Skip to main content

Explosives and Arson

Boom and Flame

  • Chapter
The Forensic Laboratory Handbook

Part of the book series: Forensic Science and Medicine ((FSM))

  • 2179 Accesses

Abstract

Explosive and arson cases, as they relate to forensic science, are sometimes very hard to separate. When one case happens, the other usually follows. Therefore, the two types of cases will be discussed together in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Suggested Reading

Arson Suggested Reading

  1. Askari MDF, Maskarinec MP, Smith SM, Beam PM, Travis CC. Effectiveness of purgeand-trap for measurement of volatile organic compounds in aged soils. Anal Chem 1996;68(19):3431–3433.

    Article  CAS  Google Scholar 

  2. Bertsch W. Volatiles from carpet: a source of frequent misinterpretation in arson analysis. J Chomatogr 1994;674:329–333.

    Article  CAS  Google Scholar 

  3. Bertsch W. Analysis of accelerants in fire debris—data interpretation. Forensic Sci Rev 1997;9(1):1–22.

    Google Scholar 

  4. Bertsch W, Sellers CS. Limits in arson debris analysis by capillary column gas chromatography/mass spectrometry. HRC CC J High Resolut Chromatogr Comm 1986;9(11):657–661.

    Article  CAS  Google Scholar 

  5. DeHaan JD, Greenfield A. Evaporation rates of volatile hydrocarbon accelerants. 44th Annual Meeting Amer Acad Forensic Sci, New Orleans, LA, February 17–22, 1992, Abstract B20.

    Google Scholar 

  6. Dietz WR. Interpretation guidelines for “problem” accelerant chromatograms. 44th Annual Meeting Amer Acad Forensic Sci, New Orleans, LA, February 17–22, 1992, Abstract B29.

    Google Scholar 

  7. Dietz WR, Mann DC. Contamination problem within polyester bags. Newsl Midw Assoc Forensic Sci 1988;17(3):34.

    Google Scholar 

  8. Frontela L, Pozas JA, Picabea L A. Comparison of extraction and adsorption methods for the recovery of accelerants from arson debris Forensic Sci Int 1995;75(1):11–23.

    Article  CAS  Google Scholar 

  9. Fultz ML. The effect of sample preparation on the identification of class 4 and class 5 petroleum products. 46th Annual Meeting AAFS San Antonio, TX, February 14–19, 1994, Abstract B84.

    Google Scholar 

  10. Gialamas DM. Is it Gasoline or Insecticide? CAC Fall Seminar San Diego, CA, October 1993, The CAC News 1994 16–20.

    Google Scholar 

  11. Higgins M. Turpentine accelerant or natural??? Fire Arson Invest 1987;38(2):10.

    Google Scholar 

  12. Hirz R. Gasoline brand identification and individualization of gasoline lots. J Forensic Sci Soc 1989;29(2):91–101.

    Article  CAS  Google Scholar 

  13. Howard J, McKague AB. A fire investigation involving combustion of carpet material. J Forensic Sci 1984;29(3):919–922.

    Google Scholar 

  14. Kirkbride KP, Yap SM, Andrews S, et al. Microbial degradation of petroleum hydrocarbons: implications for arson residue analysis. J Forensic Sci 1992;37(6):1585–1599.

    CAS  Google Scholar 

  15. Lentini J. Differentiation of asphalt and smoke condensates from liquid petroleum distillates using GC/MS. 48th Annual Meeting, AAFS Nashville, TN, February 19–24, 1996, Abstract no. B42.

    Google Scholar 

  16. Lentini J, Waters LV. Isolation of accelerant-like residues from roof shingles using headspace concentration. Arson Anal Newsl 1982;6(3):48–55.

    CAS  Google Scholar 

  17. Lincoln S. Charcoal lighter fluid used as an arson accelerant. Fire Arson Invest 1991;42(1):46–47.

    Google Scholar 

  18. Mann DC. Comparison of automotive gasolines using capillary gas chromatography ii: limitations of automotive gasoline comparisons in casework. J Forensic Sci 1987;32(3):616–628.

    CAS  Google Scholar 

  19. Mann DC, Gresham WR. Microbial degradation of gasoline in soil. J Forensic Sci 1990;35(4):913–923.

    Google Scholar 

  20. Midkiff CR Jr. Brand identification and comparison of petroleum products — a complex problem. Fire Arson Invest 1975;26(2):18–21.

    Google Scholar 

  21. Midkiff CR Jr. Is it a petroleum product? How do you know? J Forensic Sci 1986;31(1):231–234.

    CAS  Google Scholar 

  22. Moorehead W, Dickan T. Capillary gas chromatography characterization and classification of some hydrocarbon solvents and alkyl glycol ethers. 86th Semi-annual Seminar, CAC San Pedro, CA, Autumn, 1995, Abstract: Science and Justice 1996; 36(3):203.

    Google Scholar 

  23. Newman R. New and unusual ignitable liquids. Newsl Southern Assoc Forensic Sci 1995;23(2):27–31.

    Google Scholar 

  24. Newman R, Lothridge K, Dietz WR. The effects of time, temperature, strip size and concentration in the use of activated charcoal strips in fire debris analysis. Curr Topics Forensic Sci Proc 14th Meeting Int Assoc Forensic Sci, Takatori T and Takasu A, eds. Shunderson Communications Ottawa, Ont, 1977, pp. 218–224.

    Google Scholar 

  25. Nowicki JF. Control samples in arson analysis. Arson Anal Newsl 1981;5(1):1–5.

    CAS  Google Scholar 

  26. Nowicki JF. An accelerant classification scheme based on analysis by gas chromatography/ mass spectrometry (GC-MS). J Forensic Sci 1990;35(5):1064–1086.

    CAS  Google Scholar 

  27. Nowicki JF. Determining the source of gasoline samples from fire scenes by gc-ms using selected ion profiles. 46th Annual Meeting AAFS San Antonio, TX, February 14–19, 1994, Abstract B85.

    Google Scholar 

  28. Small JL, Milroy S. Possible “accelerants” found in household products. 42nd Annual Meeting AAFS Cincinnati, OH, February 19–24, 1990, Abstract B55.

    Google Scholar 

  29. Stackhouse CS. Will the real lamp oil please stand up? Arson Anal Newsl 1986;9(2):21–31.

    CAS  Google Scholar 

  30. Stackhouse CS. Lacquer thinners-rare but not forgotten. 42nd Annual Meeting AAFS Cincinnati, OH, February 19–24, 1990, Abstract B56.

    Google Scholar 

  31. Stone IC, Lomonte JN. False positives in analysis of fire debris. Fire Arson Inv 1984;34(3):36–40.

    Google Scholar 

  32. Trimpe MA. Turpentine in arson analysis. J Forensic Sci 1991;36(4):1059–1073.

    CAS  Google Scholar 

  33. Trimpe MA. What the arson investigator should know about turpentine. Fire Arson Invest 1993;44(1):53–55.

    Google Scholar 

Explosives Suggested Reading

  1. Beveridge AD. Development in the detection and identification of explosive residues. Forensic Science Review 1992;4(1):17–49.

    Google Scholar 

  2. Christian D. Examination of smokeless gunpowder particles in pipe-bomb residues. SWAFS Journal 1996;18(1):32–42.

    Google Scholar 

  3. Garner DD, Fultz ML. The ATF approach to post-blast explosives detection and identification. Journal of Energetic Materials 1986;4:133–148.

    Article  CAS  Google Scholar 

  4. Haag LC. Shot sizes and shot charges, forensic firearms evidence: elements of shooting incident investigation, Forensic Science Services, Inc., pp. 70–71.

    Google Scholar 

  5. Hopen TJ, Crippin JB. Methylene blue microchemical test for the detection and identification of perchlorates and chlorates. Microscope 2001;49(1):41–45.

    CAS  Google Scholar 

  6. Hopen TJ, Kilbourn JH. Characterization and identification of water soluble explosives, Microscope 1985;33(1):1–22.

    CAS  Google Scholar 

  7. Huntamer DD. Microscopical characterization of an emulsion explosive. Microscope 1999;47(1):1–4.

    CAS  Google Scholar 

  8. Kilbourn JH, McCrone WC. Fusion methods: identification of inorganic explosives. Microscope 1985;33(2):73–90.

    CAS  Google Scholar 

  9. Martz RM, Lasswell LD III. Smokeless powder identification. Proceedings of the International Symposium on the Analysis and Detection of Explosives, 1983, pp. 245–254.

    Google Scholar 

  10. McCrone LB, McCrone WC. Strained crystals. Microscope 2000;48:203–206.

    Google Scholar 

  11. McCrone WC. Particle characterization by plm part i: no polars. Microscope 1982;30:185–196.

    Google Scholar 

  12. McCrone WC. Particle characterization by plm part ii: single polar. Microscope 1982;30:315–331.

    Google Scholar 

  13. McCrone WC. Particle characterization by plm part iii: crossed polars. Microscope 1983;31:187–206.

    Google Scholar 

  14. McCrone WC, Andreen JH, Tsang S-M. Identification of organic high explosives. Microscope 1993;41:161–182.

    CAS  Google Scholar 

  15. McCrone WC, Andreen JH, Tsang S-M. Identification of organic high explosives II. Microscope 1994;42:61–73.

    CAS  Google Scholar 

  16. McCrone WC, Andreen JH, Tsang S-M. Identification of organic high explosives III. Microscope 1999;47:183–200.

    CAS  Google Scholar 

  17. Randle WA. A microchemical test for monomethylamine nitrate. Microscope 1997;45:85–88.

    CAS  Google Scholar 

  18. Skidmore CB, Phillips DS, Crane NB. Microscopical examination of plastic-bonded explosives. Microscope 1997;45(4):127–136.

    CAS  Google Scholar 

  19. Teetsov A. Preparation and use of needles and micropipets for handling very small particles. Microscope 1999;47:63–70.

    Google Scholar 

  20. Twibell JD, et al. The persistence of military explosives on hands. J Forensic Sci 1984;29(1):284–290.

    CAS  Google Scholar 

  21. Twibell JD, Home JM, Smalldon KW, Higgs DG. Transfer of nitroglycerine to hands during contact with commercial explosives. J Forensic Sci 1982;27(4):783–791.

    PubMed  CAS  Google Scholar 

  22. Twibell JD, Home JM, Smalldon KW, Higgs DG, Hayes TS. Assessment of solvents for the recovery of nitroglycerine from hands using cotton swabs. J Forensic Sci 1982;27(4):792–800.

    PubMed  CAS  Google Scholar 

  23. Whitman VL, Wills WF Jr. Extended use of squaric acid as a reagent in chemical microscopy. Microscope 1977;25(1):1–13.

    CAS  Google Scholar 

  24. Wills WF Jr. Squaric acid revisited. Microscope 1990;38:169–185.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Crippin, J.B. (2006). Explosives and Arson. In: Mozayani, A., Noziglia, C. (eds) The Forensic Laboratory Handbook. Forensic Science and Medicine. Humana Press. https://doi.org/10.1385/1-59259-946-X:91

Download citation

  • DOI: https://doi.org/10.1385/1-59259-946-X:91

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-464-7

  • Online ISBN: 978-1-59259-946-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics