Advertisement

Treatment of Asthma in Children

  • Christopher Chang
Chapter
Part of the Current Clinical Practice book series (CCP)

Abstract

  • The incidence of asthma has increased dramatically during the past 20 yr, with the highest increases in the urban areas of developed countries.

  • Asthma treatment goals in children include decreasing mortality and improving quality of life.

  • Specific asthma treatment goals include decreasing inflammation, improving lung function, decreasing clinical symptoms, reducing hospitalizations and emergency department visits, reducing work or school absences resulting from asthma, and reducing rescue medication requirements.

  • Nonpharmacological techniques that can help achieve asthma treatment goals include identification of asthma triggers, determination of environmental exposure to allergens and irritants, environmental control (including allergen avoidance), patient education, regular monitoring of lung function, and formulation of a complete asthma management plan.

  • Achieving asthma treatment goals reduces direct and indirect costs of asthma and is economically cost-effective.

  • A comprehensive asthma treatment plan should be formulated and customized for each child with asthma.

  • Developing optimal technique in the use of metered-dose inhalers in children under 12 yr of age is difficult. Ongoing instruction and review may be necessary to ensure good technique. The use of spacers can help as well.

  • Asthma is a chronic disease and is accompanied by the psychological burden of chronic illness. This may have an effect on the successful treatment of the child with asthma.

Keywords

Airway Inflammation Allergy Clin Immunol Asthma Exacerbation Ipratropium Bromide Beclomethasone Dipropionate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Masoli M, Fabian D, Holt S, Beasley R. The global burden of asthma: executive summary of the GINA Dissemination Committee report. Allergy 2004; 59(5):469–178.CrossRefGoogle Scholar
  2. 2.
    Chang CC, Phinney SD, Halpern GM, Gershwin ME. Asthma mortality: another opinion—is it a matter of life and bread? J Asthma 1993; 30(2):93–103.PubMedCrossRefGoogle Scholar
  3. 3.
    NHLBI. Guidelines for the Diagnosis and Management of Asthma. Expert Panel Report 2. National Institutes of Health, National Heart, Lung and Blood Institute. NBIH Publication 1997; 97: 4051.Google Scholar
  4. 4.
    James A. Airway remodeling in asthma. Curr Opin Pulm Med 2005; 11(1): 1–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Chen FH, Samson KT, Miura K, et al. Airway remodeling: a comparison between fatal and nonfatal asthma. J Asthma 2004; 41(6): 631–638.PubMedCrossRefGoogle Scholar
  6. 6.
    Byrnes CA, Dinarevic S, Shinebourne EA, Barnes PJ, Bush A. Exhaled nitric oxide measurements in normal and asthmatic children. Pediatr Pulmonol 1997; 24(5): 312–318.PubMedCrossRefGoogle Scholar
  7. 7.
    Mattes J, Storm van’s Gravesande K, Reining U, et al. NO in exhaled air is correlated with markers of eosinophilic airway inflammation in corticosteroid-dependent childhood asthma. Eur Respir J 1999; 13(6): 1391–1395.PubMedGoogle Scholar
  8. 8.
    Warke TJ, Fitch PS, Brown V, et al. Exhaled nitric oxide correlates with airway eosinophils in childhoodasthma. Thorax 2002; 57(5): 383–387.PubMedCrossRefGoogle Scholar
  9. 9.
    Baraldi E, Azzolin NM, Zanconato S, Dario C, Zacchello F. Corticosteroids decrease exhaled nitric oxide in children with acute asthma. J Pediatr 1997; 131(3): 381–385.PubMedCrossRefGoogle Scholar
  10. 10.
    del Giudice MM, Brunese FP, Piacentini GL, et al. Fractional exhaled nitric oxide (FENO), lung function and airway hyperresponsiveness in naive atopic asthmatic children. J Asthma 2004; 41(7): 759–765.PubMedCrossRefGoogle Scholar
  11. 11.
    Shields MD, Brown V, Stevenson EC, et al. Serum eosinophilic cationic protein and blood eosinophil counts for the prediction of the presence of airways inflammation in children with wheezing. Clin Exp Allergy 1999; 29(10): 1382–1389.PubMedCrossRefGoogle Scholar
  12. 12.
    Ahlstedt S. Clinical application of eosinophilic cationic protein in asthma. Allergy Proc 1995; 16(2): 59–62.PubMedCrossRefGoogle Scholar
  13. 13.
    Bousquet J, Chanez P, Lacoste JY, et al. Eosinophilic inflammation in asthma. N Engl J Med 1990; 323(15): 1033–1039.PubMedGoogle Scholar
  14. 14.
    Perng DW, Huang HY, Lee YC, Perng RP. Leukotriene modifier vs inhaled corticosteroid in mild-tomoderate asthma: clinical and anti-inflammatory effects. Chest 2004; 125(5): 1693–1699.PubMedCrossRefGoogle Scholar
  15. 16.
    Chang CC, Halpern GM, Tam AY, Lau YL, Yeung CY. Evaluation of serum total IgE in Chinese allergic children using different assays. Allergol Immunopathol (Madr) 1992; 20(2): 51–56.Google Scholar
  16. 17.
    Polk S, Sunyer J, Munoz-Ortiz L, et al. A prospective study of Fel d1 and Der p1 exposure in infancy and childhood wheezing. Am J Respir Crit Care Med 2004; 170(3): 273–278.PubMedCrossRefGoogle Scholar
  17. 18.
    Koh YY, Choi JW, Lee MH, et al. A preceding airway reaction to one allergen may lead to priming of the airway responses to another allergen. Allergy 1997; 52(3): 284–292.PubMedCrossRefGoogle Scholar
  18. 19.
    Picado C. Classification of severe asthma exacerbations: a proposal. Eur Respir J 1996; 9(9): 1775–1778.CrossRefGoogle Scholar
  19. 20.
    Kalina WV, Gershwin LJ. Progress in defining the role of RSV in allergy and asthma: from clinical observations to animal models. Clin Dev Immunol 2004; 11(2): 113–119.PubMedCrossRefGoogle Scholar
  20. 21.
    Oddy WH, de Klerk NH, Sly PD, Holt PG. The effects of respiratory infections, atopy, and breastfeeding on childhood asthma. Eur Respir J 2002; 19(5): 899–905.PubMedCrossRefGoogle Scholar
  21. 22.
    McBride JT. Pulmonary function changes in children after respiratory syncytial virus infection in infancy. J Pediatr 1999; 135(2 Pt 2): 28–32.PubMedGoogle Scholar
  22. 23.
    Dimova-Yaneva D, Russell D, Main M, Brooker RJ, Helms PJ. Eosinophil activation and cysteinyl leukotriene production in infants with respiratory syncytial virus bronchiolitis. Clin Exp Allergy 2004; 34(4): 555–558.PubMedCrossRefGoogle Scholar
  23. 24.
    Sigurs N, Gustafsson PM, Bjarnason R, et al. Severe respiratory syncytial virus bronchiolitis in infancy and asthma and allergy at age 13. Am J Respir Crit Care Med 2004.Google Scholar
  24. 25.
    Johnston SL, Pattemore PK, Sanderson G, et al. The relationship between upper respiratory infections and hospital admissions for asthma: a time-trend analysis. Am J Respir Crit Care Med 1996; 154(3 Pt 1): 654–660.PubMedGoogle Scholar
  25. 26.
    Downey P, Cox R. Update on the management of status asthmaticus. Curr Opin Pediatr 1996; 8(3): 226–233.PubMedCrossRefGoogle Scholar
  26. 27.
    Kraft M. The role of bacterial infections in asthma. Clin Chest Med 2000; 21(2): 301–313.PubMedCrossRefGoogle Scholar
  27. 28.
    Nelson HS. Allergen and irritant control: importance and implementation. Clin Cornerstone 1998; 1(2): 57–68.PubMedGoogle Scholar
  28. 29.
    Akerman MJ, Calacanis CM, Madsen MK. Relationship between asthma severity and obesity. J Asthma 2004; 41(5): 521–526.PubMedCrossRefGoogle Scholar
  29. 30.
    Mellon M, Leflein J, Walton-Bowen K, Cruz-Rivera M, Fitzpatrick S, Smith JA. Comparable efficacy of administration with face mask or mouthpiece of nebulized budesonide inhalation suspension for infants and young children with persistent asthma. Am J Respir Crit Care Med 2000; 162(2 Pt 1): 593–598.PubMedGoogle Scholar
  30. 31.
    Allen DB, Mullen M, Mullen B. A meta-analysis of the effect of oral and inhaled corticosteroids on growth. J Allergy Clin Immunol 1994; 93(6): 967–976.PubMedCrossRefGoogle Scholar
  31. 32.
    Balfour-Lynn L. Growth and childhood asthma. Arch Dis Child 1986; 61(11): 1049–1055.PubMedGoogle Scholar
  32. 33.
    Balfour-Lynn L. Effect of asthma on growth and puberty. Pediatrician 1987; 14(4): 237–241.PubMedGoogle Scholar
  33. 34.
    Russell G. Childhood asthma and growth—a review of the literature. Respir Med 1994; 88 (Suppl A): 31–36; discussion 6-7.PubMedCrossRefGoogle Scholar
  34. 35.
    Chang CC, Tam AY. Suppression of adrenal function in children on inhaled steroids. J Paediatr Child Health 1991; 27(4): 232–234.PubMedCrossRefGoogle Scholar
  35. 36.
    Doull IJ, Freezer NJ, Holgate ST. Growth of prepubertal children with mild asthma treated with inhaled beclomethasone dipropionate. Am J Respir Crit Care Med 1995; 151(6): 1715–1719.PubMedGoogle Scholar
  36. 37.
    Goldstein DE, Konig P. Effect of inhaled beclomethasone dipropionate on hypothalamic-pituitaryadrenal axis function in children with asthma. Pediatrics 1983; 72(1): 60–64.PubMedGoogle Scholar
  37. 38.
    Boorsma M, Andersson N, Larsson P, Ullman A. Assessment of the relative systemic potency of inhaled fluticasone and budesonide. Eur Respir J 1996; 9(7): 1427–1432.PubMedCrossRefGoogle Scholar
  38. 39.
    O’Connell EJ. Optimizing inhaled corticosteroid therapy in children with chronic asthma. Pediatr Pulmonol 2005; 39(1): 74–83.PubMedCrossRefGoogle Scholar
  39. 40.
    Chhabra SK. A comparison of &quote;closed&quote; and &quote;open&quote; mouth techniques of inhalation of a salbutamol metered-dose inhaler. J Asthma 1994; 31(2): 123–125.PubMedCrossRefGoogle Scholar
  40. 41.
    Thomas P, Williams T, Reilly PA, Bradley D. Modifying delivery technique of fenoterol from a metered dose inhaler. Ann Allergy 1984; 52(4): 279–281.PubMedGoogle Scholar
  41. 42.
    Dubus JC, Anhoj J. Inhaled steroid delivery from small-volume holding chambers depends on age, holding chamber, and interface in children. J Aerosol Med 2004; 17(3): 225–230.PubMedCrossRefGoogle Scholar
  42. 43.
    Hospenthal MA, Peters JI. Long-acting beta2-agonists in the management of asthma exacerbations. Curr Opin Pulm Med 2005; 11(1): 69–73.PubMedGoogle Scholar
  43. 44.
    Kaae R, Agertoft L, Pedersen S, et al. Cumulative high doses of inhaled formoterol have less systemic effects in asthmatic children 6-11 years-old than cumulative high doses of inhaled terbutaline. BrJClin Pharmacol 2004; 58(4): 411–418.Google Scholar
  44. 45.
    Kopriva F, Sobolova L, Szotkowska J, Zapalka M. Treatment of chronic cough in children with montelukast, a leukotriene receptor antagonist. J Asthma 2004; 41(7): 715–720.PubMedCrossRefGoogle Scholar
  45. 46.
    Taylor IK, O’Shaughnessy KM, Fuller RW, Dollery CT. Effect of cysteinyl-leukotriene receptor antagonist ICI 204.219 on allergen-induced bronchoconstriction and airway hyperreactivity in atopic subjects. Lancet 1991; 337(8743): 690–694.PubMedCrossRefGoogle Scholar
  46. 47.
    Martin RM, Wilton LV, Mann RD. Prevalence of Churg-Strauss syndrome, vasculitis, eosinophilia and associated conditions: retrospective analysis of 58 prescription-event monitoring cohort studies. Pharmacoepidemiol Drug Saf 1999; 8(3): 179–189.PubMedCrossRefGoogle Scholar
  47. 48.
    Buhl R. Anti-IgE antibodies for the treatment of asthma. Curr Opin Pulm Med 2005; 11(1): 27–34.PubMedGoogle Scholar
  48. 49.
    D’Amato G, Liccardi G, Noschese P, Salzillo A, D’Amato M, Cazzola M. Anti-IgE monoclonal antibody (omalizumab) in the treatment of atopic asthma and allergic respiratory diseases. Curr Drug Targets Inflamm Allergy 2004; 3(3): 227–229.PubMedCrossRefGoogle Scholar
  49. 50.
    Gendo K, Lodewick MJ. Asthma economics: focusing on therapies that improve costly outcomes. Curr Opin Pulm Med 2005; 11(1): 43–50.PubMedCrossRefGoogle Scholar
  50. 51.
    Lewis RV, Lofthouse C. Adverse reactions with beta-adrenoceptor blocking drugs. An update. Drug Saf 1993; 9(4): 272–279.PubMedCrossRefGoogle Scholar
  51. 52.
    Gawchik SM, Saccar CL, Noonan M, Reasner DS, DeGraw SS. The safety and efficacy of nebulized levalbuterol compared with racemic albuterol and placebo in the treatment of asthma in pediatric patients. J Allergy Clin Immunol 1999; 103(4): 615–621.PubMedCrossRefGoogle Scholar
  52. 53.
    Ihre E, Larsson K. Airways responses to ipratropium bromide do not vary with time in asthmatic subjects. Studies of interindividual and intraindividual variation of bronchodilatation and protection against histamine-induced bronchoconstriction. Chest 1990; 97(1): 46–51.PubMedCrossRefGoogle Scholar
  53. 54.
    Charlesworth EN, Massey WA, Kagey-Sobotka A, Norman PS, Lichtenstein LM. Effect of H1 receptor blockade on the early and late response to cutaneous allergen challenge. J Pharmacol Exp Ther 1992; 262(3): 964–970.PubMedGoogle Scholar
  54. 55.
    Tinkelman DG, Reed CE, Nelson HS, Offord KP. Aerosol beclomethasone dipropionate compared with theophylline as primary treatment of chronic, mild to moderately severe asthma in children. Pediatrics 1993; 92(1): 64–77.PubMedGoogle Scholar
  55. 56.
    Alton EW, Norris AA. Chloride transport and the actions of nedocromil sodium and cromolyn sodium in asthma. J Allergy Clin Immunol 1996; 98(5 Pt 2): S102–S105; discussion S5-S6.PubMedGoogle Scholar
  56. 57.
    Ueno O, Lee LN, Wagner PD. Effect of N-acetylcysteine on gas exchange after methacholine challenge and isoprenaline inhalation in the dog. Eur Respir J 1989; 2(3): 238–246.PubMedGoogle Scholar
  57. 58.
    Campbell LM. From adrenaline to formoterol: advances in beta-agonist therapy in the treatment of asthma. Int J Clin Pract 2002; 56(10): 783–790.PubMedGoogle Scholar
  58. 59.
    Konig P, Hordvik NL, Serby CW. Fenoterol in exercise-induced asthma. Effect of dose on efficacy and duration of action. Chest 1984; 85(4): 462–464.PubMedCrossRefGoogle Scholar
  59. 60.
    Walker SB, Bierman CW, Pierson WE, Shapiro GG, Furukawa CT, Mingo TS. Bitolterol mesylate in exercise-induced asthma. J Allergy Clin Immunol 1986; 77(1 Pt 1): 32–36.PubMedCrossRefGoogle Scholar
  60. 61.
    Francis PW, Krastins IR, Levison H. Oral and inhaled salbutamol in the prevention of exerciseinduced bronchospasm. Pediatrics 1980; 66(1): 103–108.PubMedGoogle Scholar
  61. 62.
    Sly RM, O’Brien SR. Effect of oral terbutaline on exercise-induced asthma. Ann Allergy 1982; 48(3): 151–155.PubMedGoogle Scholar
  62. 63.
    Debelic M, Stechert R. [Exercise-induced asthma—protection with disodium cromoglycate alone and in combination with fenoterol]. Monatsschr Kinderheilkd 1988; 136(8): 448–52.PubMedGoogle Scholar
  63. 64.
    Patel KR, Wall RT. Dose-duration effect of sodium cromoglycate aerosol in exercise-induced asthma. Eur J Respir Dis 1986; 69(4): 256–260.PubMedGoogle Scholar
  64. 65.
    Merland N, Cartier A, L’Archeveque J, Ghezzo H, Malo JL. Theophylline minimally inhibits bronchoconstricti on induced by dry cold air inhalation in asthmatic subjects. Am Rev Respir Dis 1988; 137(6): 1304–1308.PubMedGoogle Scholar
  65. 66.
    Thomson NC, Patel KR, Kerr JW. Sodium cromoglycate and ipratropium bromide in exerciseinduced asthma. Thorax 1978; 33(6): 694–649.PubMedGoogle Scholar
  66. 67.
    Green CP, Price JF. Prevention of exercise induced asthma by inhaled salmeterol xinafoate. Arch Dis Child 1992; 67(8): 1014–1017.PubMedGoogle Scholar
  67. 68.
    Newnham DM, Ingram CG, Earnshaw J, Palmer JB, Dhillon DP. Salmeterol provides prolonged protecti on against exercise-induced bronchoconstriction in a majority of subjects with mild, stable asthma. Respir Med 1993; 87(6): 439–444.PubMedCrossRefGoogle Scholar
  68. 69.
    Boner AL, Spezia E, Piovesan P, Chiocca E, Maiocchi G. Inhaled formoterol in the prevention of exercise-induced bronchoconstriction in asthmatic children. Am J Respir Crit Care Med 1994; 149 (4 Pt 1): 935–939.PubMedGoogle Scholar
  69. 70.
    Daugbjerg P, Nielsen KG, Skov M, Bisgaard H. Duration of action of formoterol and salbutamol drypowder inhalation in prevention of exercise-induced asthma in children. Acta Paediatr 1996; 85(6): 684–687.PubMedCrossRefGoogle Scholar
  70. 71.
    Finnerty JP, Wood-Baker R, Thomson H, Holgate ST. Role of leukotrienes in exercise-induced asthma. Inhibitory effect of ICI 204219, a potent leukotriene D4 receptor antagonist. Am Rev Respir Dis 1992; 145(4 Pt 1): 746–749.PubMedGoogle Scholar
  71. 72.
    Makker HK, Lau LC, Thomson HW, Binks SM, Holgate ST. The protective effect of inhaled leukotriene D4 receptor antagonist ICI 204,219 against exercise-induced asthma. Am Rev Respir Dis 1993; 147(6 Pt 1): 1413–1418.PubMedGoogle Scholar
  72. 73.
    Robuschi M, Riva E, Fuccella LM, et al. Prevention of exercise-induced bronchoconstriction by a new leukotriene antagonist (SK&F 104353). A double-blind study versus disodium cromoglycate and placebo. Am Rev Respir Dis 1992; 145(6): 1285–1288.PubMedGoogle Scholar
  73. 74.
    Moraes TJ, Selvadurai H. Management of exercise-induced bronchospasm in children: the role of leukotriene antagonists. Treat Respir Med 2004; 3(1): 9–15.PubMedCrossRefGoogle Scholar
  74. 75.
    Peroni DG, Piacentini GL, Ress M, et al. Time efficacy of a single dose of montelukast on exerciseinduced asthma in children. Pediatr Allergy Immunol 2002; 13(6): 434–37.PubMedCrossRefGoogle Scholar
  75. 76.
    Tanser AR, Elmes J. A controlled trial of ketotifen in exercise-induced asthma. Br J Dis Chest 1980; 74(4): 398–102.PubMedCrossRefGoogle Scholar
  76. 77.
    Barnes PJ, Wilson NM, Brown MJ. A calcium antagonist, nifedipine, modifies exercise-induced asthma. Thorax 1981; 36(10): 726–730.PubMedGoogle Scholar
  77. 78.
    Foresi A, Corbo GM, Ciappi G, Valente S, Polidori G. Effect of two doses of inhaled diltiazem on exercise-induced asthma. Respiration 1987; 51(4): 241–247.PubMedGoogle Scholar
  78. 79.
    Patel KR. Calcium antagonists in exercise-induced asthma. Br Med J (Clin Res Ed) 1981; 282(6268): 932–933.Google Scholar
  79. 80.
    Zielinski J, Chodosowska E. Exercise-induced bronchoconstriction in patients with bronchial asthma. Its prevention with an antihistaminic agent. Respiration 1977; 34(1): 31–35.PubMedCrossRefGoogle Scholar
  80. 81.
    Naclerio RM, Meier HL, Kagey-Sobotka A, et al. Mediator release after nasal airway challenge with allergen. Am Rev Respir Dis 1983; 128(4): 597–602.PubMedGoogle Scholar
  81. 82.
    Gelfand EW, Cui ZH, Takeda K, Kanehiro A, Joetham A. Fexofenadine modulates T-cell function, preventing allergen-induced airway inflammation and hyperresponsiveness. J Allergy Clin Immunol 2002; 110(1): 85–95.PubMedCrossRefGoogle Scholar
  82. 83.
    Gelfand EW, Cui ZH, Takeda K, Kanehiro A, Joetham A. Effects of fexofenadine on T-cell function in a murine model of allergen-induced airway inflammation and hyperresponsiveness. J Allergy Clin Immunol 2003; 112(4 Suppl): S89–S95.PubMedCrossRefGoogle Scholar
  83. 84.
    Oddy WH, Holt PG, Sly PD, et al. Association between breast feeding and asthma in 6 year old children: findings of a prospective birth cohort study. BMJ 1999; 319(7213): 815–819.PubMedGoogle Scholar
  84. 85.
    Turner MW, Yalcin I, Soothill JF, et al. In vitro investigations in asthmatic children undergoing hyposensitization with tyrosine-adsorbed Dermatophagoides pteronyssinus antigen. Clin Allergy 1984; 14(3): 221–231.PubMedCrossRefGoogle Scholar
  85. 86.
    Hedlin G, Graff-Lonnevig V, Heilborn H, et al. Immunotherapy with cat-and dog-dander extracts. V. Effects of 3 years of treatment. J Allergy Clin Immunol 1991; 87(5): 955–964.PubMedCrossRefGoogle Scholar
  86. 87.
    Hedlin G, Graff-Lonnevig V, Heilborn H, et al. Immunotherapy with cat-and dog-dander extracts. II. In vivo and in vitro immunologic effects observed in a 1-year double-blind placebo study. J Allergy Clin Immunol 1986; 77(3): 488–196.PubMedCrossRefGoogle Scholar
  87. 88.
    Hedlin G, Heilborn H, Lilja G, et al. Long-term follow-up of patients treated with a three-year course of cat or dog immunotherapy. J Allergy Clin Immunol 1995; 96(6 Pt 1): 879–885.PubMedCrossRefGoogle Scholar
  88. 89.
    Horst M, Hejjaoui A, Horst V, Michel FB, Bousquet J. Double-blind, placebo-controlled rush immunotherapy with a standardized Alternaria extract. J Allergy Clin Immunol 1990; 85(2): 460–72.PubMedCrossRefGoogle Scholar
  89. 90.
    Frankland AW, Augustin R. Prophylaxis of summer hay-fever and asthma: a controlled trial comparing crude grass-pollen extracts with the isolated main protein component. Lancet 1954; 266(6821): 1055–1057.PubMedCrossRefGoogle Scholar
  90. 91.
    Frankland AW, Augustin R. Grass pollen antigens effective in treatment. Clin Sci 1962; 23: 95–102.PubMedGoogle Scholar
  91. 92.
    Leynadier F, Banoun L, Dollois B, et al. Immunotherapy with a calcium phosphate-adsorbed fivegrass-pollen extract in seasonal rhinoconjunctivitis: a double-blind, placebo-controlled study. Clin Exp Allergy 2001; 31(7): 988–996.PubMedCrossRefGoogle Scholar
  92. 93.
    Johnstone DE. Study of the role of antigen dosage in the treatment of pollenosis and pollen asthma. AMAJDis Child 1957; 94(1): 1–5.Google Scholar
  93. 94.
    Mirone C, Albert F, Tosi A, et al. Efficacy and safety of subcutaneous immunotherapy with a biologically standardized extract of Ambrosia artemisiifolia pollen: a double-blind, placebo-controlled study. Clin Exp Allergy 2004; 34(9): 1408–1014.PubMedCrossRefGoogle Scholar
  94. 95.
    Gonzalez P, Florido F, Saenz de San Pedro B, de la Torre F, Rico P, Martin S. Immunotherapy with an extract of Olea europaea quantified in mass units. Evaluation of the safety and efficacy after one year of treatment. J Investig Allergol Clin Immunol 2002; 12(4): 263–271.PubMedGoogle Scholar
  95. 96.
    Bousquet J, Hejjaoui A, Clauzel AM, et al. Specific immunotherapy with a standardized Dermatophagoides pteronyssinus extract. II. Prediction of efficacy of immunotherapy. J Allergy Clin Immunol 1988; 82(6): 971–977.PubMedCrossRefGoogle Scholar
  96. 97.
    Vollmer WM, Swain MC. Role of the specialist in the treatment of asthma. Curr Opin Allergy Clin Immunol 2002; 2(3): 189–194.PubMedCrossRefGoogle Scholar
  97. 98.
    Sapien RE, Fullerton-Gleason L, Allen N. Teaching school teachers to recognize respiratory distress in asthmatic children. J Asthma 2004; 41(7): 739–743.PubMedCrossRefGoogle Scholar
  98. 99.
    Ferreira MB, Santos AS, Pregal AL, et al. Leukotriene receptor antagonists (Montelukast) in the treatment of asthma crisis: preliminary results of a double-blind placebo controlled randomized study. Allerg Immunol (Paris) 2001; 33(8): 315–318.Google Scholar
  99. 100.
    Camargo CA Jr, Smithline HA, Malice MP, Green SA, Reiss TF. A randomized controlled trial of intravenous montelukast in acute asthma. Am JRespir Crit Care Med 2003; 167(4): 528–533.CrossRefGoogle Scholar
  100. 101.
    Bielory L, Russin J, Zuckerman GB. Clinical efficacy, mechanisms of action, and adverse effects of complementary and alternative medicine therapies for asthma. Allergy Asthma Proc 2004; 25(5): 283–291.PubMedGoogle Scholar
  101. 102.
    Birch S, Hesselink JK, Jonkman FA, Hekker TA, Bos A. Clinical research on acupuncture. Part 1. What have reviews of the efficacy and safety of acupuncture told us so far? J Altern Complement Med 2004; 10(3): 468–80.PubMedCrossRefGoogle Scholar
  102. 103.
    Davis PA, Chang C, Hackman RM, Stern JS, Gershwin ME. Acupuncture in the treatment of asthma: a critical review. Allergol Immunopathol (Madr) 1998; 26(6): 263–271.Google Scholar
  103. 104.
    Gyorik SA, Brutsche MH. Complementary and alternative medicine for bronchial asthma: is there new evidence? Curr Opin Pulm Med 2004; 10(1): 37–43.PubMedCrossRefGoogle Scholar
  104. 105.
    Coyle AJ, Page CP, Atkinson L, Sjoerdsma K, Touvay C, Metzger WJ. Modification of allergen-induced airway obstruction and airway hyperresponsiveness in an allergic rabbit model by the selective plateletactivating factor antagonist, BN 52021. J Allergy Clin Immunol 1989; 84(6 Pt 1): 960–967.PubMedCrossRefGoogle Scholar
  105. 106.
    Knauer KA, Lichtenstein LM, Adkinson NF Jr, Fish JE. Platelet activation during antigen-induced airway reactions in asthmatic subjects. N Engl J Med 1981; 304(23): 1404–1407.PubMedGoogle Scholar
  106. 107.
    Lupinetti MD, Sheller JR, Catella F, Fitzgerald GA. Thromboxane biosynthesis in allergen-induced bronchospasm. Evidence for platelet activation. Am Rev Respir Dis 1989; 140(4): 932–935.PubMedGoogle Scholar
  107. 108.
    Szczeklik A, Schmitz-Schumann M, Krzanowski M, Virchow C, Sr. Delayed generation of thrombin in clotting blood of atopic patients with hayfever and asthma. Clin Exp Allergy 1991; 21(4): 411–415.PubMedCrossRefGoogle Scholar
  108. 109.
    Hayashi N, Chihara J, Kobayashi Y, et al. Effect of platelet-activating factor and platelet factor 4 on eosinophil adhesion. Int Arch Allergy Immunol 1994; 104(Suppl 1): 57–59.PubMedGoogle Scholar
  109. 110.
    Deuel TF, Huang JS. Platelet-derived growth factor. Structure, function, and roles in normal and transformed cells. J Clin Invest 1984; 74(3): 669–676.PubMedCrossRefGoogle Scholar
  110. 111.
    Ross R, Raines EW, Bowen-Pope DF. The biology of platelet-derived growth factor. Cell 1986; 46(2): 155–169.PubMedCrossRefGoogle Scholar
  111. 112.
    Roberts AB, Sporn MB, Assoian RK, et al. Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA 1986; 83(12): 4167–4171.PubMedCrossRefGoogle Scholar
  112. 113.
    Kameyoshi Y, Dorschner A, Mallet AI, Christophers E, Schroder JM. Cytokine RANTES released by thrombin-stimulated platelets is a potent attractant for human eosinophils. J Exp Med 1992; 176(2): 587–592.PubMedCrossRefGoogle Scholar
  113. 114.
    Tsicopoulos A, Lassalle P, Joseph M, et al. Effect of disodium cromoglycate on inflammatory cells bearing the Fc epsilon receptor type II (Fc epsilon RII). Int J Immunopharmacol 1988; 10(3): 227–236.PubMedCrossRefGoogle Scholar
  114. 115.
    Thorel T, Joseph M, Tsicopoulos A, Tonnel AB, Capron A. Inhibition by nedocromil sodium of IgEmediated activation of human mononuclear phagocytes and platelets in allergy. Int Arch Allergy Appl Immunol 1988; 85(2): 232–237.PubMedGoogle Scholar
  115. 116.
    De Vos C, Joseph M, Leprevost C, et al. Inhibition of human eosinophil chemotaxis and of the IgEdependent stimulation of human blood platelets by cetirizine. Int Arch Allergy Appl Immunol 1989; 88(1-2): 212–215.PubMedGoogle Scholar
  116. 117.
    Palma-Carlos AG, Palma-Carlos ML, Santos MC, Melo A. Cytokines and adhesion molecules in respiratory allergy. Allerg Immunol (Paris) 1995; 27(6): 178–181.Google Scholar
  117. 118.
    Kioi M, Kawakami K, Puri RK. Mechanism of action of interleukin-13 antagonist (IL-13E13K) in cells expressing various types of IL-4R. Cell Immunol 2004; 229(1): 41–51.PubMedCrossRefGoogle Scholar
  118. 119.
    Ricci M, Matucci A, Rossi O. New advances in the pathogenesis and therapy of bronchial asthma. Ann Ital Med Int 1998; 13(2): 93–110.PubMedGoogle Scholar
  119. 120.
    Barnes PJ. Cytokine modulators as novel therapies for airway disease. Eur Respir J Suppl 2001; 34: 67s–77s.PubMedCrossRefGoogle Scholar
  120. 121.
    Kumar RK, Herbert C, Webb DC, Li L, Foster PS. Effects of anticytokine therapy in a mouse model of chronic asthma. Am J Respir Crit Care Med 2004; 170(10): 1043–1048.PubMedCrossRefGoogle Scholar
  121. 122.
    Hansel TT, Barnes PJ. Novel drugs for treating asthma. Curr Allergy Asthma Rep 2001; 1(2): 164–173.PubMedCrossRefGoogle Scholar
  122. 123.
    Donnelly LE, Barnes PJ. Acidic mammalian chitinase—a potential target for asthma therapy. Trends Pharmacol Sci 2004; 25(10): 509–511.PubMedCrossRefGoogle Scholar
  123. 124.
    Spina D. The potential of PDE4 inhibitors in respiratory disease. Curr Drug Targets Inflamm Allergy 2004; 3(3): 231–236.PubMedCrossRefGoogle Scholar
  124. 125.
    Barnes PJ, Hansel TT. Prospects for new drugs for chronic obstructive pulmonary disease. Lancet 2004; 364(9438): 985–996.PubMedCrossRefGoogle Scholar
  125. 126.
    Belvisi MG, Hele DJ, Birrell MA. New advances and potential therapies for the treatment of asthma. BioDrugs 2004; 18(4): 211–223.PubMedCrossRefGoogle Scholar
  126. 127.
    Immervoll T, Loesgen S, Dutsch G, et al. Fine mapping and single nucleotide polymorphism association results of candidate genes for asthma and related phenotypes. Hum Mutat 2001; 18(4): 327–336.PubMedCrossRefGoogle Scholar
  127. 128.
    Kabesch M, Tzotcheva I, Carr D, et al. A complete screening of the IL4 gene: novel polymorphisms and their association with asthma and IgE in childhood. J Allergy Clin Immunol 2003; 112(5): 893–898.PubMedCrossRefGoogle Scholar
  128. 129.
    Sandford AJ, Chagani T, Zhu S, et al. Polymorphisms in the IL4, IL4RA, and FCERIB genes and asthma severity. J Allergy Clin Immunol 2000; 106(1 Pt 1): 135–140.PubMedCrossRefGoogle Scholar
  129. 130.
    Howard TD, Koppelman GH, Xu J, et al. Gene-gene interaction in asthma: IL4RA and IL13 in a Dutch population with asthma. Am J Hum Genet 2002; 70(1): 230–236.PubMedCrossRefGoogle Scholar
  130. 131.
    Passalacqua G, Fumagalli F, Guerra L, Canonica GW. Safety of allergen-specific sublingual immunotherapy and nasal immunotherapy. Chem Immunol Allergy 2003; 82: 109–118.PubMedCrossRefGoogle Scholar
  131. 132.
    Lombardi C, Gargioni S, Melchiorre A, et al. Safety of sublingual immunotherapy with monomeric allergoid in adults: multicenter post-marketing surveillance study. Allergy 2001; 56(10): 989–992.PubMedCrossRefGoogle Scholar
  132. 133.
    Novembre E, Galli E, Landi F, et al. Coseasonal sublingual immunotherapy reduces the development of asthma in children with allergic rhinoconjunctivitis. J Allergy Clin Immunol 2004; 114(4): 851–857.PubMedCrossRefGoogle Scholar
  133. 134.
    Bufe A, Ziegler-Kirbach E, Stoeckmann E, et al. Efficacy of sublingual swallow immunotherapy in children with severe grass pollen allergic symptoms: a double-blind placebo-controlled study. Allergy 2004; 59(5): 498–504.PubMedCrossRefGoogle Scholar
  134. 135.
    TePas EC, Hoyte EG, McIntire JJ, Umetsu DT. Clinical efficacy of microencapsulated timothy grass pollen extract in grass-allergic individuals. Ann Allergy Asthma Immunol 2004; 92(1): 25–31.PubMedCrossRefGoogle Scholar
  135. 136.
    Andri L, Falagiani P. Symptomatic relief after grass nasal immunotherapy: lasting efficacy after 4-5 years. J Investig Allergol Clin Immunol 2003; 13(4): 228–231.PubMedGoogle Scholar
  136. 137.
    Alexander C, Kay AB, Larche M. Peptide-based vaccines in the treatment of specific allergy. Curr Drug Targets Inflamm Allergy 2002; 1(4): 353–361.PubMedCrossRefGoogle Scholar
  137. 138.
    Jonsson B, Berggren F, Svensson K, O’Byrne PM. An economic evaluation of combination treatment with budesonide and formoterol in patients with mild-to-moderate persistent asthma. Respir Med 2004; 98(11): 1146–1154.PubMedCrossRefGoogle Scholar
  138. 139.
    Baena-Cagnani CE. The global burden of asthma and allergic diseases: the challenge for the new century. Curr Allergy Asthma Rep 2001; 1(4): 297–298.PubMedCrossRefGoogle Scholar
  139. 140.
    Holgate ST. Cytokine and anti-cytokine therapy for the treatment of asthma and allergic disease. Cytokine 2004; 28(4-5): 152–157.PubMedCrossRefGoogle Scholar
  140. 141.
    Qiu Z, Fujimura M, Kurashima K, Nakao S, Mukaida N. Enhanced airway inflammation and decreased subepithelial fibrosis in interleukin 6-deficient mice following chronic exposure to aerosolized antigen. Clin Exp Allergy 2004; 34(8): 1321–1328.PubMedCrossRefGoogle Scholar
  141. 142.
    Quarcoo D, Weixler S, Joachim RA, et al. Resiquimod, a new immune response modifier from the family of imidazoquinolinamines, inhibits allergen-induced Th2 responses, airway inflammation and airway hyper-reactivity in mice. Clin Exp Allergy 2004; 34(8): 1314–1320.PubMedCrossRefGoogle Scholar
  142. 143.
    Randolph AG, Lange C, Silverman EK, et al. The IL12B gene is associated with asthma. Am J Hum Genet 2004; 75(4): 709–715.PubMedCrossRefGoogle Scholar
  143. 144.
    Yang G, Volk A, Petley T, et al. Anti-IL-13 monoclonal antibody inhibits airway hyperresponsiveness, inflammation and airway remodeling. Cytokine 2004; 28(6): 224–232.PubMedCrossRefGoogle Scholar
  144. 145.
    Gallagher G, Eskdale J, Jordan W, et al. Human interleukin-19 and its receptor: a potential role in the induction of Th2 responses. Int Immunopharmacol 2004; 4(5): 615–626.PubMedCrossRefGoogle Scholar
  145. 146.
    Babu KS, Davies DE, Holgate ST. Role of tumor necrosis factor alpha in asthma. Immunol Allergy Clin North Am 2004; 24(4): 583–597, v-vi.PubMedCrossRefGoogle Scholar
  146. 147.
    Warner RL, Lukacs NW, Shapiro SD, et al. Role of metalloelastase in a model of allergic lung responses induced by cockroach allergen. Am J Pathol 2004; 165(6): 1921–1930.PubMedGoogle Scholar
  147. 148.
    Forssmann U, Hartung I, Balder R, et al. n-Nonanoyl-CC chemokine ligand 14, a potent CC chemokine ligand 14 analogue that prevents the recruitment of eosinophils in allergic airway inflammation. J Immunol 2004; 173(5): 3456–3466.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Christopher Chang
    • 1
  1. 1.Division of Rheumatology/Allergy and Clinical Immunology, Department of Medicine, School of MedicineUniversity of California at DavisDavis

Personalised recommendations