Skip to main content

Microarray Analysis of Novel Adrenergic Receptor Functions

  • Chapter
The Adrenergic Receptors

Part of the book series: The Receptors ((REC))

  • 1164 Accesses

Abstract

The advent of DNA microarray technology has provided a means to identify changes in the expression of thousands of genes simultaneously. This research tool has enabled investigators to study the effects of adrenergic receptor (AR) stimulation on gene expression on a large scale and has led to the identification of many genes that are regulated by adrenergic receptors (ARs). Microarrays have been used to compare the effects of α1A-AR, α1B-AR, and α1D-AR stimulation on gene expression. This work demonstrated that all three α1-AR subtypes commonly regulate many types of genes. However, genes that are regulated by only one or two α1-AR subtypes have also been identified. These data provide evidence that the physiological roles of the three α1-AR subtypes are not redundant despite their activation by the same ligand, use of common signal transduction pathways, and overlapping tissue distributions. Microarray studies have also identified genes that underlie AR-mediated regulation of the cell cycle, apoptosis, neuronal differentiation, cell hypertrophy, and other biological processes that are regulated by ARs. In addition, microarrays have identified changes in gene expression that accompany AR-mediated disease states, including cardiac hypertrophy, neurodegeneration, and hypermetabolism. The purpose of this chapter is to review how microarrays have contributed to our understanding of AR function at the genomic level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lee EJ, Lee SH, Jung JW, et al. Differential regulation of cAMP-mediated gene transcription and ligand selectivity by MC3R and MC4R melanocortin receptors. Eur J Biochem 2001;268:582–591.

    Article  PubMed  CAS  Google Scholar 

  2. Carvalho CR, Carvalheira JB, Lima MH, et al. Novel signal transduction pathways for luteinizing hormone and interaction with insulin: activation of Janus kinase/signal transducer and activator of transcription and phosphoinositol 3 kinase/Akt pathways. Endocrinology 2003;144:638–647.

    Article  PubMed  CAS  Google Scholar 

  3. Naor Z, Benard O, Seger R. Activation of MAPK cascades by G-protein-coupled receptors: the case of gonadotropin-releasing hormone receptor. Trends Endocrinol Metab 2000;11:91–99.

    Article  PubMed  CAS  Google Scholar 

  4. Akiyama M, Minami Y, Kuriyama K, Shibata S. MAP kinase-dependent induction of clock gene expression by α1-adrenergic receptor activation. FEBS Lett 2003;542:109–114.

    Article  PubMed  CAS  Google Scholar 

  5. Zhong H, Lee D, Robeva A, Minneman KP. Signaling pathways activated by α1-adrenergic receptor subtypes in PC12 cells. Life Sci 2001;68:2269–2276.

    Article  PubMed  CAS  Google Scholar 

  6. Tittelbach V, Volff JN, Giray J, Ratge D, Wisser H. Agonist-induced down-regulation of the β2-adrenoceptor and its mRNA in human mononuclear leukocytes. Biochem Pharmacol 1998;56:967–975.

    Article  PubMed  CAS  Google Scholar 

  7. Taniguchi M, Miura K, Iwao H, Yamanaka S. Quantitative assessment of DNA microarrays-comparison with Northern blot analyses. Genomics 2001;71:34–39.

    Article  PubMed  CAS  Google Scholar 

  8. Gonzalez-Cabrera PJ, Gaivin RJ, Yun J, et al. Genetic profiling of α1-adrenergic receptor subtypes by oligonucleotide microarrays: coupling to interleukin-6 secretion but differences in STAT3 phosphorylation and gp-130. Mol Pharmacol 2003;63:1104–1116.

    Article  PubMed  CAS  Google Scholar 

  9. Ten Hagen KG, Balys MM, Tabak LA, Melvin JE. Analysis of isoproterenol-induced changes in parotid gland gene expression. Physiol Genomics 2002;8:107–114.

    PubMed  Google Scholar 

  10. Yun J, Zuscik MJ, Gonzalez-Cabrera P, et al. Gene expression profiling of α1B-adrenergic receptor-induced cardiac hypertrophy by oligonucleotide arrays. Cardiovasc Res 2003;57:443–455.

    Article  PubMed  CAS  Google Scholar 

  11. Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complimentary DNA microarray. Science 1995;270:467–470.

    Article  PubMed  CAS  Google Scholar 

  12. Zhong H, Minneman KP. Activation of tyrosine kinases by α1A-adrenergic and growth factor receptors in transfected PC12 cells. Biochem J 1999;344:889–894.

    Article  PubMed  CAS  Google Scholar 

  13. Minneman KP, Lee D, Zhong H, Berts A, Abbott KL, Murphy TJ. Transcriptional responses to growth factor and G protein-coupled receptors in PC12 cells: comparison of α1-adrenergic receptor subtypes. J Neurochem 2000;74:2392–2400.

    Article  PubMed  CAS  Google Scholar 

  14. Garcia-Sainz JA, Alcantara-Hernandez R, Vazquez-Prado J. α1-Adrenoceptor subtype activation increases proto-oncogene mRNA levels. Role of protein kinase C. Eur J Pharmacol 1998;342:311–317.

    Article  PubMed  CAS  Google Scholar 

  15. Iwaki K, Sukhatme VP, Shubeita HE, Chien KR. α-and β-adrenergic stimulation induces distinct patterns of immediate early gene expression in neonatal rat myocardial cells. fos/jun expression is associated with sarcomere assembly; Egr-1 induction is primarily an α1-mediated response. J Biol Chem 1990;265:13,809–13,817.

    PubMed  CAS  Google Scholar 

  16. Zuscik MJ, Sands S, Ross SA, et al. Overexpression of the α1B-adrenergic receptor causes apoptotic neurodegeneration: multiple system atrophy. Nat Med 2000;6:1388–1394.

    Article  PubMed  CAS  Google Scholar 

  17. Theroux TL, Esbenshade TA, Peavy RD, Minneman KP. Coupling efficiencies of human alpha 1-adrenergic receptor subtypes: titration of receptor density and responsiveness with inducible and repressible expression vectors. Mol Pharmacol 1996;50:1376–1387.

    PubMed  CAS  Google Scholar 

  18. Erami C, Zhang H, Ho JG, French DM, Faber JE. α1-Adrenoceptor stimulation directly induces growth of vascular wall in vivo. Am J Physiol 2002;283:H1577–H1587.

    CAS  Google Scholar 

  19. Hu ZW, Shi XY, Lin RZ, Chen J, Hoffman BB. α1-Adrenergic receptor stimulation of mitogenesis in human vascular smooth muscle cells: role of tyrosine protein kinases and calcium in activation of mitogen-activated protein kinase. J Pharmacol Exp Ther 1999;290:28–37.

    PubMed  CAS  Google Scholar 

  20. Marinese D, Patel R, Walden PD. Mechanistic investigation of the adrenergic induction of ventral prostate hyperplasia in mice. Prostate 2003;54:230–237.

    Article  PubMed  CAS  Google Scholar 

  21. Refsnes M, Thoresen GH, Sandnes D, Dajani OF, Dajani L, Christoffers T. Stimulatory and inhibitory effects of catecholamines on DNA synthesis in primary rat hepatocyte cultures: role of α1-and β-adrenergic mechanisms. J Cell Physiol 1992;151:164–171.

    Article  PubMed  CAS  Google Scholar 

  22. Pabbathi VK, Brennan H, Muzworthy A, et al. Catecholaminergic regulation of proliferation and survival in rat forebrain paraventricular germinal cells. Brain Res 1997;760:22–33.

    Article  PubMed  CAS  Google Scholar 

  23. Auer KL, Spector MS, Tombes RM, et al. α-Adrenergic inhibition of proliferation in HEPG2 cells stably transfected with the α1B-adrenergic receptor through a p42MAPkinase/p21Cip1/WAF1-dependent pathway. FEBS Lett 1998;436:131–138.

    Article  PubMed  CAS  Google Scholar 

  24. Gonzalez-Cabrera PJ, Ting S, Yun J, McCune DF, Rorabaugh BR, Perez DM. Differential Regulation of the cell cycle by α1-adrenergic receptor subtypes. Endocrinology 2004;145:5157–5167.

    Article  PubMed  CAS  Google Scholar 

  25. Shibata K, Katsuma S, Koshimizu T, et al. α1-Adrenergic receptor subtypes differentially control the cell cycle of transfected CHO cells through a cAMP-dependent mechanism involving p27Kip1. J Biol Chem 2003;278:672–678.

    Article  PubMed  CAS  Google Scholar 

  26. Milano CA, Dolber PC, Rockman HA, et al. Myocardial expression of a constitutively active α1B-adrenergic receptor in transgenic mice induces cardiac hypertrophy. Proc Natl Acad Sci USA 1994;91:10,109–10,113.

    Article  PubMed  CAS  Google Scholar 

  27. Lin F, Owens WA, Chen S, et al. Targeted α1A-adrenergic receptor overexpression induces enhanced cardiac contractility but not hypertrophy. Circ Res 2001;89:343–350.

    Article  PubMed  CAS  Google Scholar 

  28. Cavalli A, Lattion AL, Hummler E, et al. Decreased blood pressure response in mice deficient of the α1B-adrenergic receptor. Proc Natl Acad Sci USA 1997;94:11,589–11,594.

    Article  PubMed  CAS  Google Scholar 

  29. Rokosh DG, Simpson PC. Knockout of the α1a/c-adrenergic receptor subtype: The α1a/c is expressed in resistance arteries and is required to maintain arterial blood pressure. Proc Natl Acad Sci USA 2002;99:9474–9479.

    Article  PubMed  CAS  Google Scholar 

  30. Tanoue A, Nasa Y, Koshimizu T, et al. The α1D-adrenergic receptor directly regulates arterial blood pressure via vasoconstriction. J Clin Invest 2002;109:765–775.

    Article  PubMed  CAS  Google Scholar 

  31. Perez DM, Hwa J, Gaivin R, Mathur M, Brown F, Graham RM. Constitutive activation of a single effector pathway: evidence for multiple activation states of a G protein-coupled receptor. Mol Pharmacol 1996;49:112–122.

    PubMed  CAS  Google Scholar 

  32. Hwa J, Gaivin RJ, Porter JE, Perez DM. Synergism of constitutive activity in α1-adrenergic receptor activation. Biochemistry 1997;36:633–639.

    Article  PubMed  CAS  Google Scholar 

  33. Zuscik MJ, Chalothorn D, Hellard D, et al. Hypotension, autonomic failure, and cardiac hypertrophy in transgenic mice overexpressing the α1B-adrenergic receptor. J Biol Chem 2001;276:13,738–13,743.

    PubMed  CAS  Google Scholar 

  34. Kunieda T, Zuscik MJ, Boongird A, Perez DM, Lüders HO, Najm IM. Systemic overexpression of the α1B-adrenergic receptor in mice: an animal model of epilepsy. Epilepsia 2002;43:1324–1329.

    Article  PubMed  CAS  Google Scholar 

  35. Papay R, Zuscik MT, Ross SA, et al. Mice expressing the α1b-adrenergic receptor induces a synucleinopathy with excessive tyrosine nitration but decreased phosphorylation. J Neurochem 2002;83:1–12.

    Article  Google Scholar 

  36. Yun J, Gaivin RJ, McCune DF, et al. Gene expression profile of neurodegeneration induced by α1B-adrenergic receptor overactivity: NMDA/GABAA dysregulation and apoptosis. Brain 2003;126:2667–2681.

    Article  PubMed  Google Scholar 

  37. Eguchi S, Inagami T. Signal transduction of angiotensin II type I receptor through receptor tyrosine kinase. Regul Pept 2000;91:13–20.

    Article  PubMed  CAS  Google Scholar 

  38. Maudsley S, Pierce KL, Zamah AM, et al. The β2 adrenergic receptor mediates extracellular signal-regulated kinase activation via assembly for a multireceptor complex with epidermal growth factor. J Biol Chem 2000;275:9572–9580.

    Article  PubMed  CAS  Google Scholar 

  39. Kuppuswamy D, Kerr C, Narishige T, Kasi VS, Menick DR, Cooper G 4th. Association of tyrosine-phosphorylated c-Src with the cytoskeleton of hypertrophying myocardium. J Biol Chem 1997;272:4500–4508.

    Article  PubMed  CAS  Google Scholar 

  40. Fuller SJ, Gillespie-Brown J, Sugden PH. Oncogenic src, raf and ras stimulate a hypertrophic pattern of gene expression and increase cell size in neonatal rat ventricular myocytes. J Biol Chem 1998;273:18,146–18,152.

    Article  PubMed  CAS  Google Scholar 

  41. Daaka Y, Luttrell LM, Lefkowitz RJ. Switching of the coupling of the β2-adrenergic receptor to different G proteins by protein kinase A. Nature 1997;390:88–91.

    Article  PubMed  CAS  Google Scholar 

  42. Tayebati SK, Bronzetti E, Morra Di Cella S, et al. In situ hybridization and immunocytochemistry of α1-adrenoceptors in human peripheral blood lymphocytes. J Auton Pharmacol 2000;20:305–312.

    Article  PubMed  CAS  Google Scholar 

  43. Devaux B, Scholz D, Hirche A, Klovekorn WP, Schaper J. Upregulation of cell adhesion molecules and the presence of low grade inflammation in human chronic heart failure. Eur Heart J 1997;18:470–479.

    PubMed  CAS  Google Scholar 

  44. Warraich RS, Dunn MJ, Yacoub MH. Subclass specificity of autoantibodies against myosin in patients with idiopathic dilated cardiomyopathy: proinflammatory antibodies in DCM patients. Biochem Biophys Res Commun 1999;259:255–261.

    Article  PubMed  CAS  Google Scholar 

  45. Caforio ALP, Mahon NJ, Tona F, McKenna WJ. Circulating cardiac autoantibodies in dilated cardiomyopathy and myocarditis: pathogenetic and clinical significance. Eur J Heart Fail 2002;4:411–417.

    Article  PubMed  Google Scholar 

  46. Lefkos N, Boura P, Boudonas G, et al. Immunopathogenic mechanisms in hypertension. Am J Hypertens 1995;8:1141–1145.

    Article  PubMed  CAS  Google Scholar 

  47. Wahnschaffe U, Ebert U, Löscher W. The effects of lesions of the posterior piriform cortex on amygdala kindling in the rat. Brain Res 1993;615:295–303.

    Article  PubMed  CAS  Google Scholar 

  48. Scanziani M, Gähwiler BH, Thompson SM. Presynaptic inhibition of excitatory synaptic transmission mediated by α adrenergic receptors in area CA3 of the rat hippocampus in vitro. J Neurosci 1993;13:5393–5401.

    PubMed  CAS  Google Scholar 

  49. Murphy TV, Majewski H. Modulation of noradrenaline release in slices of rat kidney cortex through α1-and α2-adrenoceptors. Eur J Pharmacol 1989;169:285–295.

    Article  PubMed  CAS  Google Scholar 

  50. Laifenfeld D, Klein E, Ben-Shachar D. Norepinephrine alters the expression of genes involved in neuronal sprouting and differentiation: relevance for major depression and antidepressant mechanisms. J Neurochem 2002;83:1054–1064.

    Article  PubMed  CAS  Google Scholar 

  51. Taraviras S, Olli-Lahdesmaki T, Lymperopoulos A, et al. Subtype-specific neuronal differentiation of PC12 cells transfected with α2-adrenergic receptors. Eur J Cell Biol 2002;81:363–374.

    Article  PubMed  CAS  Google Scholar 

  52. Rowe SJ, messenger NJ, Warner AE. The role of noradrenaline in the differentiation of amphibian embryonic neurons. Development 1993;119:1343–1357.

    PubMed  CAS  Google Scholar 

  53. Kazmi SM, Mishra RK. Identification of α2-adrenergic receptor sites in human retinoblastoma (Y-79) and neuroblastoma (SH-SY5Y) cells. Biochem Biophys Res Commun 1989;158:921–928.

    Article  PubMed  CAS  Google Scholar 

  54. Crossin KL, Krushel LA. Cellular signaling by neural cell adhesion molecules of the immunoglobulin family. Dev Dyn 2000;21:8260–8279.

    Google Scholar 

  55. Timpl R, Brown JC. The laminins. Matrix Biol 1994;14:13,729–13,732.

    Article  Google Scholar 

  56. Meiri KF, Saffell JL, Walsh FS, Doherty P. Neurite outgrowth stimulated by neural cell adhesion molecules requires growth-associated protein-43 (GAP-43) function and is associated with GAP-43 phosphorylation in growth cones. J Neurosci 1998;18:10,429–10,437.

    PubMed  CAS  Google Scholar 

  57. Drigues N, Polytyrev T, Bejar C, Weinstock M, Youdim MBH. cDNA gene expression profile of rat hippocampus after chronic treatment with antidepressant drugs. J Neural Transm 2003;110:1413–1436.

    Article  PubMed  CAS  Google Scholar 

  58. Elkstrom J. Autonomic control of salivary secretion. Proc Finn Dent Soc 1989;85:323–331.

    Google Scholar 

  59. Brenner GM, Wulf RG. Adrenergic β receptors mediating submandibular salivary gland hypertrophy in the rat. J Pharmacol Exp Ther 1981;218:608–612.

    PubMed  CAS  Google Scholar 

  60. Barroso I, Benito B, Barci-Jimenez C, Hernandez A, Obregon MJ, Santisteban P. Norepinephrine, tri-iodothyronine, and insulin upregulate glyceraldehydes-3-phosphate dehydrogenase mRNA during brown adipocyte differentiation. Eur J Endocrinol 1999;141:169–179.

    Article  PubMed  CAS  Google Scholar 

  61. Chance WT, Nelson JL, Foley-Nelson T, Kim MW, Fischer JE. The relationship of burn-induced hypermetabolism to central and peripheral catecholamines. J Trauma 1989;29:306–312.

    Article  PubMed  CAS  Google Scholar 

  62. Wilmore DW, Long JM, Mason AD, Skreen RW, Pruitt BA. Catecholamines: mediator of the hypermetabolic response to thermal injury. Ann Surg 1974;180:653–669

    Article  PubMed  CAS  Google Scholar 

  63. Herndon DN, Dasu HRK, Wolfe RR, Barrow RE. Gene expression profiles and protein balance in skeletal muscle of burned children after β-adrenergic blockade. Am J Physiol Endocrinol Metab 2003;285:E783–E789.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Rorabaugh, B., Yun, J., Perez, D.M. (2006). Microarray Analysis of Novel Adrenergic Receptor Functions. In: Perez, D.M. (eds) The Adrenergic Receptors. The Receptors. Humana Press. https://doi.org/10.1385/1-59259-931-1:365

Download citation

Publish with us

Policies and ethics