Skip to main content

Effects of Stress and Nutrition on Blood-Brain Barrier Functions

  • Chapter
Nutrients, Stress, and Medical Disorders

Part of the book series: Nutrition and Health ((NH))

Abstract

Over the past two decades, dramatic progress has been made in understanding the physiology and functions of the blood-brain barrier (BBB). The BBB is made up of brain microvessel endothelial cells, astroglia, pericytes, perivascular macrophages, and basal lamina. Brain microvessel endothelial cells are characterized by tight intercellular junctions restricting the passage of most molecules from the circulation to the brain. The brains of vertebrates are perfused by a dense microvascular network formed by the capillary endothelial cells within the brain (Pardridge, 2002). The density of the microvasculature in the brain is so intricate that no neuron or glial cell is more than 20 µm from a neighboring capillary (Bar, 1980). Therefore, every neuron is virtually perfused by its own microvessel. Once a circulating solute crosses the brain microvascular wall, it can be immediately utilized by every neuron within the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angel C. (1969). Starvation, stress and the blood-brain barrier. Diseases of the Nervous System, 30, 94–97.

    CAS  Google Scholar 

  • Avogaro, A., Cibin, M., Croatto, T., Rizzo, A., Gallimberti, L., & Tiengo, A. (1986). Alcohol intake and withdrawal: Effects on branched chain amino acids and alanine. Alcoholism: Clinical and Experimental Research, 10, 300–304.

    Article  CAS  Google Scholar 

  • Banks, W. A. (1999). Physiology and pathology of the blood-brain barrier: Implications for microbial pathogenesis, drug delivery and neurodegenerative disorders. Journal of NeuroVirology, 5, 538–555.

    CAS  Google Scholar 

  • Banks, W. A., Farr, S. A., La Scola, M. E., & Morley, J. E. (2001). Intravenous human interleukin-1α impairs memory processing in mice: Dependence on blood-brain barrier transport into posterior division of the septum. Journal of Pharmacology and Experimental Therapeutics, 299, 536–541.

    CAS  Google Scholar 

  • Banks, W. A., and Kastin, A. J. (1986). Modulation of the carrier-mediated transport of the Tyr-MIF-1 across the blood-brain barrier by essential amino acids. Journal of Pharmacology and Experimental Therapeutics, 239, 668–672.

    CAS  Google Scholar 

  • Banks, W. A., Kastin, A. J., and Nager, B. J. (1988). Analgesia and the blood-brain barrier transport system for Tyr-MIF-1/enkephalins: Evidence for a dissociation. Neuropharmacology, 27, 175–179.

    Article  CAS  Google Scholar 

  • Bar, T. (1980). The vascular system of the cerebral cortex. Advances in Anatomy, Embryology, and Cell Biology, 59, 1–62.

    Google Scholar 

  • Barryd, G. G., Yoramfinkelstein, M., Koffler, B., & Gilad, V. (1985). Stress-induced activation of the hippocampal cholinergic system and the pituitary-adrenocortical axis. Brain Research, 347, 404–408.

    Article  Google Scholar 

  • Belova, T. I., & Jonsson, G. (1982). Blood-brain barrier permeability and immobilization stress. Acta Physiologica Scandinavica, 116, 21–29.

    Article  CAS  Google Scholar 

  • Bethin, K. E., Vogt, S. K., & Muglia, L. J. (2000). Interleukin-6 is an essential, corticotropin-releasing hormone-independent stimulator of the adrenal axis during immune system activation. Proceedings of the National Academy of Sciences, 97, 9317–9322.

    Article  CAS  Google Scholar 

  • Blum, K., Briggs, A. H., Wallace, J. E., Hall, C. W., & Trachtenberg, M. A. (1987). Regional brain [Met]-enkephalin in alcohol-preferring and non-alcohol-preferring inbred strains of mice. Experientia, 43, 408–410.

    Article  CAS  Google Scholar 

  • Blum, K., Elston, S. F. A., DeLallo, L., Briggs, A. H., & Wallace, J. E. (1983). Ethanol acceptance as a function of genotype amounts of brain [met]-enkephalin. Proceedings of the National Academy of Sciences, 80, 6510–6512.

    Article  CAS  Google Scholar 

  • Bluthe, R. M., Parnet, P., Dantzer, R., & Kelley, K. W. (1991). Interleukin-1 receptor antagonist blocks effects of IL-1α and IL-1β on social behavior and body weight in mice. Neuroscience Research Communications, 15, 151–158.

    Google Scholar 

  • Boertje, S. B., Le Beau, D., & Williams, C. (1989). Blockade of histamine-stimulated alterations in cerebrovascular permeability by the H2-receptor antagonist cimetidine. Neuropharmacology, 28, 749–752.

    Article  CAS  Google Scholar 

  • Borges, N., Shi, F., Azevedo, I., & Audus, K. L. (1994). Changes in brain microvessel endothelial cell monolayer permeability induced by adrenergic drugs. European Journal of Pharmacology, 269, 243–248.

    Article  CAS  Google Scholar 

  • Branchey, L., Shaw, S., & Lieber, C. S. (1981). Ethanol impairs tryptophan transport into the brain and depresses serotonin. Life Sciences, 29, 2751–2755.

    Article  CAS  Google Scholar 

  • Broadwell, R. D., & Banks, W.A. (1993). Cell biological perspective for the transcytosis of peptides and proteins through the mammalian blood-brain fluid barriers. In W.M. Pardridge (Ed.), The blood-brain barrier. (pp. 165–199). New York: Raven.

    Google Scholar 

  • Brust, P. (1986). Changes in regional blood-brain transfer of L-leucine elicited by arginine-vasopressin. Journal of Neurochemistry, 46, 534–541.

    Article  CAS  Google Scholar 

  • Bryan, R. M. (1990). Cerebral blood flow and energy metabolism during stress. American Journal of Physiology, 259, H269–H280.

    CAS  Google Scholar 

  • Butt, A. M., & Jones, H. C. (1992). Effect of histamine and antagonists on electrical resistance across the blood-brain barrier in rat brain-surface microvessels. Brain Research, 569, 100–105.

    Article  CAS  Google Scholar 

  • Carrasco, G. A., & Van de Kar, L. D. (2003). Neuroendocrine pharmacology of stress. European Journal of Pharmacology, 463, 235–272.

    Article  CAS  Google Scholar 

  • Chalmers, D. T., Lovenberg, T. W., Grigoriadis, D. E., Behan, D. P., & De Souza, E. B. (1996). Corticotrophin-releasing factor receptors: From molecular biology to drug design. Trends in Pharmacological Science, 17, 166–172.

    Article  CAS  Google Scholar 

  • Chance, W. T., Balasubramaniam, A., Thomas, I., & Fischer, J. E. (1992). Amylin increases transport of tyrosine and tryptophan into the brain. Brain Research, 593, 20–24.

    Article  CAS  Google Scholar 

  • Chrousos, G. P. (1995). The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. New England Journal of Medicine, 322, 1351–1362.

    Article  Google Scholar 

  • Cirulli, F., Pistillo, L., de Acetis, L., Alleva, E., & Aloe, L. (1998). Increased number of mast cells in the central nervous system of adult male mice following chronic subordination stress. Brain, Behavior, and Immunity, 12, 123–133.

    Article  CAS  Google Scholar 

  • Dantzer, R., & Kelley, K. W. (1989). Stress and immunity: An integrated view of relationships between the brain and the immune system. Life Sciences, 44, 1995–2008.

    Article  CAS  Google Scholar 

  • Davson, H., & Segal, M. B. (1996). Special aspects of the blood-brain barrier. In Anonymous physiology of the CSF and blood-brain barriers. (pp. 303–485). Boca Raton, FL: CRC.

    Google Scholar 

  • Deak, T., Nguyen, K. T., Ehrlich, A. L., Watkins, L. R., Spencer, R. L., Maier, S. F., Licinio, J., Wong, M. L., Chrousos, G. P., Webster, E., & Gold, P. W. (1999). The impact of the nonpeptide corticotropin-releasing hormone antagonist antalarmin on behavioral and endocrine responses to stress. Endocrinology, 140, 79–86.

    Article  CAS  Google Scholar 

  • Dieterich, K. D., Lehnert, H., & De Souza, E. B. (1997). Corticotropin-releasing factor receptors: an overview. Experimental and Clinical Endocrinology & Diabetes, 105, 65–82.

    CAS  Google Scholar 

  • el-Bacha, R. S., & Minn, A. (1999). Drug metabolizing enzymes in cerebrovascular endothelial cells afford a metabolic protection to the brain. Cellular and Molecular Biology, 45, 15–23.

    CAS  Google Scholar 

  • Eriksson, T., & Carlsson, A. (1980). Ethanol-induced increase in brain concentrations of administered neutral amino acids. Naunyn-Schmiedeberg’s Archives of Pharmacology, 314, 47–50.

    Article  CAS  Google Scholar 

  • Esposito, P., Chandler, N., Kandere, K., Basu, S., Jacobson, S., Connolly, R., Tutor, D., & Theoharides, T. C. (2002). Corticotropin-releasing hormone and brain mast cells regulate blood-brain-barrier permeability induced by acute stress. Journal of Pharmacology and Experimental Therapeutics, 303, 1061–1066.

    Article  CAS  Google Scholar 

  • Esposito, P., Gheorghe, D., Kandere, K., Pang, X., Connolly, R., Jacobson, S., & Theoharides, T. C. (2001). Acute stress increases permeability of the blood-brain barrier through activation of brain mast cells. Brain Research, 888, 117–127.

    Article  CAS  Google Scholar 

  • Fellmann, D., Bugnon, C., Bresson, J. L., Gouget, A., Cardot, J., Clavequin, M. C., & Hadjiyiassemis, M. (1984). The CRF neuron: Immunocytochemical study. Peptides, 5, 19–33.

    Article  CAS  Google Scholar 

  • Fernstrom, J. D., & Wurtman, R. J. (1971). Brain serotonin content: Physiological dependence on plasma tryptophan levels. Science, 173, 149–152.

    Article  CAS  Google Scholar 

  • Fernstrom, J. D., & Wurtman, R. J. (1972). Brain serotonin content: physiological regulation by plasma neutral amino acids. Science, 178, 414–416.

    Article  CAS  Google Scholar 

  • Fuchs, E., & Flugge, G. (1998). Stress, glucocorticoids and structural plasticity of the hippocampus. Neuroscience and Biobehavioral Revues, 23, 295–300.

    Article  CAS  Google Scholar 

  • Galli, S. J. (1993). New concepts about the mast cell. New England Journal of Medicine, 328, 257–265.

    Article  CAS  Google Scholar 

  • Gilad, G. M., Gilad, V. H., Wyatt, R. J., & Tizabi, Y. (1990). Region-selective stress-induced increase of glutamate uptake and release in rat brain. Brain Research, 525, 335–338.

    Article  CAS  Google Scholar 

  • Grammas, P., Kwaiser, T. M., & Caspers, M. L. (1992). Regulation of amino acid uptake into cerebral microvessels. Neuropharmacology, 31, 409–412.

    Article  CAS  Google Scholar 

  • Hendley, E. D., Burrows, G. H., Robinson, E. S., Heidenreich, K. A., & Bulman, C. A. (1977). Acute stress and the brain norepinephrine uptake mechanism in the rat. Pharmacology, Biochemistry, and Behavior, 6, 197–202.

    Article  CAS  Google Scholar 

  • Hillhouse, E. W., Randeva, H., Ladds, G., & Grammatopoulos, D. (2002). Corticotropin-releasing hormone receptors. Biochemical Society Transactions, 30, 428–432.

    Article  CAS  Google Scholar 

  • Jacobson, L., Muglia, L. J., Weninger, S. C., Pacak, K., & Majzoub, J. A. (2000). CRH deficiency impairs but does not block pituitary-adrenal responses to diverse stressors. Neuroendocrinology, 71, 79–87.

    Article  CAS  Google Scholar 

  • Jezova, D., Johansson, B. B., Olsson, Y., Oprsalova, Z., Kiss, A., Jurcovicova, J., Grassler, J., Westergren, I., & Vigas, M. (1989). Can catecholamines and other neurotransmitters cross the blood-brain barrier and modify neuroendocrine function during stress? In G. R. Van Loon, R. Kvetnansky, R. McCarty, & J. Axelrod (Eds.), Stress: Neurochemical and humoral mechanisms, (pp. 325–337). New York: Gordon and Breach Sciences.

    Google Scholar 

  • Johansson, B., Li, C. L., Olsson, Y., & Klatzo, I. (1970). The effect of acute arterial hypertension on the blood-brain barrier to protein tracers. Acta Neuropathologica (Berlin), 16, 117–124.

    Article  CAS  Google Scholar 

  • Karalis, K., Sano, H., Redwine, J., Listwak, S., Wilder, R. L., & Chrousos, G. P. (1991). Autocrine or paracrine inflammatory actions of corticotropin-releasing hormone in vivo. Science, 254, 421–423.

    Article  CAS  Google Scholar 

  • Kastin, A. J., & Akerstrom, V. (2000). Fasting, but not adrenalectomy, reduces transport of leptin into the brain. Peptides, 21, 679–682.

    Article  CAS  Google Scholar 

  • Kastin, A. J., Olson, R. D., Martins, J. M., Olson, G. A., Zadina, J. E., & Banks, W. A. (1997). Chronic fatigue syndrome: Possible integration of hormonal and immunological observations. In S. Yehuda, & D. I. Mostofsky (Eds.), Chronic fatigue syndrome (pp. 161–192). New York: Plenum.

    Google Scholar 

  • Kjaer, A., Larsen, P. J., Knigge, U., Jorgensen, H., & Warberg, J. (1998). Neuronal histamine and expression of corticotropin-releasing hormone, vasopressin and oxytocin in the hypothalamus: Relative importance of H1 and H2 receptors. European Journal of Endocrinology, 139, 238–243.

    Article  CAS  Google Scholar 

  • Koide, S., Onishi, H., Katayama, M., Kai, T., & Yamagami, S. (1995). HPLC/RIA analysis of bioactive methionine enkephalin content in the seizure-suseptible E1 mouse brain. Neurochemistry Research, 20, 1115–1118.

    Article  CAS  Google Scholar 

  • Larson, S. J., & Dunn, A. J. (2001). Behavioral effects of cytokines. Brain, Behavior, and Immunity, 15, 371–387.

    Article  CAS  Google Scholar 

  • Lawrence, A. J., Krstew, E. V., Dautzenberg, F. M., & Ruhmann, A. (2002). The highly selective CRF(2) receptor antagonist K41498 binds to presynaptic CRF(2) receptors in rat brain. British Journal of Pharmacology, 136, 896–904.

    Article  CAS  Google Scholar 

  • Lowy, M. T., Wittenberg, L., & Yamamoto, B. K. (1995). Effect of acute stress on hippocampal glutamate levels and spectrin proteolysis in young and aged rats. Journal of Neurochemistry, 65, 268–274.

    Article  CAS  Google Scholar 

  • Lutz, J., Tews, J. K., & Harper, A. E. (1975). Stimulated amino acid imbalance and histidine transport in rat brain slices. American Journal of Physiology, 229, 229–234.

    CAS  Google Scholar 

  • Majewski, H., Alade, P. I., & Rand, M. J. (1986). Adrenaline and stress-induced increases in blood pressure in rats. Clinical and Experimental Pharmacology and Physiology, 13, 283–288.

    Article  CAS  Google Scholar 

  • Makino, S., Hashimoto, K., & Gold, P. W. (2002). Multiple feedback mechanisms activating corticotropin-releasing hormone system in the brain during stress. Pharmacology, Biochemistry, and Behavior, 73, 147–158.

    Article  CAS  Google Scholar 

  • Martins, J. M., Banks, W. A., & Kastin, A. J. (1997a). Acute modulation of the active carrier-mediated brain to blood transport of corticotropin-releasing hormone. American Journal of Physiology, 272, E312–E319.

    CAS  Google Scholar 

  • Martins, J. M., Banks, W. A., & Kastin, A. J. (1997b). Transport of CRH from mouse brain directly affects peripheral production of β-endorphin by the spleen. American Journal of Physiology, 273, E1083–E1089.

    CAS  Google Scholar 

  • Martins, J. M., Kastin, A. J., & Banks, W. A. (1996). Unidirectional specific and modulated brain to blood transport of corticotropin-releasing hormone. Neuroendocrinology, 63, 338–348.

    CAS  Google Scholar 

  • Metcalfe, D. D., Baram, D., & Mekori, Y. A. (1997). Mast cells. Physiology Revues, 77, 1033–1079.

    CAS  Google Scholar 

  • Moghaddam, B. (1993). Stress preferentially increases extraneuronal levels of excitatory amino acids in the prefrontal cortex: Comparison to hippocampus and basal ganglia. Journal of Neurochemistry, 60, 1650–1657.

    Article  CAS  Google Scholar 

  • Nakagawa, R., Tanaka, M., Kohno, Y., Noda, Y., & Nagasaki, N. (1981). Regional responses of rat brain noradrenergic neurones to acute intense stress. Pharmacology, Biochemistry, and Behavior, 14, 729–732.

    Article  CAS  Google Scholar 

  • Nemeroff, C. B., & Crisley, F. D. (1975). Monosodium L-glutamate-induced convulsions: Temporary alteration in blood-brain barrier permeability to plasma proteins. Environmental Physiology and Biochemistry, 5, 389–395.

    CAS  Google Scholar 

  • Oldendorf, W. H. (1971). Brain uptake of radio-labelled amino acids, amines and hexoses after arterial injection. American Journal of Physiology, 221, 1629–1639.

    CAS  Google Scholar 

  • Oldendorf, W. H., & Szabo, J. (1976). Amino acid assignment to one of three blood-brain barrier amino acid carriers. American Journal of Physiology, 230, 94–98.

    CAS  Google Scholar 

  • Oztas, B., Erkin, E., Dural, E., & Isbir, T. (2000). Influence of antioxidants on blood-brain barrier permeability during adrenaline-induced hypertension. International Journal of Neuroscience, 105, 27–35.

    CAS  Google Scholar 

  • Oztas, B., Kucuk, M., & Sandalci, U. (1985). Effect of insulin-induced hypoglycemia on blood-brain barrier permeability. Experimental Neurology, 87, 129–136.

    Article  CAS  Google Scholar 

  • Pardridge, W. M. (2001). Brain drug targeting: The future of brain drug development. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Pardridge, W. M. (2002). Drug and gene delivery to the brain: The vascular route. Neuron, 36, 555–558.

    Article  CAS  Google Scholar 

  • Pardridge, W. M., & Oldendorf, W. H. (1975). Kinetic analysis of blood-brain barrier transport of amino acids. Biochimica et Biophysica Acta, 401, 128–136.

    Article  CAS  Google Scholar 

  • Peng, Y., Gubin, J., Harper, A. E., Vavich, M. G., & Kemmerer, A. R. (1973). Food intake regulation: Amino acid toxicity and changes in rat brain and plasma amino acids. Journal of Nutrition, 103, 608–617.

    CAS  Google Scholar 

  • Peng, Y., Tews, J. K., & Harper, A. E. (1972). Amino acid imbalance, protein intake, and changes in rat brain and plasma amino acids. American Journal of Physiology, 222, 314–321.

    CAS  Google Scholar 

  • Pratt, O. E. (1976). The transport of metabolizable substances into the living brain. Advances in Experimental Medicine and Biology, 69, 55–75.

    CAS  Google Scholar 

  • Rosch, P. J. (1979). Stress and illness. Journal of the American Medical Association, 242, 417–418.

    Article  CAS  Google Scholar 

  • Saija, A., Princi, P., De Pasquale, R., & Costa, G. (1988). High intensity light exposure increases blood-brain barrier transport in rats. Pharmacological Research Communications, 20, 553–559.

    Article  CAS  Google Scholar 

  • Sharma, H. S., Cervos-Navarro, J., & Dey, P. K. (1991). Increased blood brain barrier permeability following acute short-term swimming exercise in conscious normotensive young rats. Neuroscience Research, 10, 211–221.

    Article  CAS  Google Scholar 

  • Sharma, H. S., Nyberg, F., Cervos-Navarro, J., & Dey, P. K. (1992). Histamine modulates heat stress-induced changes in blood-brain barrier permeability, cerebral blood flow, brain oedema and serotonin levels: An experimental study in conscious young rats. Neuroscience, 50, 445–454.

    Article  CAS  Google Scholar 

  • Sharma, H. S., Westman, J., Navarro, J. C., Dey, P. K., & Nyberg, F. (1995). Probable involvement of serotonin in the increased permeability of the blood-brain barrier by forced swimming. An experimental study using Evans blue and 131I-sodium tracers in the rat. Behavior and Brain Research, 72, 189–196.

    Article  CAS  Google Scholar 

  • Skultetyova, I., Tokarev, D., & Jezova, D. (1998). Stress-induced increase in blood-brain barrier permeability in control and monosodium glutamate-treated rats. Brain Research Bulletin, 45, 175–178.

    Article  CAS  Google Scholar 

  • Tews, J. K. (1986) Competition among amino acids for transport into brain: Relationships with diet. Federal Proceedings, 45, 2445–2447.

    CAS  Google Scholar 

  • Tews, J. K., Bradford, A. M., & Harper, A. E. (1981). Induction of lysine imbalance in rats: Relationships between tissue amino acids and diet. Journal of Nutrition, 111, 968–978.

    CAS  Google Scholar 

  • Tews, J. K., Good, S. S., & Harper, A. E. (1978). Transport of threonine and tryptophan by rat brain slices: Relation to other amino acids at concentrations found in plasma. Journal of Neurochemistry, 31, 581–589.

    Article  CAS  Google Scholar 

  • Tews, J. K., & Harper, A. E. (1983). Atypical amino acids inhibit histidine, valine, or lysine transport into rat brain. American Journal of Physiology, 245, R556–R563.

    CAS  Google Scholar 

  • Tews, J. K., Kim, Y. W., & Harper, A. E. (1980). Induction of threonine imbalance by dispensable amino acids: Relationships between tissue amino acids and diet in rats. Journal of Nutrition, 110, 394–408.

    CAS  Google Scholar 

  • Theoharides, T. C., Singh, L. K., Boucher, W., Pang, X., Letourneau, R., Webster, E., & Chrousos, G. (1998). Corticotropin-releasing hormone induces skin mast cell degranulation and increased vascular permeability, a possible explanation for its proinflammatory effects. Endocrinology, 139, 403–413.

    Article  CAS  Google Scholar 

  • Theoharides, T. C., Spanos, C., Pang, X., Alferes, L., Ligris, K., Letourneau, R., Rozniecki, J. J., Webster, E., & Chrousos, G. P. (1995). Stress-induced intracranial mast cell degranulation: A corticotropin-releasing hormone-mediated effect. Endocrinology, 136, 5745–5750.

    Article  CAS  Google Scholar 

  • Vanitallie, T. B. (2002). Stress: A risk factor for serious illness. Metabolism, 51, 40–45.

    Article  CAS  Google Scholar 

  • Vinogradova, O. S. (2001). Hippocampus as comparator: Role of the two input and two output systems of the hippocampus in selection and registration of information. Hippocampus, 11, 578–598.

    Article  CAS  Google Scholar 

  • Webster, E. L., Lewis, D. B., Torpy, D. J., Zachman, E. K., Rice, K. C., & Chrousos, G. P. (1996). In vivo and in vitro characterization of antalarmin, a nonpeptide corticotropin-releasing hormone (CRH) receptor antagonist: Suppression of pituitary ACTH release and peripheral inflammation. Endocrinology, 137, 5747–5750.

    Article  CAS  Google Scholar 

  • Wisniewski, H. M., Vorbrodt, A. W., & Wegiel, J. (1997). Amyloid angiopathy and blood-brain barrier changes in Alzheimer’s disease. Annals of the New York Academy of Sciences, 826, 161–172.

    Article  CAS  Google Scholar 

  • Zhuang, X., Silverman, A. J., & Silver, R. (1990). Brain mast cell degranulation regulates blood-brain barrier. Journal of Neurobiology, 31, 393–403.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Urayama, A., Banks, W.A. (2006). Effects of Stress and Nutrition on Blood-Brain Barrier Functions. In: Yehuda, S., Mostofsky, D.I. (eds) Nutrients, Stress, and Medical Disorders. Nutrition and Health. Humana Press. https://doi.org/10.1385/1-59259-952-4:083

Download citation

Publish with us

Policies and ethics