Skip to main content

Nutrition and Stress and the Developing Fetus

  • Chapter

Part of the book series: Nutrition and Health ((NH))

Abstract

The most dramatic events in the growth and development of an infant occur before birth and result from the dynamic interplay of the fetus’s genetic potential and appropriate environmental stimuli, a process termed epigenetics (Kelly & Trasler, 2004). While this process may be viewed as a progressive unfolding and continuum, it now recognized that fetal life is characterized by “critical” or “sensitive” periods wherein exposure to specific environmental stimuli is required for the normal sequence of development of both anatomical structures and their subsequent functioning. Thus, the previously held concept that the fetus is safe from the vagaries of the maternal state and is functionally the equivalent of an obligatory parasite is no longer tenable. In particular, it is clear that the nutritional state of the mother, both quantitatively and qualitatively, has a major effect on fetal growth and development. This is best exemplified by the now understood role of folic acid in the development of the neural tube. Mothers who delivered infants with defects such as anencephaly and spina bifida were noted to have lower serum levels of folic acid. Conversely, women who took supplementary folic acid at the time of conception through the first trimester were substantially less likely, as compared to women who did not take folic acid, to deliver a fetus with neural tube defects. The protective advantage of supplementary folic acid was even more dramatic in those mothers who had already delivered an infant with a neural tube defect. Such results clearly confirm the critical importance of timing and the interplay with genetic predisposition when discussing nutritional factors as related to development (American Academy of Pediatrics Committee on Genetics, 1999; Czeizel & Dudas, 1992).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adair, L. S., & Cole, T. J. (2003). Rapid child growth raises blood pressure in adolescent boys who were thin at birth. Hypertension, 41, 451–456.

    Article  CAS  Google Scholar 

  • American Academy of Pediatrics Committee on Genetics. (1999). Folic acid for the prevention of neural tube defects. Pediatrics, 104, 325–327.

    Article  Google Scholar 

  • Antonov, A. N. (1947). Children born during the siege of Leningrad in 1942. Journal of Pediatrics, 30, 250.

    Article  CAS  Google Scholar 

  • Antonow-Schlorke, I., Schwab, M., Li, C., & Nathanielsz, P. W. (2003). Glucocorticoid exposure at the dose used clinically alters cytoskeletal proteins and presynaptic terminals in the fetal baboon brain. Journal of Physiology, 547, 117–123.

    Article  CAS  Google Scholar 

  • Armony-Sivan, R., Eidelman, A. I., Lanir, A., Sredni, D., & Yehuda, S. (2004). Iron status and neurobehavioral development of premature infants. Journal of Perinatology, 24, 757–762.

    Article  CAS  Google Scholar 

  • Ashworth, C. J., & Antipatis, C. (2001). Micronutrient programming of development throughout gestation. Reproduction, 122, 527–535.

    Article  CAS  Google Scholar 

  • Banjanin, S., Kapoor, A., & Matthews, S. G. (2004). Prenatal glucocorticoid exposure alters hypothalamic-pituitary-adrenal function and blood pressure in mature male guinea pigs. Journal of Physiology, 558, 305–318.

    Article  CAS  Google Scholar 

  • Barker, D. J. P. (1998). In utero programming of chronic disease. Clinical Science, 95, 115–128.

    Article  CAS  Google Scholar 

  • Barker, D. J. P. (2002). Fetal programming of coronary heart disease. Trends in Endocrinology and Metabolism, 13, 364–368.

    Article  CAS  Google Scholar 

  • Beard, J. L., & Connor, J. R. (2003). Iron status and neural functioning. Annual Review of Nutrition, 23, 41–58.

    Article  CAS  Google Scholar 

  • Black, M. M. (2003). The evidence linking zinc deficiency with children’s cognitive and motor functioning. Journal of Nutrition, 133, 1473S–1476S.

    CAS  Google Scholar 

  • Bloom, S. L., Sheffield, J. S., McIntire, D. D., & Leveno, K. J. (2001). Antenatal dexamethasone and decreased birthweight. Obstetrics and Gynecology, 97, 485–490.

    Article  CAS  Google Scholar 

  • Bloomfield, F. H., Oliver, M. H., Giannoulias, C. D., Gluckman, P. D., Harding, J. E., & Challis, J. R. (2003). Brief undernutrition in late-gestation sheep programs the hypothalamic-pituitary-adrenal axis in adult offspring. Endocrinology, 144, 2933–2940.

    Article  CAS  Google Scholar 

  • Breed, D. R., Margraf, L. R., Alcorn, J. L., & Mendelson, C. R. (1997). Transcription factor C/EBPdelta in fetal lung: Developmental regulation and effects of cyclic adenosine 3′,5′-monophosphate and glucocorticoids. Endocrinology, 138, 5527–5534.

    Article  CAS  Google Scholar 

  • Buitelaar, J. K., Huizink, A. C., Mulder, E. J., de Medina, P. G., & Visser, G. H. (2003). Prenatal stress and cognitive development and temperament in infants. Neurobiology of Aging, 24, S53–S60.

    Article  Google Scholar 

  • Canlon, B., Erichsen, S., Nemlander, E., Chen, M., Hossain, A., Celsi, G., & Ceccatelli, S. (2003). Alteration in the intrauterine environment by glucocorticoids modifies the developmental programme of the auditory system. European Journal of Neuroscience, 17, 2035–2041.

    Article  Google Scholar 

  • Ceesay, S. M., Prentice, A. M., Cole, T. J., Foord, F., Weaver, L. T., Poskitt, E. M., & Whitehead, R. G. (1997). Effects on birthweight and perinatal mortality of maternal dietary supplements in rural Gambia: 5 year randomised controlled trial. British Medical Journal, 315, 786–790.

    CAS  Google Scholar 

  • Cetin, I., Giovannini, N., Alvino, G., Agostoni, C., Riva, E., Giovannini, M., & Pardi, G. (2002). Intrauterine growth restriction is associated with changes in polyunsaturated fatty acid fetal-maternal relationships. Pediatric Research, 52, 750–755.

    CAS  Google Scholar 

  • Chinoy, M. R., Volpe, M. V., Cilley, R. E., Zgleszewski, S. E., Vosatka, R. J., Martin, A., Nielsen, H. C., & Krummel, T. M. (1998). Growth factors and dexamethasone regulate Hoxb5 protein in cultured murine fetal lungs. American Journal of Physiology Lung Cellular and Molecular Physiology, 274, L610–L620.

    CAS  Google Scholar 

  • Cleasby, M. E., Kelly, P. A., Walker, B. R., & Seckl, J. R. (2003). Programming of rat muscle and fat metabolism by in utero overexposure to glucocorticoids. Endocrinology, 144, 999–1007.

    Article  CAS  Google Scholar 

  • Connor, J. R., & Menzies, S. L. (1996). Relationship of iron to oligodendrocytes and myelination. Glia, 17, 83–93.

    Article  CAS  Google Scholar 

  • Czeizel, A. E., & Dudas, I. (1992). Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. New England Journal of Medicine, 327, 1832–1835.

    Article  CAS  Google Scholar 

  • Desai, M., Byrne, C. D., Meeran, K., Martenz, N. D., Bloom, S. R., & Hales, C. N. (1997). Regulation of hepatic enzymes and insulin levels in offspring of rat dams fed a reduced-protein diet. American Journal of Physiology Gastrointestinal and Liver Physiology, 273, G899–G904.

    CAS  Google Scholar 

  • deUngria, M., Rao, R., Wobken, J. D., Luciana, M., Nelson, C. A., & Georgieff, M. K. (2000). Perinatal iron deficiency decreases cytochrome c oxidase (CytOx) activity in selected regions of neonatal rat brain. Pediatric Research, 48, 169–176.

    Article  CAS  Google Scholar 

  • Economides, D. L., Nicolaides, K. H., & Campbell, S. (1991). Metabolic and endocrine findings in appropriate and small for gestational age fetuses. Journal of Perinatal Medicine, 19, 97–105.

    Article  CAS  Google Scholar 

  • Eidelman, A. I. (2001). The relationship of maternal nutrition to fetal growth and outcome. In E. Lebenthal and N. Shapira (Eds.), Nutrition in the female life cycle (pp. 71–82). Jerusalem: ISAS International Seminars Ltd.

    Google Scholar 

  • Felt, B. T., & Lozzof, B. (1996). Brain iron and behavior of rats are not normalized by treatment of iron deficiency anemia during early development. Journal of Nutrition, 126, 693–701.

    CAS  Google Scholar 

  • Field, T., Diego, M., Hernandez-Reif, M., Schanberg, S., Kuhn, C., Yando, R., & Bendell, D. (2003). Pregnancy anxiety and comorbid depression and anger: Effects on the fetus and neonate. Depression and Anxiety, 17, 140–151.

    Article  Google Scholar 

  • Fleming, R. E. (2002). Cord serum ferritin levels, fetal iron status, and neurodevelopmental outcomes: Correlations and confounding variables. Journal of Pediatrics, 140, 145–148.

    Article  CAS  Google Scholar 

  • Fride, E., & Weinstock, M. (1988). Prenatal stress increases anxiety related behavior and alters cerebral lateralization of dopamine activity. Life Sciences, 42, 1059–1065.

    Article  CAS  Google Scholar 

  • Fowden, A. L., & Forhead, A. J. (2004). Endocrine mechanisms of intrauterine programming. Reproduction, 127, 515–526.

    Article  CAS  Google Scholar 

  • Fowden, A. L., Li, J., & Forhead, A. J. (1998). Glucocorticoids and the preparation for life after birth: Are there long-term consequences of the life insurance? Proceedings of the Nutrition Society, 57, 113–122.

    Article  CAS  Google Scholar 

  • Fujioka, T., Fujioka, A., Tan, N., Chowdhury, G. M., Mouri, H., Sakata, Y., & Nakamura, S. (2001). Mild prenatal stress enhances learning performance in the non-adopted rat offspring. Neuroscience, 103, 301–307.

    Article  CAS  Google Scholar 

  • Gambling, L., Dunford, S., Wallace, D. I., Zuur, G., Solanky, N., Srai, S. K., & McArdle, H. J. (2003). Iron deficiency during pregnancy affects postnatal blood pressure in the rat. Journal of Physiology, 552, 603–610.

    Article  CAS  Google Scholar 

  • Goland, R. S., Jozak, S., Warren, W. B., Conwell, I. M., Stark, R. I., & Tropper, P. J. (1993). Elevated levels of umbilical cord plasma corticotropin-releasing hormone in growth-retarded fetuses. Journal of Clinical Endocrinology and Metabolism, 77, 1174–1179.

    Article  CAS  Google Scholar 

  • Golub, M. S., Takeuchi, P. T., Keen, C. L., Hendrickx, A. G., & Gershwin, M. E. (1996). Activity and attention in zinc-deprived adolescent monkeys. American Journal of Clinical Nutrition, 64, 908–915.

    CAS  Google Scholar 

  • Hai, C. M., Sadowska, G., Francois, L., & Stonestreet, B. S. (2002). Maternal dexamethasone treatment alters myosin isoform expression and contractile dynamics in fetal arteries. American Journal of Physiology Heart and Circulatory Physiology, 283, H1743–H1749.

    CAS  Google Scholar 

  • Hales, C. N., & Barker, D. J. P. (1992). Type 2 (non-insulin-dependent) diabetes mellitus: The thrifty phenotype hypothesis. Diabetologia, 35, 595–601

    Article  CAS  Google Scholar 

  • Hales, C. N., & Barker, D. J. P. (2001). The thrifty phenotype hypothesis. British Medical Bulletin, 60, 5–20.

    Article  CAS  Google Scholar 

  • Helland, I. B., Smith, L., Saarem, K., Saugstad, O. D., & Drevon, C. A. (2003). Maternal supplementation with very-long-chain n-3 fatty acids during pregnancy and lactation augments children’s IQ at 4 years of age. Pediatrics, 111, e39–44.

    Article  Google Scholar 

  • Holemans, K., Gerber, R., Meurrens, K., De Clerck, F., Poston, L., & Van Assche, F. A. (1999). Maternal food restriction in the second half of pregnancy affects vascular function but not blood pressure of rat female offspring. British Journal of Nutrition, 81, 73–79.

    CAS  Google Scholar 

  • Huizink, A. C., de Medina, P. G., Mulder, E. J., Visser, G. H., & Buitelaar, J. K. (2002). Psychological measures of prenatal stress as predictors of infant temperament. Journal of the American Academy of Child and Adolescent Psychiatry, 41, 1078–1085.

    Article  Google Scholar 

  • Huizink, A. C., Robles de Medina, P. G., Mulder, E. J., Visser, G. H., & Buitelaar, J. K. (2003). Stress during pregnancy is associated with developmental outcome in infancy. Journal of Child Psychology and Psychiatry and Allied Disciplines, 44, 810–818.

    Google Scholar 

  • Hutton, J. L., Pharoah, P. O., Cooke, R. W., & Stevenson, R. C. (1997). Differential effects of preterm birth and small gestational age on cognitive and motor development. Archives of Disease in Childhood Fetal and Neonatal Edition, 76, F75–F81.

    CAS  Google Scholar 

  • Johnson, S. (2001). Micronutrient accumulation and depletion in schizophrenia, epilepsy, autism and Parkinson’s disease? Medical Hypotheses, 56, 641–645.

    Article  CAS  Google Scholar 

  • Jorgenson, L. A., Wobken, J. D., & Georgieff, M. K. (2003). Perinatal iron deficiency alters apical dendritic growth in hippocampal CA1 pyramidal neurons. Developmental Neuroscience, 25, 412–420.

    Article  CAS  Google Scholar 

  • Kay, H. H., Bird, I. M., Coe, C. L., & Dudley, D. J. (2000). Antenatal steroid treatment and adverse fetal effects: What is the evidence? Journal of the Society for Gynecologic Investigation, 7, 269–278.

    Article  CAS  Google Scholar 

  • Kelly, T. L., & Trasler, J. M. (2004). Reproductive epigenetics. Clinical Genetics, 65(4), 247–260.

    Article  CAS  Google Scholar 

  • Koehl, M., Barbazanges, A., Le Moal, M., & Maccari, S. (1997). Prenatal stress induces a phase advance of circadian corticosterone rhythm in adult rats which is prevented by postnatal stress. Brain Research, 759, 317–320.

    Article  CAS  Google Scholar 

  • Koehl, M., Darnaudery, M., Dulluc, J., Van Reeth, O., Le Moal, M., & Maccari, S. (1999). Prenatal stress alters circadian activity of hypothalamo-pituitary-adrenal axis and hippocampal corticosteroid receptors in adult rats of both gender. Journal of Neurobiology, 40, 302–315.

    Article  CAS  Google Scholar 

  • Koenig, J. I., Kirkpatrick, B., & Lee, P. (2002). Glucocorticoid hormones and early brain development in schizophrenia. Neuropsychopharmacology, 27, 309–318.

    Article  CAS  Google Scholar 

  • Koletzko, B., Agostoni, C., Carlson, S.E., Clandinim, T., Hornstrag, G., Neuringer, M., Uauy, R., Yamashiro, Y., & Willatts, P. (2001). Long chain polyunsaturated fatty acid—LCPUFA and perinatal development. ACTA Pediatrica, 90, 460–464.

    CAS  Google Scholar 

  • Langley-Evans, S. C. (2001). Fetal programming of cardiovascular function through exposure to maternal undernutrition. Proceedings of the Nutrition Society, 60, 505–513.

    Article  CAS  Google Scholar 

  • Langley-Evans, S. C., Langley-Evans, A. J., & Marchand, M. C. (2003). Nutritional programming of blood pressure and renal morphology. Archives of Physiology and Biochemistry, 111, 8–16.

    Article  CAS  Google Scholar 

  • Laplante, D. P., Barr, R. G., Brunet, A., Galbaud Du Fort, G., Meaney, M., Saucier, J. F., Zelazo, P. R., & King, S. (2004). Stress during pregnancy affects general intellectual and language functioning in human toddlers. Pediatric Research, 56, 400–410.

    Article  Google Scholar 

  • Lemaire, V., Koehl, M., Le Moal, M., & Abrous, D. N. (2000). Prenatal stress produces learning deficits associated with an inhibition of neurogenesis in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 97, 11,032–11,037.

    Article  CAS  Google Scholar 

  • Li, J., Saunders, J. C., Fowden, A. L., Dauncey, M. J., & Gilmour, R. S. (1998). Transcriptional regulation of insulin-like growth factor-II gene expression by cortisol in fetal sheep during late gestation. Journal of Biological Chemistry, 273, 10,586–10,593.

    Article  CAS  Google Scholar 

  • Liggins, G. C., & Howie, R. N. (1972). A controlled trial of antepartum glucocorticoid treatment for prevention of the respiratory distress syndrome in premature infants. Pediatrics, 50, 515–525.

    CAS  Google Scholar 

  • Lucas, A. (1998). Programming by early nutrition: An experimental approach. Journal of Nutrition, 128, 401S–406S.

    CAS  Google Scholar 

  • Mallard, E. C., Rees, S., Stringer, M., Cock, M. L., & Harding, R. (1998). Effects of chronic placental insufficiency on brain development in fetal sheep. Pediatric Research, 43, 262–270.

    Article  CAS  Google Scholar 

  • Matthews, F., Yudkin, P., & Neil, A. (1999). Influence of maternal nutrition on outcome of pregnancy: Prospective cohort study. British Medical Journal, 319, 339–343.

    Google Scholar 

  • McCarton, C. M., Wallace, I. F., Divon, M., & Vaughan, H. G. Jr. (1996). Cognitive and neurologic development of the premature, small for gestational age infant through age 6: Comparison by birthweight and gestational age. Pediatrics, 98, 1167–1178.

    CAS  Google Scholar 

  • Neel, J. V. (1962). Diabetes mellitus: A “thrifty” genotype rendered detrimental by “Progress?” American Journal of Human Genetics, 14, 353–362.

    CAS  Google Scholar 

  • Niederhofer, H., & Reiter, A. (2004). Prenatal maternal stress, prenatal fetal movements and perinatal temperament factors influence behavior and school marks at the age of 6 years. Fetal Diagnosis and Therapy, 19, 160–162.

    Article  Google Scholar 

  • O’Connor, T. G., Heron, J., Golding, J., Beveridge, M., & Glover, V. (2002). Maternal antenatal anxiety and children’s behavioural/emotional problems at 4 years. Report from the Avon Longitudinal Study of Parents and Children. British Journal of Psychiatry, 180, 502–508.

    Article  Google Scholar 

  • O’Connor, T. G., Heron, J., Golding, J., Glover, V., & the ALSPAC Study Team. (2003). Maternal antenatal anxiety and behavioural/emotional problems in children: A test of a programming hypothesis. Journal of Child Psychology and Psychiatry and Allied Disciplines, 44, 1025–1036.

    Google Scholar 

  • Ordyan, N. E., & Pivina, S. G. (2003). Anxiety levels and neurosteroid synthesis in the brains of prenatally stressed male rats. Neuroscience and Behavioral Physiology, 33, 899–903.

    Article  CAS  Google Scholar 

  • O’Regan, D., Kenyon, C. J., Seckl, J. R., & Holmes, M. C. (2004). Glucocorticoid exposure in late gestation in the rat permanently programmes gender specific differences in adult cardiovascular and metabolic physiology. American Journal of Physiology Endocrinology and Metabolism, 287, e863–870.

    Article  CAS  Google Scholar 

  • Osada, H., Watanabe, Y., Nishimura, Y., Yukawa, M., Seki, K., & Sekiya, S. (2002). Profile of trace element concentrations in the feto-placental unit in relation to fetal growth. ACTA Obstetricia et Gynecologica Scandinavica, 81, 931–937.

    Article  Google Scholar 

  • Ozanne, S. E., Olsen, G. S., Hansen, L. L., Tingey, K. J., Nave, B. T., Wang, C. L., Hartil, K., Petry, C. J., Buckley, A. J., & Mosthaf-Seedorf, L. (2003). Early growth restriction leads to down regulation of protein kinase C zeta and insulin resistance in skeletal muscle. Journal of Endocrinology, 177, 235–241.

    Article  CAS  Google Scholar 

  • Palmer, A. A., Printz, D. J., Butler, P. D., Dulawa, S. C., & Printz, M. P. (2004). Prenatal protein deprivation in rats induces changes in prepulse inhibition and NMDA receptor binding. Brain Research, 996, 193–201.

    Article  CAS  Google Scholar 

  • Petry, C. J., Dorling, M. W., Pawlak, D. B., Ozanne, S. E., & Hales, C. N. (2001). Diabetes in old male offspring of rat dams fed a reduced protein diet. International Journal of Experimental Diabetes Research, 2, 139–143.

    Article  CAS  Google Scholar 

  • Rao, R., Tkac, I., Townsend, E. L., Gruetter, R., & Georgieff, M. K. (2003). Perinatal iron deficiency alters the neurochemical profile of the developing rat hippocampus. Journal of Nutrition, 133, 3215–3221.

    CAS  Google Scholar 

  • Rees, S., & Harding, R. (1988). The effects of intrauterine growth retardation on the development of the Purkinje cell dendritic tree in the cerebellar cortex of fetal sheep: A note on the ontogeny of the Purkinje cell. International Journal of Developmental Neuroscience, 6, 461–469.

    Article  CAS  Google Scholar 

  • Rhind, S. M., Rae, M. T., & Brooks, A. N. (2001). Effects of nutrition and environmental factors on the fetal programming of the reproductive axis. Reproduction, 122, 205–214.

    Article  CAS  Google Scholar 

  • Rhind, S. M., Rae, M. T., & Brooks, A. N. (2003). Environmental influences on the fetus and neonate—timing, mechanisms of action and effects on subsequent adult function. Domestic Animal Endocrinology, 25, 3–11.

    Article  CAS  Google Scholar 

  • Rogers, J. M., Keen, C. L., & Hurley, L. S. (1985). Zinc deficiency in pregnant Long-Evans hooded rats: Teratogenicity and tissue trace elements. Teratology, 31, 89–100.

    Article  CAS  Google Scholar 

  • Roseboom, T. J., van der Meulen, J. H., Ravelli, A. C., Osmend, C., Barker, D. J., & Bleker, O. P. (2001). Effects of prenatal exposure to the Dutch famine on adult disease in later life: An overview. Twin Research 4, 293–298.

    Article  CAS  Google Scholar 

  • Schneider, M. L., Moore, C. F., & Kraemer, G. W. (2004). Moderate level alcohol during pregnancy, prenatal stress, or both and limbic-hypothalamic-pituitary-adrenocortical axis response to stress in rhesus monkeys. Child Development, 75, 96–109.

    Article  Google Scholar 

  • Schneider, M. L., Moore, C. F., Kraemer, G. W., Roberts, A. D., & DeJesus, O. T. (2002). The impact of prenatal stress, fetal alcohol exposure, or both on development: Perspectives from a primate model. Psychoneuroendocrinology, 27, 285–298.

    Article  CAS  Google Scholar 

  • Scholl, T. O., Hediger, M. L., Schall, J. I., Fischer, R. L., & Khoo, C. S. (1993). Low zinc intake during pregnancy: Its association with preterm and very preterm delivery. American Journal of Epidemiology, 137, 1115–1124.

    CAS  Google Scholar 

  • Scholl, T. O., Hediger, M. L., Schall, J. I., Khoo, C. S., & Fischer, R. L. (1996). Dietary and serum folate: Their influence on the outcome of pregnancy. American Journal of Clinical Nutrition, 63, 520–525.

    CAS  Google Scholar 

  • Siddappa, A. M., Georgieff, M. K., Wewerka, S., Worwa, C., Nelson, C. A., & Deregnier, R. A. (2004). Iron deficiency alters auditory recognition memory in newborn infants of diabetic mothers. Pediatric Research, 55, 1034–1041.

    Article  CAS  Google Scholar 

  • Singhal, A., Wells, J., Cole, T. J., Fewtrell, M., & Lucas, A. (2003). Programming of lean body mass: A link between birthweight, obesity, and cardiovascular disease? American Journal of Clinical Nutrition, 77, 726–730.

    CAS  Google Scholar 

  • Sjostrom, K., Valentin, L., Thelin, T., & Marsal, K. (1997). Maternal anxiety in late pregnancy and fetal hemodynamics. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 74, 149–155.

    Article  CAS  Google Scholar 

  • Stein, Z., Susser, M., Saengler, G., & Marolla, F. (1975). Famine and human development. The Dutch hunger winter of 1944–1945. New York: Oxford University Press.

    Google Scholar 

  • Susser, E., Neugebauer, R., Hoek, H. W., Brown, A. S., Lin, S., Labovitz, D., & Gorman, J. M. (1996). Schizophrenia after prenatal famine. Further evidence. Archives of General Psychiatry, 53, 25–31.

    CAS  Google Scholar 

  • Takahashi, L. K., Turner, J. G., & Kalin, N. H. (1992). Prenatal stress alters brain catecholaminergic activity and potentiates stress-induced behavior in adult rats. Brain Research, 574, 131–137.

    Article  CAS  Google Scholar 

  • Tamura, T., Goldenberg, R. L., Hou, J., Johnston, K. E., Cliver, S. P., Ramey, S. L., & Nelson, K. G. (2002). Cord serum ferritin concentrations and mental and psychomotor development of children at five years of age. Journal of Pediatrics, 140, 165–170.

    Article  CAS  Google Scholar 

  • Tolsa, C.B., Zimine, S., Warfield, S.K., Freschi, M., Sancho Rossignol, A., Lazeyras, F., Hanquinet, S., Pfizenmaier, M., & Huppi, P. S. (2004). Early alteration of structural and functional brain development in premature infants born with intrauterine growth restriction. Pediatric Research, 56, 132–138.

    Article  Google Scholar 

  • van Beek, Y., Hopkins, B., Hoeksma, J. B., & Samsom, J. F. (1994). Prematurity, posture and the development of looking behaviour during early communication. Journal of Child Psychology and Psychiatry and Allied Disciplines, 35, 1093–1107.

    Google Scholar 

  • Walfisch, A., Hallak, M., & Mazor, M. (2001). Multiple courses of antenatal steroids: Risks and benefits. Obstetrics and Gynecology, 98, 491–497.

    Article  CAS  Google Scholar 

  • Welberg, L. A., Seckl, J. R., & Holmes, M. C. (2001). Prenatal glucocorticoid programming of brain corticosteroid receptors and corticotrophin-releasing hormone: Possible implications for behaviour. Neuroscience, 104, 71–79.

    Article  CAS  Google Scholar 

  • Weller, A., Glaubman, H., Yehuda, S., Caspy, T., & Ben-Uria, Y. (1988). Acute and repeated gestational stress affect offspring learning and activity in rats. Physiology and Behavior, 43, 139–143.

    Article  CAS  Google Scholar 

  • Wintour, E. M., Johnson, K., Koukoulas, I., Moritz, K., Tersteeg, M., & Dodic, M. (2003). Programming the cardiovascular system, kidney and the brain—a review. Placenta, 24, S65–S71.

    Article  CAS  Google Scholar 

  • Woodall, S. M., Breier, B. H., Johnston, B. M., & Gluckman, P. D. (1996). A model of intrauterine growth retardation caused by chronic maternal undernutrition in the rat: Effects on the somatotrophic axis and postnatal growth. Journal of Endocrinology, 150, 231–242.

    Article  CAS  Google Scholar 

  • Woodall, S. M., Johnston, B. M., Breier, B. H., & Gluckman, P. D. (1996). Chronic maternal undernutrition in the rat leads to delayed postnatal growth and elevated blood pressure of offspring. Pediatric Research, 40, 438–443.

    Article  CAS  Google Scholar 

  • Yehuda, S., & Youdin, M. B. H. (1989). Brain iron: A lesson from animal models. American Journal of Clinical Nutrition, 50, 618–629.

    CAS  Google Scholar 

  • Yu, G. S. M., Steinkirchner, T. M., Rao, G. A., & Larkin, E. C. (1986). Effect of prenatal iron deficiency on myelination in rat pups. American Journal of Pathology, 125, 620–624.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Armony-Sivan, R., Eidelman, A.I. (2006). Nutrition and Stress and the Developing Fetus. In: Yehuda, S., Mostofsky, D.I. (eds) Nutrients, Stress, and Medical Disorders. Nutrition and Health. Humana Press. https://doi.org/10.1385/1-59259-952-4:205

Download citation

Publish with us

Policies and ethics