Skip to main content

Neuroendocrinology of Human Narcolepsy

  • Chapter
The Orexin/Hypocretin System

Abstract

Neuroendocrine and metabolic disturbances have been postulated to accompany or even cause narcolepsy ever since the first part of the 20th century. In 1924 Redlich (1) hypothesized that pituitary function is disturbed in patients with narcolepsy, in 1934 Daniels (2) described an association with obesity, and in 1957 Yoss and Daly (3) discussed (and questioned) the fact that hypothyroidism was frequently diagnosed in narcoleptic humans. However, these early observations were made at a time when narcolepsy was not clearly defined. Sleep apnea, for example, was not recognized as a separate disease entity. Moreover, determination of the plasma concentration of many hormones was impossible. The first (neuro) endocrine studies in narcoleptic humans were carried out in the second part of the 20th century, focusing on circulating levels of prolactin growth hormone (GH), and cortisol (46). Unfortunately, these studies were all hampered by methodological shortcomings and/or immaturity of techniques. In the course of time, analytical techniques have greatly improved, and only recently mathematical methods were developed that allow quantitative appraisal of hormone secretion rates and mapping of pulsatile hormone release patterns (7).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Redlich, E. (1924) Über Narkolepsie. Ztschr. Neurol. Psychiat. 95, 256–270.

    Google Scholar 

  2. Daniels, L.E. (1934) Narcolepsy. Medicine 13, 1–122.

    Article  Google Scholar 

  3. Yoss R.E. and Daly D.D. (1957) Criteria for the diagnosis of the narcoleptic syndrome. Proc. Staff Meet. Mayo Clin. 32, 320–328.

    PubMed  CAS  Google Scholar 

  4. Clark, R.W., Schmidt, H.S., and Malarkey, W.B. (1979) Disordered growth hormone and prolactin secretion in primary disorders of sleep. Neurology 29, 855–861.

    PubMed  CAS  Google Scholar 

  5. Higuchi, T., Takahashi, Y., Takahashi, K., Niimi, Y., and Miyasita, A. (1979) Twenty-four-hour secretory patterns of growth hormone, prolactin, and cortisol in narcolepsy. J. Clin. Endocrinol. Metab. 49, 197–204.

    Article  PubMed  CAS  Google Scholar 

  6. Besset, A., Bonardet, A., Billiard, M., Descomps, B., de Paulet, A.C., and Passouant, P. (1979) Circadian patterns of growth hormone and cortisol secretions in narcoleptic patients. Chronobiologia 6, 19–31.

    PubMed  CAS  Google Scholar 

  7. Veldhuis, J.D. and Johnson, M.L. (1994) Analytical methods for evaluating episodic secretory activity within neuroendocrine axes. Neurosci. Biobehav. Rev. 18, 605–612.

    Article  PubMed  CAS  Google Scholar 

  8. Sakurai, T., Amemiya, A., Ishii, M., et al. (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92, 573–585.

    Article  PubMed  CAS  Google Scholar 

  9. Lubkin, M. and Stricker-Krongrad, A. (1998) Independent feeding and metabolic actions of orexins in mice. Biochem. Biophys. Res. Commun. 253, 241–245.

    Article  PubMed  CAS  Google Scholar 

  10. Hagan, J.J., Leslie, R.A., Patel, S., et al. (1999) Orexin A activates locus coeruleus cell firing and increases arousal in the rat. Proc. Natl. Acad. Sci. U S A 96, 10911–10916.

    Article  PubMed  CAS  Google Scholar 

  11. Yoshimichi, G., Yoshimatsu, H., Masaki, T., and Sakata, T. (2001) Orexin-A regulates body temperature in coordination with arousal status. Exp. Biol. Med. (Maywood) 226, 468–476.

    CAS  Google Scholar 

  12. Lin, L., Faraco, J., Li, R., et al. (1999) The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98, 365–376.

    Article  PubMed  CAS  Google Scholar 

  13. Peyron, C., Faraco, J., Rogers, W., et al. (2000) A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat. Med. 6, 991–997.

    Article  PubMed  CAS  Google Scholar 

  14. Nishino, S., Ripley, B., Overeem, S., Lammers, G.J., and Mignot E. (2000) Hypocretin (orexin) deficiency in human narcolepsy. Lancet 355, 39–40.

    Article  PubMed  CAS  Google Scholar 

  15. Yamanaka, A., Beuckmann, C.T., Willie, J.T., et al. (2003) Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron 38, 701–713.

    Article  PubMed  CAS  Google Scholar 

  16. Hara, J., Beuckmann, C.T., Nambu, T., et al. (2001) Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 30, 345–354.

    Article  PubMed  CAS  Google Scholar 

  17. Broughton, R., Dunham, W., Newman, J., Lutley, K., Duschesne, P., and Rivers, M. (1998) Ambulatory 24 hour sleep-wake monitoring in narcolepsy-cataplexy compared to matched controls. Electroencephalogr. Clin. Neurophysiol. 70, 473–481.

    Google Scholar 

  18. Bell, I.R. (1976) Diet histories in narcolepsy, in Narcolepsy (Guilleminault, C., Dement, W.C., and Passouant, P., eds.), Spectrum, New York, pp. 221–228.

    Google Scholar 

  19. Pollak, C.P., and Green, J. (1990) Eating and its relationships with subjective alertness and sleep in narcoleptic subjects living without temporal cues. Sleep 13, 467–478.

    PubMed  CAS  Google Scholar 

  20. Lammers, G.J., Pijlm, H., Iestram, J., Langius, J.A., Buunk, G., and Meinders, A.E. (1996) Spontaneous food choice in narcolepsy. Sleep 19, 75–76.

    PubMed  CAS  Google Scholar 

  21. Schuld, A., Hebebrand, J., Geller, F., and Pollmacher, T. (2000) Increased body-mass index in patients with narcolepsy. Lancet 355, 1274–1275.

    Article  PubMed  CAS  Google Scholar 

  22. Dahmen, N., Bierbrauer, J., and Kasten, M. (2001) Increased prevalence of obesity in narcoleptic patients and relatives. Eur. Arch. Psychiatry Clin. Neurosci. 251, 85–89.

    Article  PubMed  CAS  Google Scholar 

  23. Schuld, A., Blum, W.F., Uhr, M., et al. (2000) Reduced leptin levels in human narcolepsy. Neuroendocrinology 72, 195–198.

    Article  PubMed  CAS  Google Scholar 

  24. Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L., and Friedman, J.M. (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432.

    Article  PubMed  CAS  Google Scholar 

  25. Montague, C.T., Farooqi, I.S., Whitehead, J.P., et al. (1997) Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 387, 903–908.

    Article  PubMed  CAS  Google Scholar 

  26. Nishino, S., Ripley, B., Overeem, S., et al. (2001) Low cerebrospinal fluid hypocretin (orexin) and altered energy homeostasis in human narcolepsy. Ann. Neurol. 50, 381–388.

    Article  PubMed  CAS  Google Scholar 

  27. Kok, S.W., Overeem, S., Visscher, T.L., et al. (2003) Hypocretin deficiency in narcoleptic humans is associated with abdominal obesity. Obes. Res. 11, 1147–1154.

    PubMed  CAS  Google Scholar 

  28. Kok, S.W., Meinders, A.E., Overeem. S., et al. (2002) Reduction of plasma leptin levels and loss of its circadian rhythmicity in hypocretin (orexin)-deficient narcoleptic humans. J. Clin. Endocrinol. Metab. 87, 805–809.

    Article  PubMed  CAS  Google Scholar 

  29. Kok, S.W., Roelfsema, F., Overeem, S., et al. (2002) Dynamics of the pituitary-adrenal ensemble in hypocretin deficient narcoleptic humans: blunted basal ACTH release and evidence for normal time-keeping by the master pacemaker. J. Clin. Endocrinol. Metab. 87, 5085–5091.

    Article  PubMed  CAS  Google Scholar 

  30. Overeem, S., Kok, S.W., Lammers, G.J., et al. (2003) Somatotropic axis in hypocretin-deficient narcoleptic humans: altered circadian distribution of GH-secretory events. Am. J. Physiol. Endocrinol. Metab. 284, E641–E647.

    PubMed  CAS  Google Scholar 

  31. Kok, S.W., Roelfsema, F., Overeem, S., et al. (2005) Altered setting of the pituitary-thyroid ensemble in hypocretin-deficient narcoleptic men. Am. J. Physiol. Endocrinol. Metab. 288, E892–E899.

    Article  PubMed  CAS  Google Scholar 

  32. Lopez, M., Seoane, L., Garcia, M.C., et al. (2000) Leptin regulation of prepro-orexin and orexin receptor mRNA levels in the hypothalamus. Biochem. Biophys. Res. Commun. 269, 41–45.

    Article  PubMed  CAS  Google Scholar 

  33. Ferini-Strambi, L., Spera, A., Oldani, A., et al. (1997) Autonomic function in narcolepsy: power spectrum analysis of heart rate variability. J. Neurol. 244, 252–255.

    Article  PubMed  CAS  Google Scholar 

  34. Kalsbeek, A., Fliers, E., Romijn, J.A., et al. (2001) The suprachiasmatic nucleus generates the diurnal changes in plasma leptin levels. Endocrinology 142, 2677–2685.

    Article  PubMed  CAS  Google Scholar 

  35. Buijs, R.M., Van Eden, C.G., Goncharuk, V.D., and Kalsbeek, A. (2003) The biological clock tunes the organs of the body: timing by hormones and the autonomic nervous system. J. Endocrinol. 177, 17–26.

    Article  PubMed  CAS  Google Scholar 

  36. Abrahamson, E.E., Leak, R.K., and Moore, R.Y. (2001) The suprachiasmatic nucleus projects to posterior hypothalamic arousal systems. Neuroreport 12, 435–440.

    Article  PubMed  CAS  Google Scholar 

  37. Spiegel, K., Leproult, R., Copinschi, G., and Van Cauter, E. (2001) Impact of sleep length on the 24-h leptin profile (abstract). Sleep 24(suppl), A74.

    Google Scholar 

  38. Schoeller, D.A., Cella, L.K., Sinha, M.K., and Caro, J.F. (1997) Entrainment of the diurnal rhythm of plasma leptin to meal timing. J. Clin. Invest. 100, 1882–1887.

    PubMed  CAS  Google Scholar 

  39. Somers, V.K., Dyken, M.E., Mark, A.L., and Abboud, F.M. (1993) Sympathetic-nerve activity during sleep in normal subjects. N. Engl. J. Med. 328, 303–307.

    Article  PubMed  CAS  Google Scholar 

  40. Van Cauter, E., Plat, L., and Copinschi, G. (1998) Interrelations between sleep and the somatotropic axis. Sleep 21, 553–566.

    PubMed  Google Scholar 

  41. Obal F, Jr., Fang J, Taishi P, Kacsoh B, Gardi J, and Krueger J.M. (2001) Deficiency of growth hormone-releasing hormone signaling is associated with sleep alterations in the dwarf rat. J. Neurosci. 21, 2912–2918.

    PubMed  CAS  Google Scholar 

  42. Fujiki, N., Yoshida, Y., Ripley, B., Honda, K., Mignot, E., and Nishino, S. (2001) Changes in CSF hypocretin-1 (orexin A) levels in rats across 24 hours and in response to food deprivation. Neuroreport 12, 993–997.

    Article  PubMed  CAS  Google Scholar 

  43. Date, Y., Ueta, Y., Yamashita, H., et al. (1999) Orexins, orexigenic hypothalamic peptides, interact with autonomic, neuroendocrine and neuroregulatory systems. Proc. Natl. Acad. Sci. U S A 96, 748–753.

    Article  PubMed  CAS  Google Scholar 

  44. Riehl, J., Honda, K., Kwan, M., Hong, J., Mignot, E., and Nishino, S.(2000) Chronic oral administration of CG-3703, a thyrotropin releasing hormone analog, increases wake and decreases cataplexy in canine narcolepsy. Neuropsychopharmacology 23, 34–45.

    Article  PubMed  CAS  Google Scholar 

  45. Nillni, E.A., Vaslet, C., Harris, M., Hollenberg, A., Bjorbak, C., and Flier, J.S. (2000) Leptin regulates prothyrotropin-releasing hormone biosynthesis. Evidence for direct and indirect pathways. J. Biol. Chem. 275, 36124–36133.

    Article  PubMed  CAS  Google Scholar 

  46. Jin, L., Zhang, S., Burguera, B.G., et al. (2000) Leptin and leptin receptor expression in rat and mouse pituitary cells. Endocrinology 141, 333–339.

    Article  PubMed  CAS  Google Scholar 

  47. Mantzoros, C.S., Ozata, M., Negrao, A.B., et al. (2001) Synchronicity of frequently sampled thyrotropin (TSH) and leptin concentrations in healthy adults and leptin-deficient subjects: evidence for possible partial TSH regulation by leptin in humans. J. Clin. Endocrinol. Metab. 86, 3284–3291.

    Article  PubMed  CAS  Google Scholar 

  48. Russell, S.H., Small, C.J., Dakin, C.L., et al. (2001) The central effects of orexin-A in the hypothalamic-pituitary-adrenal axis in vivo and in vitro in male rats. J. Neuroendocrinol. 13, 561–566.

    Article  PubMed  CAS  Google Scholar 

  49. Vgontzas, A.N., Bixler, E.O., Wittman, A.M., et al. (2001) Middle-aged men show higher sensitivity of sleep to the arousing effects of corticotropin-releasing hormone than young men: clinical implications. J. Clin. Endocrinol. Metab. 86, 1489–1495.

    Article  PubMed  CAS  Google Scholar 

  50. Opp, M.R. (1995) Corticotropin-releasing hormone involvement in stressor-induced alterations in sleep and in the regulation of waking. Adv. Neuroimmunol. 5, 127–143.

    Article  PubMed  CAS  Google Scholar 

  51. Buwalda, B., Van Kalkeren, A.A., de Boer, S.F., and Koolhaas, J.M. (1998) Behavioral and physiological consequences of repeated daily intracerebroventricular injection of corticotropinreleasing factor in the rat. Psychoneuroendocrinology 23, 205–218.

    Article  PubMed  CAS  Google Scholar 

  52. Moore, R.Y. and Eichler, V.B. (1972) Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res. 42, 201–206.

    Article  PubMed  CAS  Google Scholar 

  53. Refinetti, R. and Menaker, M. (1992) The circadian rhythm of body temperature. Physiol. Behav. 51, 613–637.

    Article  PubMed  CAS  Google Scholar 

  54. Pollak, C.P. and Wagner, D.R. (1994) Core body temperature in narcoleptic and normal subjects living in temporal isolation. Pharmacol. Biochem. Behav. 47, 65–71.

    Article  PubMed  CAS  Google Scholar 

  55. Hungs, M., and Mignot, E. (2001) Hypocretin/orexin, sleep and narcolepsy. Bioessays 23, 397–408.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Lammers, G.J., Overeem, S., Pijl, H. (2006). Neuroendocrinology of Human Narcolepsy. In: Nishino, S., Sakurai, T. (eds) The Orexin/Hypocretin System. Contemporary Clinical Neuroscience. Humana Press. https://doi.org/10.1385/1-59259-950-8:329

Download citation

Publish with us

Policies and ethics