Stress, Glucocorticoids, and the Brain

  • R. H. DeRijk
  • E. R. de Kloet
Part of the Nutrition and Health book series (NH)

Abstract

When deviations in physiological or behavioral parameters exceed a certain threshold, central release of corticotropin-releasing hormone (CRH) from the parvocellular neurons of the hypothalamic paraventricular nucleus (PVN) is triggered. CRH activates, in the specific context of the stressor, the sympathetic nervous system and the hypothalamic-pituitary-adrenal (HPA) axis, which promote a series of physiological and behavioral adaptations in order to reestablish homeostasis (McEwen, 1998). Multiple afferents can activate CRH neurons, each conveying specific stressful information. These afferents can be ascending direct innervations from the brainstem that relay stressors of systemic origin (metabolic demands, fluid loss, pain, inflammation). Sensory cognitive and emotional information also reaches via a complex transsynaptic pathway—the PVN (Herman et al., 2003). The summation of all inputs to the PVN provides an output that can be measured as the threshold for activation of these neurons as well as the rate of onset, magnitude and duration of the response. The type of afferent input additionally determines the composition of the cocktail of adrenocorticotropic hormone (ACTH) secretagogs released with CRH in interaction with other stress hormones (e.g., norepinephrine [NE] and epinephrine [E]) (Goldstein, 2003; Herman et al., 2003; Romero & Sapolsky, 1996). This initial CRH-mediated stress reaction is counterbalanced by the stress-induced elevation in circulating levels of glucocorticoids and by parasympathetic nervous system activity. Recently it has been suggested that the CRH-2 receptor system is prominent in the coordination of these later slow responses, facilitating the recovery of homeostasis (Hsu & Hsueh, 2001; Reul & Holsboer, 2002).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlberg, A.-C., Ljung, T., Rosmond, R., McEwen, B. S., Holm, G., Akesson, H. S., & Björntorp, P. (2002). Depression and anxiety symptoms in relation to anthropometry and metabolism in men. Psychiatry Research, 112, 101–110.CrossRefGoogle Scholar
  2. Auphan, N., DiDonato, J. A., Rosette, C., Helmberg, A., & Karin, M. (1995). Immunosuppression by glucocorticoids: Inhibition of NF-kappa B activity through induction of I kappa B synthesis. Science, 270, 286–290.CrossRefGoogle Scholar
  3. Bali, B., & Kovacs, K. J. (2003). GABAergic control of neuropeptide gene expression in parvocellular neurons of the hypothalamic paraventricular nucleus. European Journal of Neuroscience, 18, 1518–1526.CrossRefGoogle Scholar
  4. Bamberger, C. M., Bamberger, A. M., de Castro, M., & Chrousos, G. P. (1995). Glucocorticoid receptor beta, a potential endogenous inhibitor of glucocorticoid action in humans. Journal of Clinical Investigation, 95, 2435–2441.CrossRefGoogle Scholar
  5. Barthel, A., & Schmoll, D. (2003). Novel concepts in insulin regulation of hepatic gluconeogenesis. American Journal of Physiology, Endocrinology and Metabolism, 285, E685–E692.Google Scholar
  6. Belanoff, J. K., Rothschild, A. J., Cassidy, F., DeBattista, C., Baulieu, E. E., Schold, C., & Schatzberg, A. F. (2002). An open trial of C-1073 (mifepristone) for psychotic major depression. Biological Psychiatry, 52, 386–392.CrossRefGoogle Scholar
  7. Binder, E. B., Salyakina, D., Lichtner, P., Wochnik, G. M., Ising, M., Putz, B., Papiol, S., Seaman, S., Lucae, S., Kohli, M. A., Nickel, T., Kunzel, H. E., Fuchs, B., Majer, M., Pfennig, A., Kern, N., Brunner, J., Modell, S., Baghai, T., Deiml, T., et al. (2004). Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nature Genetics, 36, 1319–1325.CrossRefGoogle Scholar
  8. Bjorntorp, P. (1993). Visceral obesity: A “civilization syndrome”. Obesity Research, 1, 206–222.Google Scholar
  9. Bohus, B., & de Kloet, E. R. (1981). Adrenal steroids and extinction behavior: Antagonism by progesterone, deoxycorticosterone and dexamethasone of a specific effect of corticosterone. Life Science, 28, 433–440.CrossRefGoogle Scholar
  10. Bremner, J. D., Vythilingam, M., Anderson, G., Vermetten, E., McGlashan, T., Heninger, G., Rasmusson, A., Southwick, S. M., & Charney, D. S. (2003). Assessment of the hypothalamic-pituitary-adrenal axis over a 24-hour diurnal period and in response to neuroendocrine challenges in women with and without childhood sexual abuse and posttraumatic stress disorder. Biological Psychiatry, 54, 710–718.CrossRefGoogle Scholar
  11. Breslin, M. B., Geng, C. D., & Vedeckis, W. V. (2001). Multiple promoters exist in the human GR gene, one of which is activated by glucocorticoids. Molecular Endocrinology, 15, 1395.CrossRefGoogle Scholar
  12. Brönnegård, M., & Carlstedt-Duke, J. (1995). The genetic basis of glucocorticoid resistance. Trends in Endocrinology and Metabolism, 6, 160–164.CrossRefGoogle Scholar
  13. Buchanan, T. W. & Lovallo, W. R. (2001). Enhanced memory for emotional material following stress-level cortisol treatment in humans. Psychoneuroendocrinology, 26, 307–317.CrossRefGoogle Scholar
  14. Buemann, B., Vohl, M. C., Chagnon, M., Gagnon, J., Perusse, L., Dionne, F., Despres, J. P., Tremblay, A., Nadeau, A., & Bouchard, C. (1997). Abdominal visceral fat is associated with a BclI restriction fragment length polymorphism at the glucocorticoid receptor gene locus. Obesity Research, 5, 186–192.Google Scholar
  15. Charmandari, E., Kino, T., Souvatzoglou, E., Vottero, A., Bhattacharyya, N., & Chrousos, G. P. (2004). Natural glucocorticoid receptor mutants causing generalized glucocorticoid resistance: Molecular genotype, genetic transmission, and clinical phenotype. Journal of Clinical Endocrinology and Metabolism, 89, 1939–1949.CrossRefGoogle Scholar
  16. Chrousos, G. P., Charmandari, E., & Kino, T. (2004). Glucocorticoid action networks—an introduction to systems biology. Journal of Clinical Endocrinology and Metabolism, 89, 563–564.CrossRefGoogle Scholar
  17. Chrousos, G. P., Detera-Wadleigh, S., & Karl, M. (1993). Syndromes of glucocorticoid resistance. Annals of Internal Medicine, 119, 1113–1124.Google Scholar
  18. Dallman, M. F., Pecoraro, N., Akana, S. F., la Fleur, S. E., Gomez, F., Houshyar, H., Bell, M. E., Bhatnagar, S., Laugero, K., & Manalo, S. (2003). Chronic stress and obesity: A new view of “comfort food”. Proceedings of the National Academy of Sciences, 100, 11,696–11,701.CrossRefGoogle Scholar
  19. Dallman, M. F., Viau, V. G., Bhatnagar, S., Gomez, F., Laugero, K., & Bell, M. E. (2002). Corticotropin-releasing factor, corticosteroids, stress and sugar: Energy balance, the brain and behavior. In D. Pfaff (Ed.), Hormones, brain and behavior (Vol. 1, pp. 571–631). New York: Elsevier.Google Scholar
  20. Daly, A. K., & Day, C. P. (2001). Candidate gene case-control association studies: advantages and potential pitfalls. British Journal of Clinical Pharmacology, 52, 489–499.CrossRefGoogle Scholar
  21. Datson, N. A., van der Perk, J., de Kloet, E. R., & Vreugdenhil, E. (2001). Identification of corticosteroid-responsive genes in rat hippocampus using serial analysis of gene expression. European Journal of Neuroscience, 14, 675–689.CrossRefGoogle Scholar
  22. De Bosscher, K., Vanden Berghe, W., & Haegeman, G. (2003). The interplay between the glucocorticoid receptor and nuclear factor-kappaB or activator protein-1: Molecular mechanisms for gene repression. Endocrine Reviews, 24, 488–522.CrossRefGoogle Scholar
  23. de Kloet, E. R. (1975). Differences in corticosterone and dexamethasone binding to rat brain and pituitary. Endocrinology, 96, 598–609.CrossRefGoogle Scholar
  24. de Kloet, E. R. (1991). Brain corticosteroid receptor balance and homeostatic control. Frontiers in Neuroendocrinology, 12, 95–164.Google Scholar
  25. de Kloet, E. R. (2003). Hormones, brain and stress. Endocrine Regulations, 37, 51–68.Google Scholar
  26. de Kloet, E. R., de Kock, S., Schild, V., & Veldhuis, H. D. (1988). Antiglucocorticoid RU 38486 attenuates retention of a behaviour and disinhibits the hypothalamic-pituitary adrenal axis at different brain sites. Neuroendocrinology, 47, 109–115.Google Scholar
  27. de Kloet, E. R., Vreugdenhil, E., Oitzl, M. S., & Joels, M. (1998). Brain corticosteroid receptor balance in health and disease. Endocrine Reviews, 19, 269–301.CrossRefGoogle Scholar
  28. de Lange, P., Koper, J. W., Huizinga, N. A. T. M., Brinkman, A. O., de Jong, F. H., Karl, M., Chrousos, G. P., & Lamberts, S. W. (1997). Differential hormone-dependent transcriptional activation and repression by naturally occurring human glucocorticoid receptor variants. Molecular Endocrinology, 11, 1156–1164.CrossRefGoogle Scholar
  29. DeRijk, R. H., Schaaf, M., & de Kloet, E. R. (2002). Glucocorticoid receptor variants: Clinical implications. Journal of Steroid Biochemistry and Molecular Biology, 81, 103–122.CrossRefGoogle Scholar
  30. DeRijk, R. H., Schaaf, M., Stam, F. J., Jong, I. E. M., Swaab, D. F., Ravid, R., Vreugdenhil, E., de Kloet, E. R., & Lucassen, P. J. (2003). Very low levels of the glucocorticoid receptor b isoform in the human hippocampus as shown by Tagman RT-PCR and immunocytochemistry. Molecular Brain Research, 116, 17–26.CrossRefGoogle Scholar
  31. DeRijk, R. H., Schaaf, M., Turner, G., Datson, N. A., Vreugdenhil, E., Cidlowski, J. A., de Kloet, E. R., Emery, P., Sternberg, E. M., & Detera-Wadleigh, S. (2001). A glucocorticoid receptor variant that increases the stability of the glucocorticoid receptor b-isoform is associated with rheumatoid arthritis. Journal of Rheumatology, 28, 2383–2388.Google Scholar
  32. DeRijk, R. H., Sternberg, E. M., & de Kloet, E. R. (1997). Glucocorticoid receptor function in health and disease. Current Opinion in Endocrinology and Diabetes, 4, 185–193.CrossRefGoogle Scholar
  33. DeRijk, R. H., Wüst, S., Meijer, O. C., Zennaro, C., Vreugdenhil, E., Federenko, I., Gao, Y., Hellhammer, D., & de Kloet, E. R. A common polymorphism mineralocorticoid receptor determines stress-responsivity to a psychosocial challenge in humans. Abstract presented at the 4th Dutch Endo-Neuro-Psycho meeting. Doorwerth, Netherlands: May 31–June 3, 2005.Google Scholar
  34. Detera-Wadleigh, S., Encio, I. J., & Rollins, D. Y. (1991). A TthIII1 polymorphism on the 5′ flanking region of the glucocorticoid receptor gene (GRL) [Abstract]. Nucleic Acid Research, 19, 1960.CrossRefGoogle Scholar
  35. Deuschle, M., Weber, B., Colla, M., Müller, M., Kniest, A., & Heuser, I. J. (1998). Mineralocorticoid receptor also modulates basal activity of hypothalamus-pituitary-adrenocortical system in humans. Neuroendocrinology, 68, 355–360.CrossRefGoogle Scholar
  36. Diamond, D. M., Bennett, M. C., Fleshner, M., & Rose, G. M. (1992). Inverted-U relationship between the level of peripheral corticosterone and the magnitude of hippocampal primed burst potentiation. Hippocampus, 2, 421–430.CrossRefGoogle Scholar
  37. Di Blasio, A. M., van Rossum, E. F. C., Maestrini, S., Berselli, M. E., Tagliaferri, M., Podesta, F., Koper, J. W., Liuzzi, A., & Lamberts, S. W. (2003). The relation between two polymorphisms in the glucocorticoid receptor gene and body mass index, blood pressure and cholesterol in obese patients. Clinical Endocrinology, 59, 68–74.CrossRefGoogle Scholar
  38. Dobson, M. G., Redfern, C. P. F., Unwin, N., & Weaver, J. U. (2001). The N363S polymorphism of the glucocorticoid receptor: Potential contribution to central obesity in men and lack of association with other risk factors for coronary heart disease and diabetes mellitus. Journal of Clinical Endocrinology and Metabolism, 86, 2270–2274.CrossRefGoogle Scholar
  39. Dodt, C., Kern, W., Fehm, H. L., & Born, J. (1993). Antimineralocorticoid Canrenoate enhances secretory activity of the hypothalamus-pituitary-adrenocortical (HPA) axis in humans. Neuroendocrinology, 58, 570–574.Google Scholar
  40. Eaton, W. W. (2002). Epidemiological evidence on the comorbidity of depression and diabetes. Journal of Psychosomatic Research, 53, 903–906.CrossRefGoogle Scholar
  41. Edwards, C. R., Steward, P. M., Burt, D., Brett, L., McIntyre, M. A., Sutanto, W., de Kloet, E. R., & Monder, C. (1988). Localisation of 11 beta-hydroxysteroid dehydrogenase—tissue specific protector of the mineralocorticoid receptor. The Lancet, 2, 986–989.CrossRefGoogle Scholar
  42. Ellenbogen, M. A., Hodgins, S., & Walker, C. D. (2004). High levels of cortisol among adolescent offspring of parents with bipolar disorder: A pilot study. Psychoneuroendocrinology, 29, 99–106.CrossRefGoogle Scholar
  43. Emahazion, T., Feuk, L., Jobs, M., Sawyer, S. L., Fredman, D., St Clair, D., Prince, J. A., & Brookes, A. J. (2001). SNP association studies in Alzheimer’s disease highlight problems for complex disease analysis. Trends in Genetics, 17, 407–413.CrossRefGoogle Scholar
  44. Fleury, I., Beaulieu, P., Primeau, M., Sinnett, D., & Krajinovic, M. (2003). Characterization of the BclI polymorphism in the glucocorticoid receptor gene. Clinical Chemistry, 49, 1528–1531.CrossRefGoogle Scholar
  45. Giguere, V., Hollenberg, S. M., Rosenfeld, M. G., & Evans, R. M. (2001). Functional domains of the human glucocorticoid receptor. Cell, 46, 645–652.CrossRefGoogle Scholar
  46. Gold, P. W., & Chrousos, G. P. (2002). Organization of the stress system and its dysregulation in melancholic and atypical depression: High vs low CRH/NE states. Molecular Psychiatry, 7, 254–275.CrossRefGoogle Scholar
  47. Goldstein, D. S. (2003). Catecholamines and stress. Endocrine Regulations, 37, 69–80.Google Scholar
  48. Haller, J., Millar, S., & Kruk, M. R. (1998). Mineralocorticoid receptor blockade inhibits aggressive behavior in male rats. Stress, 2, 201–207.CrossRefGoogle Scholar
  49. Hammond, G. L., Smith, C. L., Paterson, N. A. M., & Sibbald, W. J. (1990). A role for corticosteroid binding globulin in delivery of cortisol to activated neutrophils. Journal of Clinical Endocrinology and Metabolism, 71, 34–39.Google Scholar
  50. Heim, C., Newport, D. J., Heit, S., Graham, Y. P., Wilcox, M., Bonsall, R., Miller, A. H., & Nemeroff, C. B. (2001). Pituitary-adrenal and autonomic responses to stress in woman after sexual and physical abuse in childhood. Journal of the American Medical Association, 284, 592–597.CrossRefGoogle Scholar
  51. Herman, J. P., Cullinan, W. E., Ziegler, D. R., & Tasker, J. G. (2002). Role of the paraventricular nucleus microenvironment in stress integration. European Journal of Neuroscience, 16, 381–385.CrossRefGoogle Scholar
  52. Herman, J. P., Figueiredo, H., Mueller, N. K., Ulrich-Lai, Y., Ostrander, M. M., Choi, D. C., & Cullinan, W. E. (2003). Central mechanisms of stress integration: Hierarchical circuitry controlling hypothalamopituitary-adrenocortical responsiveness. Frontiers in Neuroendocrinology, 24, 151–180.CrossRefGoogle Scholar
  53. Heuser, I., Deuschle, M., Weber, B., Stalla, G. K., & Holsboer, F. (2000). Increased activity of the hypothalamus-pituitary-adrenal system after treatment with the mineralocorticoid receptor antagonist spironolactone. Psychoneuroendocrinology, 25, 513–518.CrossRefGoogle Scholar
  54. Hollenberg, S. M., Weinberger, C., Ong, E. S., Cerelli, G., Oro, A., Lebo, R., Thompson, E. B., Rosenfeld, M. G., & Evans, R. M. (1985). Primary structure and expression of a functional glucocorticoid receptor cDNA. Nature, 318, 635–641.CrossRefGoogle Scholar
  55. Holsboer, F., Lauer, C. J., Schreiber, W., & Krieg, J.-C. (1995). Altered hypothalamic-pituitary-adrenocortical regulation in healthy subjects at high familial risk for affective disorders. Neuroendocrinology, 62, 340–347.Google Scholar
  56. Hsu, S. Y., & Hsueh, A. J. (2001). Human stresscopin and stresscopin-related peptide are selective ligands for the type 2 corticotropin-releasing hormone receptor. Nature Medicine, 7, 605–611.CrossRefGoogle Scholar
  57. Huizinga, N. A. T. M., Koper, J. W., de Lange, P., Pols, H. A., Stolk, R. P., Burger, H., Grobbee, D. E., Brinkman, A. O., de Jong, F. H., & Lamberts, S. W. (1998). A polymorphism in the glucocorticoid receptor gene may be associated with an increased sensitivity to glucocorticoids. Journal of Clinical Endocrinology and Metabolism, 83, 144–151.CrossRefGoogle Scholar
  58. Joëls, M., & de Kloet, E. R. (1989). Effects of glucocorticoids and norepinephrine on the excitability in the hippocampus. Science, 245, 1502–1505.CrossRefGoogle Scholar
  59. Joëls, M., & de Kloet, E. R. (1992). Control of neuronal excitability by corticosteroid hormones. Trend in Neurosciences, 15, 25–30.CrossRefGoogle Scholar
  60. Joëls, M., & de Kloet, E. R. (1994). Mineralocorticoid and glucocorticoid receptors in the brain. Implications for ion permeability and transmitter systems. Progress in Neurobiology, 43, 1–36.CrossRefGoogle Scholar
  61. Joëls, M., Verkuyl, J. M., & van Riel, E. (2003). Hippocampal and hypothalamic function after chronic stress. Annals of the New York Academy of Sciences, 1007, 367–378.CrossRefGoogle Scholar
  62. Kalsbeek, A., & Buijs, R. M. (2002). Output pathways of the mammalian suprachiasmatic nucleus: Coding circadian time by transmitter selection and specific targeting. Cell Tissue Research, 309, 109–118.CrossRefGoogle Scholar
  63. Karssen, A. M., Meijer, O. C., van der Sandt, I., Lucassen, P. J., de Lange, E. C., de Boer, A. G., & de Kloet, E. R. (2001). Multidrug resistance P-glycoprotein hampers the access of cortisol but not of corticosterone to mouse and human brain. Endocrinology, 142, 2686–2694.CrossRefGoogle Scholar
  64. Karst, H., Karten, Y. J., Reichard, H. M., de Kloet, E. R., Schütz, G., & Joels, M. (2000). Corticosteroid actions in hippocampus require DNA binding of glucocorticoid receptor homodimers. Nature Neuroscience, 3, 977–978.CrossRefGoogle Scholar
  65. Kirschbaum, C., Bono, E. G., Rohleder, N., Gessner, C., Pirke, M., Salvador, A., & Hellhammer, D. (1997). Effects of fasting an glucose load on free cortisol responses to stress and nicotine. Journal of Clinical Endocrinology and Metabolism, 82, 1101–1105.CrossRefGoogle Scholar
  66. Kitchener, P., Di Blasi, F., Borelli, E., & Piazza, P. V. (2004). Differences between brain structures in nuclear translocation and DNA binding of the glucocorticoid receptor during stress and the circadian cycle. European Journal of Neuroscience, 19, 1837–1846.CrossRefGoogle Scholar
  67. Koper, J. W., Stolk, R. P., de Lange, P., Huizenga, N. A. T., Molijn, G. J., Pols, H. A., Grobbee, D. E., Karl, M., de Jong, F. H., Brinkmann, A. O., & Lamberts, S. W. (1997). Lack of association between five polymorphisms in the human glucocorticoid receptor gene and glucocorticoid resistance. Human Genetics, 99, 663–668.CrossRefGoogle Scholar
  68. Korte, S. M. (2002). Corticosteroids in relation to fear, anxiety and psychopathology. Neuroscience & Biobehavioral Reviews, 25, 117–142.CrossRefGoogle Scholar
  69. Lamberts, S. W., Huizenga, N. A. T. M., de Lange, P., de Jong, F. H., & Koper, J. W. (1996). Clinical aspects of glucocorticoid sensitivity. Steroids, 61, 157–160.CrossRefGoogle Scholar
  70. Laugero, K., Gomez, F., Manalo, S., & Dallman, M. F. (2002). Corticosterone infused intracerebroventricularly inhibits energy storage and stimulates the hypothalamo-pituitary axis in adrenalectomized rats drinking sucrose. Endocrinology, 143, 4552–4562.CrossRefGoogle Scholar
  71. Lightman, S., Windle, R. J., Julian, M. D., Harbuz, M. S., Shanks, N., Wood, S. A., Kershaw, Y. M., & Ingram, C. D. (2000). Significance of pulsatility in the HPA axis. In Mechanisms and biological significance of pulsatile hormone secretion (pp. 244–260). Chichester: Wiley.CrossRefGoogle Scholar
  72. Lin, R. C. Y., Wang, W. Y. S., & Morris, B. J. (1999a). High penetrance, overweight and glucocorticoid receptor variant: Case-control study. British Medical Journal, 319, 1337–1338.Google Scholar
  73. Lin, R. C. Y., Wang, W. Y. S., & Morris, B. J. (1999b). Association and linkage analysis of glucocorticoid receptor gene markers in essential hypertension. Hypertension, 34, 1192.Google Scholar
  74. Lin, R. C. Y., Wang, X. L., & Morris, B. J. (2003). Association of coronary artery disease with the glucocorticoid receptor N363S variant. Hypertension, 41, 404–407.CrossRefGoogle Scholar
  75. Loscertales, M., Rose, S. P., & Sandi, C. (1997). The corticosteroid synthesis inhibitors metyrapone and aminoglutethimide impair long-term memory for a passive avoidance task in day-old chicks. Brain Research, 769, 357–361.CrossRefGoogle Scholar
  76. Lupien, S. J., Wilkinson, D. W., Brière, S., Ménard, C., Ng Ying Kin, N. M. K., Nair, N. P. V. (2002). The modulatory effects of corticosteroids on cognition: Studies in young human populations. Psychoneuroendocrinology, 27, 401–416.CrossRefGoogle Scholar
  77. Masuzaki, H., Paterson, J., Shinyama, H., Morton, N. M., Mullins, J. J., Seckl, J. R., & Flier, J. S. (2001). A transgenic model of visceral obesity and the metabolic syndrome. Science, 294, 2166–2170.CrossRefGoogle Scholar
  78. McEwen, B. S. (1998). Protective and damaging effects of stress mediators. New England Journal of Medicine, 338, 171–179.CrossRefGoogle Scholar
  79. Meijer, O. C., de Lange, E. C. M., Breimer D.D., de Boer, A. G., Workel, J. O., & de Kloet, E. R. (1998). Penetration of dexamethasone into brain glucocorticoid targets is enhanced in mdrla-Pglycoprotein knockout mice. Endocrinology, 139, 1789–1793.CrossRefGoogle Scholar
  80. Meijer, O. C., Steenbergen, P. J., & de Kloet, E. R. (2002). Differential expression and regional distribution of steroid receptor coactivators SRC-1 and SRC-2 in brain and pituitary. Endocrinology, 141, 2192–2199.CrossRefGoogle Scholar
  81. Montkowski, A., Barden, N., Wotjak, C., Stec, I. E., Ganster, J., Meaney, M. J., Engelmann, M., Reul, J. M., Landgraf, R., & Holsboer, F. (1995). Long-term antidepressant treatment reduces behavioural deficits in transgenic mice with impaired glucocorticoid receptor function. Journal of Neuroendocrinology, 7, 841–845.CrossRefGoogle Scholar
  82. Müller, M. B., Holsboer, F., & Kellendonk, C. (2002). Genetic modification of corticosteroid receptor signaling: Novel insights into pathophysiology and treatment strategies of human affective disorders. Neuropeptides, 36, 117–131.CrossRefGoogle Scholar
  83. Munck, A., Guyre, P. M., & Holbrook, N. J. (1984). Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocrine Reviews, 5, 25–44.CrossRefGoogle Scholar
  84. Murray, J. C., Smith, R. F., Ardinger, H. A., & Weinberger, C. (1987). RFLP for the glucocorticoid receptor (GRL) located at 5q11–5q13. Nucleic Acid Research, 15, 6765.CrossRefGoogle Scholar
  85. Oakley, R. H., Sar, M., & Cidlowski, J. A. (1996). The human glucocorticoid receptor beta isoform. Expression, biochemical properties, and putative function. Journal of Biological Chemistry, 271, 9550–9559.CrossRefGoogle Scholar
  86. Oitzl, M. S., & de Kloet, E. R. (1992). Selective corticosteroid antagonists modulate specific aspects of spatial orientation learning. Behavioral Neuroscience, 106, 62–71.CrossRefGoogle Scholar
  87. Oitzl, M. S., Fluttert, M., & de Kloet, E. R. (1994). The effect of corticosterone on reactivity to spatial novelty is mediated by central mineralocorticoid receptors. European Journal of Neuroscience, 6, 1072–1079.CrossRefGoogle Scholar
  88. Oitzl, M. S., Fluttert, M., Sutanto, W., & de Kloet, E. R. (1998). Continuous blockade of brain glucocorticoid receptors facilitates spatial learning and memory in rats. European Journal of Neuroscience, 10, 3759–3766.CrossRefGoogle Scholar
  89. Oitzl, M. S., Reichard, H. M., Joëls, M., & de Kloet, E. R. (2001). Point mutation in the mouse glucocorticoid receptor preventing DNA binding impairs spatial memory. Proceedings of the National Academy of Sciences, 98, 12,790–12,795.CrossRefGoogle Scholar
  90. Oitzl, M. S., van Haarst, A. D., Sutanto, W., & de Kloet, E. R. (1995). Corticosterone, brain mineralocorticoid receptors (MRs) and the activity of the hypothalamic-pituitary-adrenal (HPA) axis: The Lewis rat as an example of increased central MR capacity and a hyporesponsive HPA axis. Psychoneuroendocrinology, 20, 655–675.CrossRefGoogle Scholar
  91. Panarelli, M., Holloway, C. D., Fraser, R., Connell, J. M. C., Ingram, M., Anderson, N. N., & Kenyon, C. J. (1998). Glucocorticoid receptor polymorphism, skin vasoconstriction and other metabolic intermediate phenotypes in normal subjects. Journal of Clinical Endocrinology and Metabolism, 83, 1846–1852.CrossRefGoogle Scholar
  92. Rahmouni, K., Barthelmebs, M., Grima, M., Imbs, J. L., & de Jong, W. (2003). Influence of sodium intake on the cardiovascular and renal effects of brain mineralocorticoid receptor blockade in normotensive rats. Journal of Hypertension, 20, 1829–1834.CrossRefGoogle Scholar
  93. Ratka, A., Sutanto, W., Bloemers, M., & de Kloet, E. R. (1989). On the role of the brain type I and type II corticosteroid receptors in neuroendocrine regulation. Neuroendocrinology, 50, 117–123.Google Scholar
  94. Reichard, H. M., Kaestner, K. H., Tuckermann, J., Kretz, O., Wessely, O., Bock, R., Gass, O., Schmid, W., Herrlich, P., Angel, P., & Schütz, G. (1998). DNA binding of the glucocorticoid receptor is not essential for survival. Cell, 93, 531–541.CrossRefGoogle Scholar
  95. Reichardt, H. M., Tuckermann, J., Bauer, A., & Schütz, G. (2000). Molecular genetic dissection of glucocorticoid receptor function in vivo. Zeitschrift für Rheumatologie, 59, 1–5.CrossRefGoogle Scholar
  96. Reul, J. M., & Holsboer, F. (2002). Corticotropin-releasing factor receptors 1 and 2 in anxiety and depression. Current Opinion in Pharmacology, 2, 23–33.CrossRefGoogle Scholar
  97. Reynolds, R. M., & Walker, B. R. (2003). Human insulin resistance: The role of glucocorticoids. Diabetes, Obesity and Metabolism, 5, 5–12.CrossRefGoogle Scholar
  98. Rinne, T., de Kloet, E. R., Wouters, L., Goekoop, J. G., DeRijk, R. H., & Brink, W. (2002). Hyperresponsiveness of hypothalamic-pituitary-adrenal axis to combined dexamethasone/corticotropin-releasing hormone challenge in female borderline personality disorder subjects with a history of sustained childhood abuse. Biological Psychiatry, 52, 1102–1112.CrossRefGoogle Scholar
  99. Roberts, R. E., Deleger, S., Strawbridge, W. J., & Kaplan, G. A. (2003). Prospective association between obesity and depression: Evidence from the Alameda County Study. International Journal of Obesity, 27, 514–521.CrossRefGoogle Scholar
  100. Romero, L. M., & Sapolsky, R. M. (1996). Patterns of ACTH secretagog secretion in response to psychological stimuli. Journal of Neuroendocrinology, 8, 243–258.CrossRefGoogle Scholar
  101. Roozendaal, B., Griffith, Q. K., Buranday, J., Quervain, D. J.-F., & McGaugh, J. L. (2003). The hippocampus mediates glucocorticoid-induced impairment of spatial memory retrieval: Dependence on the basolateral amygdala. Proceedings of the National Academy of Sciences, 100, 1328–1333.CrossRefGoogle Scholar
  102. Rosmond, R. (2003a). Glucocorticoid receptor gene and coronary artery disease: Right idea, wrong gene variant? Hypertension, 42, e3–e4.CrossRefGoogle Scholar
  103. Rosmond, R. (2003b). Glucocorticoid receptor N363S variant in obesity: comes into vanity and goes into darkness [Letter]. Obesity Research, 11, 1606–1607.Google Scholar
  104. Rosmond, R., Bouchard, C., & Björntorp, P. (2001). Tsp509I polymorphism in exon 2 of the glucocorticoid receptor gene in relation to obesity and cortisol secretion: Cohort study. British Medical Journal, 322, 652–653.CrossRefGoogle Scholar
  105. Rosmond, R., Chagnon, Y. C., Chagnon, M., Pérusse, L., Bouchard, C., & Björntorp, P. (2000a). A polymorphism of the 5′-flanking region of the glucocorticoid receptor gene locus is associated with basal cortisol secretion in men. Metabolism, 49, 1197–1199.CrossRefGoogle Scholar
  106. Rosmond, R., Chagnon, Y. C., Holm, G., Chagnon, M., Pérusse, L., Lindell, K., Carlsson, B., Bouchard, C., & Björntorp, P. (2000b). A glucocorticoid receptor gene marker is associated with abdominal obesity, leptin, and dysregulation of the hypothalamic-pituitary-adrenal axis. Obesity Research, 8, 211–218.Google Scholar
  107. Rosmond, R., Dallman, M. F., & Björntorp, P. (1998). Stress-related cortisol secretion in men: Relationships with abdominal obesity and endocrine, metabolic and hemodynamic abnormalities. Journal of Clinical Endocrinology and Metabolism, 83, 1853–1859.CrossRefGoogle Scholar
  108. Sakai, R. R., Ma, L. Y., Zhang, D. M., McEwen, B. S., & Fluharty, S. J. (1996). Intracerebral administration of mineralocorticoid receptor antisense oligonucleotides attenuate adrenal steroid-induced salt appetite in rats. Neuroendocrinology, 64, 425–429.Google Scholar
  109. Schaaf, M., & Cidlowski, J. A. (2002a). AUUUA motifs in the 3’UTR of human glucocorticoid receptor alpha and beta mRNA destabilize mRNA and decrease receptor protein expression. Steroids, 67, 627–636.CrossRefGoogle Scholar
  110. Schaaf, M., & Cidlowski, J. A. (2002b). Molecular mechanisms of glucocorticoid action and resistance. Journal of Steroid Biochemistry and Molecular Biology, 83, 37–48.CrossRefGoogle Scholar
  111. Schmidt, L. A., Fox, N. A., Goldberg, M. C., Smith, C. C., & Schulkin, J. (1999). Effects of acute prednisone administration on memory, attention and emotion in healthy human adults. Psychoneuroendocrinology, 24, 461–483.CrossRefGoogle Scholar
  112. Seckl, J. R., Morton, N. M., Chapman, K. E., & Walker, B. R. (2004). Glucocorticoid and 11beta-hydroxysteroid dehydrogenase in adipose tissue. Recent Progress in Hormone Research, 59, 359–393.CrossRefGoogle Scholar
  113. Seckl, J. R., & Walker, B. R. (2001). Minireview: 11Beta-hydroxysteroid dehydrogenase type 1—a tissue-specific amplifier of glucocorticoid action. Endocrinology, 142, 1371–1376.CrossRefGoogle Scholar
  114. Stevens, A., Ray, D. W., Zeggini, E., John, S., Richards, H. L., Griffiths, C. E. M., & Donn, R. (2004). Glucocorticoid sensitivity is determined by a specific glucocorticoid receptor haplotype. Journal of Clinical Endocrinology and Metabolism, 89, 892–897.CrossRefGoogle Scholar
  115. Stewart, P. M., Boulton, A., Kumar, S., Clark, P. M. S., Shahidi, H., & Shackleton, C. H. L. (1999). Cortisol metabolism in human obesity: Impaired cortisone → cortisol conversion in subjects with central adiposity. Journal of Clinical Endocrinology and Metabolism, 84, 1027.CrossRefGoogle Scholar
  116. Tremblay, A., Bouchard, L., Bouchard, C., Despres, J. P., Drapeau, V., & Perusse, L. (2003). Long-term adiposity changes are related to a glucocorticoid receptor polymorphism in young females. Journal of Clinical Endocrinology and Metabolism, 88, 3141–3145.CrossRefGoogle Scholar
  117. Ukkola, O., Pérusse, L., Chagnon, M., Després, J. P., & Bouchard, C. (2001). Interactions among the glucocorticoid receptor, lipoprotein lipase and adrenergic receptor genes and abdominal fat in the Quebec Family Study. International Journal of Obesity and Related Metabolic Disorders, 25, 1332–1339.CrossRefGoogle Scholar
  118. Ukkola, O., Rosmond, R., Tremblay, A., & Bouchard, C. (2001). Glucocorticoid receptor Bcl I variant is associated with an increased atherogenic profile in response to long-term overfeeding. Atherosclerosis, 157, 221–224.CrossRefGoogle Scholar
  119. van den Berg, D. T., de Kloet, E. R., & de Jong, W. (1994). Central effects of mineralocorticoid antagonist RU-28318 on blood pressure of DOCA-salt hypertensive rats. American Journal of Physiology, 267, E927–E933.Google Scholar
  120. van den Buuse, M., van Acker, S. A., Fluttert, M., & de Kloet, E. R. (2002). Involvement of corticosterone in cardiovascular responses to an open-field novelty stressor in freely moving rats. Physiology & Behavior, 75, 207–215.CrossRefGoogle Scholar
  121. van Haarst, A. D., Oitzl, M. S., & de Kloet, E. R. (1997). Facilitation of feedback inhibition through blockade of glucocorticoid receptors in the hippocampus. Neurochemical Research, 22, 1323–1328.CrossRefGoogle Scholar
  122. van Haarst, A. D., Oitzl, M. S., Workel, J. O., & de Kloet, E. R. (1996). Chronic brain glucocorticoid receptor blockade enhances the rise in circadian and stress-induced pituitary-adrenal activity. Endocrinology, 137, 4935–4943.CrossRefGoogle Scholar
  123. van Rossum, E. F. C., Koper, J. W., Huizenga, A. T., Uitterlinden, A. G., Janssen, J. A. M. J. L., Brinkmann, A. O., Grobbee, D. E., de Jong, F. H., van Duyn, C. M., Pols, H. A. P., & Lamberts, S. W. (2003a). A polymorphism in the glucocorticoid receptor gene, which decreases sensitivity to glucocorticoids in vivo, is associated with low insulin and cholesterol levels. Diabetes, 51, 3128–3134.CrossRefGoogle Scholar
  124. van Rossum, E. F. C., Koper, J. W., van den Beld, A. W., Uitterlinden, A. G., Arp, P., Ester, W., Janssen, J. A. M. J. L., Brinkman, A. O., de Jong, F. H., Grobbee, D. E., Pols, H. A., & Lamberts, S. W. (2003b). Identification of the BclI polymorphism in the glucocorticoid receptor gene: Association with sensitivity to glucocorticoids in vivo and body mass index. Clinical Endocrinology, 59, 585–592.CrossRefGoogle Scholar
  125. van Rossum, E. F. C., & Lamberts, S. W. (2004). Polymorphisms in the glucocorticoid receptor gene and their associations with metabolic parameters and body composition. Recent Progress in Hormone Research, 59, 333–357.CrossRefGoogle Scholar
  126. van Steensel, B., van Binnendijk, E. P., Hornsby, C. D., van der Voort, H. T., Krozowski, Z. S., de Kloet, E. R., & van Driel, R. (1996). Partial colocalization of glucocorticoid and mineralocorticoid receptors in discrete compartments in nuclei of rat hippocampus neurons. Journal of Cell Science, 109, 787–792.Google Scholar
  127. Watt, G. C. M., Harrap, S. B., Foy, C. J. W., Holton, D. W., Edwards, H. V., Davidson, H. R., Conner, J. M., Lever, A. F., & Fraser, R. (1992). Abnormalities of glucocorticoid metabolism and the renin-angiotensin system: A four corner approach to the identification of genetic determinants of blood pressure. Journal of Hypertension, 10, 473–482.CrossRefGoogle Scholar
  128. Weaver, J. U., Hitman, G. A., & Kopelman, P. G. (1992). An association between a BclI restriction fragment length polymorphism of the glucocorticoid receptor locus and hyperinsulinaemia in obese woman. Journal of Molecular Biology, 9, 295–300.Google Scholar
  129. Weber, B., Schweiger, U., Deuschle, M., & Heuser, I. (2000). Major depression and impaired glucose tolerance. Experimental and Clinical Endocrinology and Diabetes, 108, 187–190.CrossRefGoogle Scholar
  130. Weber-Hamann, B., Hentschel, F., Kniest, A., Deuschle, M., Colla, M., Lederbogen, F., & Heuser, I. (2002). Hypercortisolemic depression is associated with increased intra-abdominal fat. Psychosomatic Medicine, 64, 274–277.Google Scholar
  131. Weinberger, C., Hollenberg, S. M., Rosenfeld, M. G., & Evans, R. M. (1985). Domain structure of human glucocorticoid receptor and its relationship to the v-erb-A oncogene product. Nature, 318, 670–672.CrossRefGoogle Scholar
  132. Windle, R. J., Wood, S. A., Shanks, N., Lightman, S., & Ingram, C. D. (1998). Ultradian rhythm of basal corticosterone release in the female rat: Dynamic interaction with the response to acute stress. Endocrinology, 139, 443–450.CrossRefGoogle Scholar
  133. Wolkowitz, O. M., Reus, V. I., Weingartner, H., Thompson, K., Breier, A., Doran, A., Rubinow, D., & Pickar, D. (1990). Cognitive effects of corticosteroids. American Journal of Psychiatry, 147, 1297–1303.Google Scholar
  134. Wüst, S., van Rossum, E. F. C., Federenko, I., Koper, J. W., Kumsta, R., & Hellhammer, D. (2004). Common polymorphisms in the glucocorticoid receptor gene are associated with adrenocortical responses to psychosocial stress. Journal of Clinical Endocrinology and Metabolism, 89, 563–564.CrossRefGoogle Scholar
  135. Yehuda, R. (2002). Post-traumatic stress disorder. New England Journal of Medicine, 346, 108–114.CrossRefGoogle Scholar
  136. Yehuda, R., Halligan, S. L., Grossman, R., Golier, J. A., & Wong, C. (2002). The cortisol and glucocorticoid receptor response to low dose dexamethasone administration in aging combat veterans and Holocaust survivors with and without posttraumatic stress disorder. Biological Psychiatry, 52, 393–403.CrossRefGoogle Scholar
  137. Young, E. A., Lopez, J. F., Murphy-Weinberg, V., Watson, S. J., & Akil, H. (1998). The role of mineralocorticoid receptors in hypothalamic-pituitary-adrenal axis regulation in humans. Journal of Clinical Endocrinology and Metabolism, 83, 3339–3345.CrossRefGoogle Scholar
  138. Yudt, M. R., & Cidlowski, J. A. (2001). Molecular identification and characterization of A and B forms of the glucocorticoid receptor. Molecular Endocrinology, 15, 1093–1103.CrossRefGoogle Scholar
  139. Zondervan, K. T., & Cardon, L. R. (2004). The complex interplay among factors that influence allelic association. Nature Reviews Genetics, 5, 89–101.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2006

Authors and Affiliations

  • R. H. DeRijk
    • 1
  • E. R. de Kloet
    • 1
  1. 1.Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug ResearchLeiden UniversityLeidenThe Netherlands

Personalised recommendations