Prives C, Lowe SW. PML is induced by oncogenic ras and promotes premature senescence. Genes Dev 2000;14:2015–2027.

    PubMed  CAS  Google Scholar 

  129. Pearson M, Carbone R, Sebastiani C, et al. PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature 2000;406:207–210.

    Article  PubMed  CAS  Google Scholar 

  130. Liang H, Masoro EJ, Nelson JF, Strong R, McMahan CA, Richardson A. Genetic mouse models of extended life span. Exp Gerontol 2003;38:1353–1364.

    Article  PubMed  CAS  Google Scholar 

  131. Dillin A, Crawford DK, Kenyon C. Timing requirements for insulin/IGF-1 signaling in C. elegans. Science 2002;298:830–834.

    Article  PubMed  CAS  Google Scholar 

  132. Clancy DJ, Gems D, Harshman LG, et al. Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 2001;292: 104–106.

    Article  PubMed  CAS  Google Scholar 

  133. Puigserver P, Rhee J, Donovan J, et al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1 alpha interaction. Nature 2003;423:550–555.

    Article  PubMed  CAS  Google Scholar 

  134. Nakae J, Biggs WH 3rd, Kitamura T, et al. Regulation of insulin action and pancreatic beta-cell function by mutated alleles of the gene encoding forkhead transcription factor Foxo1. Nat Genet 2002;32:245–253.

    Article  PubMed  CAS  Google Scholar 

  135. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med 2003;348:1625–1638.

    Article  PubMed  Google Scholar 

  136. Hubbert C, Guardiola A, Shao R, et al. HDAC6 is a microtubule-associated deacetylase. Nature 2002;417:455–458.

    Article  PubMed  CAS  Google Scholar 

  137. Dry den SC, Nahhas FA, Nowak JE, Goustin AS, Tainsky MA. Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol Cell Biol 2003;23:3173–3185.

    Article  PubMed  CAS  Google Scholar 

  138. Bae NS, Swanson MJ, Vassilev A, Howard BH. Human histone deacetylase SIRT2 interacts with the homeobox transcription factor HOXA10. J Biochem (Tokyo) 2004;135:695–700.

    CAS  Google Scholar 

  139. Benson GV, Lim H, Paria BC, Satokata I, Dey SK, Maas RL. Mechanisms of reduced fertility in Hoxa-10 mutant mice: uterine homeosis and loss of maternal Hoxa-10 expression. Development 1996;122:2687–2696.

    PubMed  CAS  Google Scholar 

  140. Thorsteinsdottir U, Sauvageau G, Humphries RK. Hox homeobox genes as regulators of normal and leukemic hematopoiesis. Hematol Oncol Clin North Am 1997;11:1221–1237.

    Article  PubMed  CAS  Google Scholar 

  141. Capecchi MR. Hox genes and mammalian development. Cold Spring Harbor Symp Quant Biol 1997;62:273–281.

    PubMed  CAS  Google Scholar 

  142. McGinnis W, Krumlauf R. Homeobox genes and axial patterning. Cell 1992;68: 283–302.

    Article  PubMed  CAS  Google Scholar 

  143. Saleh M, Rambaldi I, Yang XJ, Featherstone MS. Cell signaling switches HOX-PBX complexes from repressors to activators of transcription mediated by histone deacetylases and histone acetyltransferases. Mol Cell Biol 2000;20:8623–8633.

    Article  PubMed  CAS  Google Scholar 

  144. Hiratsuka M, Inoue T, Toda T, et al. Proteomics-based identification of differentially expressed genes in human gliomas: down-regulation of SIRT2 gene. Biochem Biophys Res Commun 2003;309:558–566.

    Article  PubMed  CAS  Google Scholar 

  145. Frye RA. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun 2000;273:793–798.

    Article  PubMed  CAS  Google Scholar 

  146. Onyango P, Celic I, McCaffery JM, Boeke JD, Feinberg AP. SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria. Proc Natl Acad Sci U S A 2002;99:13,653–13,658.

    Article  PubMed  CAS  Google Scholar 

  147. Rose G, Dato S, Altomare K, et al. Variability of the SIRT3 gene, human silent information regulator Sir2 homologue, and survivorship in the elderly. Exp Gerontol 2003;38:1065–1070.

    Article  PubMed  CAS  Google Scholar 

  148. Schwer B, North BJ, Frye RA, Ott M, Verdin E. The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase. J Cell Biol 2002;158:647–657.

    Article  PubMed  CAS  Google Scholar 

  149. Yang YH, Chen YH, Zhang CY, Nimmakayalu MA, Ward DC, Weissman S. Cloning and characterization of two mouse genes with homology to the yeast Sir2 gene. Genomics 2000;69:355–369.

    Article  PubMed  CAS  Google Scholar 

  150. Shi T, Wang F, Stieren E, Tong Q. SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J Biol Chem 2005;280:13,560–13,567.

    Article  PubMed  CAS  Google Scholar 

  151. Grozinger CM, Chao ED, Blackwell HE, Moazed D, Schreiber SL. Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening. J Biol Chem 2001;276:38,837–38,843.

    Article  PubMed  CAS  Google Scholar 

  152. Bedalov A, Gatbonton T, Irvine WP, Gottschling DE, Simon JA. Identification of a small molecule inhibitor of Sir2p. Proc Natl Acad Sci U S A 2001;98: 15,113–15,118.

    Article  PubMed  CAS  Google Scholar 

  153. Posakony J, Hirao M, Stevens S, Simon JA, Bedalov A. Inhibitors of Sir2: evaluation of splitomicin analogues. J Med Chem 2004;47:2635–2644.

    Article  PubMed  CAS  Google Scholar 

  154. Howitz KT, Bitterman KJ, Cohen HY, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae life span. Nature 2003;425:191–196.

    Article  PubMed  CAS  Google Scholar 

  155. Wood JG, Rogina B, Lavu S, et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 2004;430:686–689.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Schwer, B., North, B.J., Ahuja, N., Marshall, B., Verdin, E. (2006). The Class III Protein Deacetylases. In: Verdin, E. (eds) Histone Deacetylases. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1385/1-59745-024-3:237

Download citation

Publish with us

Policies and ethics