Skip to main content

Biochemical Adaptation to Extreme Environments

  • Chapter

Abstract

Physiology can be viewed as the collection of mechanisms and processes that allows organisms to deal with challenges from both internal (e.g., exercise, growth, reproduction) and external (e.g., variations in temperature, oxygen and water availability, salinity, pressure, radiation, heavy metals, etc.) sources. In this chapter we focus on solutions to some of the external challenges to life in extreme environments. This subject is a huge one because life on Earth has radiated into every conceivable environment, from the frigid Antarctic to boiling hot springs, from the ocean depths to the tops of mountains, from hypersaline lakes to the driest deserts, and many more. We mainly consider biochemical and molecular solutions by vertebrate animals to environmental challenges of low oxygen and low temperature because these hold lessons that can be applied to the human condition and medical concerns. However, the reader should be aware that the extremes of vertebrate life are bested on every front by the capabilities of invertebrates, plants, bacteria, and archaea and many excellent resources explore life at the extremes from different perspectives; selected texts include those by Hochachka and Somero (1), Schmid-Neilsen (2), Ashcroft (3), Margesin and Schinner (4), Willmer et al. (5), Lutz et al. (6), and Gerday and Glansdorff (7).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hochachka, P.W. and Somero, G.N. (2002) Biochemical Adaptation: Mechanism and Process in Physiological Evolution. Oxford University Press, Oxford, UK.

    Google Scholar 

  2. Schmidt-Nielsen, K. (1997) Animal Physiology: Adaptation and Environment, 5th ed. Cambridge University Press, Cambridge.

    Google Scholar 

  3. Ashcroft, F. (2000) Life at the Extremes: The Science of Survival. HarperCollins, London, UK.

    Google Scholar 

  4. Margesin, R. and Schinner, F. (eds.) (1999) Cold-Adapted Organisms: Ecology, Physiology, Enzymology and Molecular Biology. Springer-Verlag, Berlin.

    Google Scholar 

  5. Willmer, P., Stone, G. and Johnston, I. (2000) Environmental Physiology of Animals. Blackwell Science, Oxford, UK.

    Google Scholar 

  6. Lutz, P.L., Nilsson, G.E. and Prentice, H.M. (2003) The Brain Without Oxygen. Kluwer Academic Publishers, Amsterdam.

    Google Scholar 

  7. Gerday, C. and Glansdorff, N. (eds.) (2003) Extremophiles. in Encyclopedia of Life Support Systems. EOLSS Publishers, Oxford, UK [http://www.eolss.net]

  8. Trueman, R.J., Tiku, P.E., Caddick, M.X. and Cossins, A.R. (2000) Thermal thresholds of lipid restructuring and delta(9)-desaturase expression in the liver of carp (Cyprinus carpio L.). J. Exp. Biol. 203:641–650.

    PubMed  CAS  Google Scholar 

  9. Storey, K.B. and Storey, J.M. (1990) Facultative metabolic rate depression: molecular regulation and biochemical adaptation in anaerobiosis, hibernation, and estivation. Quart. Rev. Biol. 65:145–174.

    Article  PubMed  CAS  Google Scholar 

  10. Storey, K.B. and Storey, J.M. (2004a) Metabolic rate depression in animals: transcriptional and translational controls. Biol. Rev. Camb Philos Soc. 79:207–233.

    Article  PubMed  Google Scholar 

  11. Duman J.G. (2001) Antifreeze and ice nucleator proteins in terrestrial arthropods. Annu. Rev. Physiol. 63:327–357.

    Article  PubMed  CAS  Google Scholar 

  12. Storey, K.B. (2002) Life in the slow lane: molecular mechanisms of estivation. Comp. Biochem. Physiol. A 133:733–754.

    Article  Google Scholar 

  13. Storey, K.B. (ed.) (2004) Functional Metabolism: Regulation and Adaptation. John Wiley and Sons, New York, NY.

    Google Scholar 

  14. Wenger, R.H. (2000) Mammalian oxygen sensing, signaling and gene regulation. J. Exp. Biol. 203:1253–1263.

    PubMed  CAS  Google Scholar 

  15. Hochachka, P.W. (1986) Defense strategies against hypoxia and hypothermia. Science 23:234–241.

    Article  Google Scholar 

  16. Hochachka, P.W. and Lutz, P.L. (2001) Mechanism, origin and evolution of anoxia tolerance in animals. Comp. Biochem. Physiol. B 130:435–459.

    Article  PubMed  CAS  Google Scholar 

  17. Claussen, T. (1986) Regulation of active Na+K+ transport in muscle. Physiol. Rev. 66:542–576.

    Google Scholar 

  18. Berridge, M.J., Bootman, M.D. and Roderick, H.L. (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 4:517–529.

    Article  PubMed  CAS  Google Scholar 

  19. Orrenius, S., Zhivotovsky, B. and Nicotera P. (2003) Regulation of cell death: the calcium-apoptosis link. Nat. Rev. Mol. Cell Biol. 4: 552–565.

    Article  PubMed  CAS  Google Scholar 

  20. Halliwell, B. and Gutteridge, J.M.C. (1999) Free Radicals in Biology and Medicine. 3rd Ed. Clarendon Press, Oxford.

    Google Scholar 

  21. Jackson, D.C. (2001) Anoxia survival and metabolic arrest in the turtle. In Molecular Mechanisms of Metabolic Arrest (Storey, K.B., ed.), BIOS Scientific Publishers, Oxford, pp. 103–114.

    Google Scholar 

  22. Larade, K. and Storey, K.B. (2002) A profile of the metabolic responses to anoxia in marine invertebrates, in Cell and Molecular Responses to Stress (Storey, K.B. and Storey, J.M., eds.), Elsevier Press, Amsterdam, Vol. 3, pp. 27–46.

    Google Scholar 

  23. Hermes-Lima, M., Storey, J.M. and Storey, K.B. (2001) Antioxidant defenses and animal adaptation to oxygen availability during environmental stress. In Cell and Molecular Responses to Stress (Storey, K.B. and Storey, J.M., eds.), Elsevier Press, Amsterdam, Vol. 2, pp. 263–287.

    Google Scholar 

  24. Hermes-Lima, M. and Zenteno-Savin, T. (2002) Animal response to drastic changes in oxygen availability and physiological oxidative stress. Comp. Biochem. Physiol. C 133:537–556.

    Article  Google Scholar 

  25. Wang, L.C.H. and Wolowyk, M.W. (1988) Torpor in mammals and birds. Can. J. Zool. 66:133–137.

    Article  CAS  Google Scholar 

  26. Rousseau, K., Atcha, Z. and Loudon, A.S. (2003) Leptin and seasonal mammals. J. Neuroendocrinol. 15:409–414.

    Article  PubMed  CAS  Google Scholar 

  27. Frank, C.L., Dierenfeld, E.S. and Storey, K.B. (1998) The relationship between lipid peroxidation, hibernation, and food selection in mammals. Am. Zool. 38:341–349.

    CAS  Google Scholar 

  28. Storey, K.B. (1997) Metabolic regulation in mammalian hibernation: enzyme and protein adaptations. Comp. Biochem. Physiol. A 118:1115–1124.

    Article  CAS  Google Scholar 

  29. Andrews, M.T., Squire, T.L., Bowen, C.M. and Rollins, M.B. (1998) Low-temperature carbon utilization is regulated by novel gene activity in the heart of a hibernating animal. Proc. Natl. Acad. Sci. USA 95:8392–8397.

    Article  PubMed  CAS  Google Scholar 

  30. Hittel, D. and Storey, K.B. (2001) Differential expression of adipose and heart type fatty acid binding proteins in hibernating ground squirrels. Biochim. Biophys. Acta 1522:238–243.

    PubMed  CAS  Google Scholar 

  31. Porras, A. and Benito, M. (2002) Regulation of proliferation, differentiation and apoptosis of brown adipocytes: signal transduction pathways involved. In Cell and Molecular Responses to Stress (Storey, K.B. and Storey, J.M., eds.), Elsevier Press, Amsterdam, Vol. 3, pp. 269–282.

    Google Scholar 

  32. Alves-Guerra, M-C., Pecqueur, C., Shaw, A., et al. (2002) The uncoupling proteins family: from thermogenesis to the regulation of ROS. In Cell and Molecular Responses to Stress (Storey, K.B. and Storey, J.M., eds.), Elsevier Press, Amsterdam, Vol. 3, pp. 257–268.

    Google Scholar 

  33. Stewart, J.M., English, T.E. and Storey, K.B. (1998) Comparisons of the effects of temperature on the liver fatty acid binding proteins from hibernator and nonhibernator mammals. Biochem. Cell Biol. 76:593–599.

    Article  PubMed  CAS  Google Scholar 

  34. Thatcher, B.J. and Storey, K.B. (2001) Glutamate dehydrogenase from liver of euthermic and hibernating Richardson’s ground squirrels: evidence for two distinct enzyme forms. Biochem. Cell Biol. 79:11–19.

    Article  PubMed  CAS  Google Scholar 

  35. Fletcher, G.L., Hew, C.L. and Davies, P.L. (2001) Antifreeze proteins of teleost fishes. Annu. Rev. Physiol. 63:359–390.

    Article  PubMed  CAS  Google Scholar 

  36. Storey, K.B. and Storey, J.M. (1988) Freeze tolerance in animals. Physiol. Rev. 68:27–84.

    PubMed  CAS  Google Scholar 

  37. Storey, K.B. and Storey, J.M. (1996) Natural freezing survival in animals. Ann. Rev. Ecol. Syst. 27:365–386.

    Article  Google Scholar 

  38. Storey, K.B. and Storey, J.M. (2004) Physiology, biochemistry and molecular biology of vertebrate freeze tolerance: the wood frog, in Life in the Frozen State (Benson, E., Fuller, B. and Lane, N., eds.), CRC Press, Boca Raton, FL, pp. 243–274.

    Google Scholar 

  39. Wharton, D.A. (2003) The environmental physiology of Antarctic terrestrial nematodes: a review. J. Comp. Physiol. B. 173:621–628.

    Article  PubMed  CAS  Google Scholar 

  40. Barros, R.C.H., Zimmer, M.E., Branco, L.G.S. and Milsom, W.K. (2001) Hypoxic metabolic response of the golden-mantled ground squirrel. J. Appl. Physiol. 91:603–612.

    PubMed  CAS  Google Scholar 

  41. Storey, K.B. (2003) Mammalian hibernation: transcriptional and translational controls. Adv. Exp. Med. Biol. 543:21–38.

    PubMed  CAS  Google Scholar 

  42. Hochachka, P.W., Buck, L.T., Doll, C.J. and Land, S.C. (1996) Unifying theory of hypoxia tolerance: molecular/metabolic defense and rescue mechanisms for surviving oxygen lack. Proc. Natl. Acad. Sci. USA 93:9493–9498.

    Article  PubMed  CAS  Google Scholar 

  43. Frerichs, K.U., Smith, C.B., Brenner, M., DeGracia, D.J., Krause, G.S., Marrone, L., Dever, T.E. and Hallenbeck, J.M. (1998) Suppression of protein synthesis in brain during hibernation involves inhibition of protein initiation and elongation. Proc. Natl. Acad. Sci. USA 95:14511–14516.

    Article  PubMed  CAS  Google Scholar 

  44. Hittel, D. and Storey, K.B. (2002) The translation status of differentially expressed mRNAs in the hibernating thirteen-lined ground squirrel (Spermophilus tridecemlineatus). Arch. Biochem. Biophys. 401:244–254.

    Article  PubMed  CAS  Google Scholar 

  45. Storey, K.B. (1993) Molecular mechanisms of metabolic arrest in mollusks. In Surviving Hypoxia: Mechanisms of Control and Adaptation (Hochachka, P.W., Lutz, P.L., Sick, T.J., Rosenthal, M. and Thillart, G. van den, eds.) CRC Press, Boca Raton, pp. 253–269.

    Google Scholar 

  46. Plaxton, W.C. and Storey, K.B. (1984) Purification and properties of aerobic and anoxic forms of pyruvate kinase from red muscle tissue of the channeled whelk, Busycotypus canaliculatum. Eur. J. Biochem. 143:257–265.

    Article  PubMed  CAS  Google Scholar 

  47. Brooks, S.P.J. and Storey, K.B. (1997) Glycolytic controls in estivation and anoxia: a comparison of metabolic arrest in land and marine molluscs. Comp. Biochem. Physiol. A 118:1103–1114.

    Article  CAS  Google Scholar 

  48. Brooks, S.P.J. and Storey, K.B. (1992) Mechanisms of glycolytic control during hibernation in the ground squirrel Spermophilus lateralis. J. Comp. Physiol. B 162:23–28.

    Article  CAS  Google Scholar 

  49. MacDonald, J.A. and Storey, K.B. (1999) Regulation of ground squirrel Na+ K+-ATPase activity by reversible phosphorylation during hibernation. Biochem. Biophys. Res. Commun. 254:424–429.

    Article  PubMed  CAS  Google Scholar 

  50. Malysheva, I.N., Storey, K.B., Lopina, O.D. and Rubtsov, A.M. (2001) Ca-ATPase activity and protein composition of sarcoplasmic reticulum membranes isolated from skeletal muscles of typical hibernator, the ground squirrel Spermophilus undulatus. Biosci. Rep. 21:831–838.

    Article  PubMed  CAS  Google Scholar 

  51. Bickler, P.E. and Donohoe, P.H. (2002) Adaptive responses of vertebrate neurons to hypoxia. J. Exp. Biol. 205:3579–3586.

    PubMed  CAS  Google Scholar 

  52. Buck, L.T. and Bickler, P.E. (1998) Adenosine and anoxia reduce N-methyl-D-aspartate receptor open probability in turtle cerebrocortex. J. Exp. Biol. 201:289–297.

    PubMed  CAS  Google Scholar 

  53. Lankford, A.R., Byford, A.M., Ashton, K.J., et al. (2002) Gene expression profile of mouse myocardium with transgenic over-expression of A1 adenosine receptors. Physiol. Genomics 11:81–89.

    PubMed  CAS  Google Scholar 

  54. Storey, K.B. (2004) Strategies for exploration of freeze responsive gene expression: advances in vertebrate freeze tolerance. Cryobiology 48:134–145.

    Article  PubMed  CAS  Google Scholar 

  55. Shiomi, H. and Tamura, Y. (2000) Pharmacological aspects of mammalian hibernation: central thermoregulation factors in hibernation cycle. Nippon Yakurigaku Zasshi 116:304–312.

    PubMed  CAS  Google Scholar 

  56. Larade, K. and Storey, K.B. (2002) Reversible suppression of protein synthesis in concert with polysome disaggregation during anoxia exposure in Littorina littorea. Mol. Cell. Biochem. 232:121–127.

    Article  PubMed  CAS  Google Scholar 

  57. DeGracia, D.J., Kumar, R., Owen, C.R., Krause, G.S. and White, B.C. (2002) Molecular pathways of protein synthesis inhibition during brain reperfusion: implications for neuronal survival or death. J. Cereb. Blood Flow Metab. 22:127–141.

    Article  PubMed  CAS  Google Scholar 

  58. Chen, Y., Matsushita, M., Nairn, A.C., et al. (2001) Mechanisms for increased levels of phosphorylation of elongation factor-2 during hibernation in ground squirrels. Biochemistry 40:11565–11570.

    Article  PubMed  CAS  Google Scholar 

  59. Gingras, A.C., Raught, B. and Sonenbert, N. (1999) eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Ann. Rev. Biochem. 68:913–963.

    Article  PubMed  CAS  Google Scholar 

  60. Lang, K.J.D., Kappel, A. and Goodall, G.J. (2002) Hypoxia-inducible factor-1α mRNA contains an internal ribosome entry site that allows efficient translation during normoxia and hypoxia. Mo.l Biol. Cell 13:1792–1801.

    Article  CAS  Google Scholar 

  61. Larade, K. and Storey, K.B. (2004) Accumulation and translation of ferritin heavy chain transcripts following anoxia exposure in a marine invertebrate. J. Exp. Biol. 207:1353–1360.

    Article  PubMed  CAS  Google Scholar 

  62. Van Breukelen, F. and Martin, S.L. (2001) Translational initiation is uncoupled from elongation at 18°C during mammalian hibernation. Am J Physiol 281:R1374–R1379.

    Google Scholar 

  63. Cai, Q. and Storey, K.B. (1997) Freezing-induced genes in wood frog (Rana sylvatica): fibrinogen upregulation by freezing and dehydration. Am. J. Physiol. 272:R1480–R1492.

    PubMed  CAS  Google Scholar 

  64. Cai, Q., Greenway, S.C. and Storey, K.B. (1997) Differential regulation of the mitochondrial ADP/ATP translocase gene in wood frogs under freezing stress. Biochim. Biophys. Acta 1343:69–78.

    Google Scholar 

  65. De Croos, J.N.A., McNally, J.D., Palmieri, F. and Storey, K.B. (2004) Up-regulation of the mitochondrial phosphate carrier during freezing in the wood frog Rana sylvatica: potential roles of transporters in freeze tolerance. J. Bioenerg. Biomemb. 36:229–239.

    Article  Google Scholar 

  66. Cai, Q. and Storey, K.B. (1996) Anoxia-induced gene expression in turtle heart: upregulation of mitochondrial genes for NADH-ubiquinone oxidoreductase subunit 5 and cytochrome C oxidase subunit 1. Eur. J. Biochem. 241:83–92.

    Article  PubMed  CAS  Google Scholar 

  67. Fahlman, A., Storey, J.M. and Storey, K.B. (2000) Gene upregulation in heart during mammalian hibernation. Cryobiology 40:332–342.

    Article  PubMed  CAS  Google Scholar 

  68. Willmore, W.G., English, T.E. and Storey K.B. (2001) Mitochondrial gene responses to low oxygen stress in turtle organs. Copeia 2001:628–637.

    Article  Google Scholar 

  69. Hittel, D. and Storey, K.B. (2002) Differential expression of mitochondria-encoded genes in a hibernating mammal. J. Exp. Biol. 205:1625–1631.

    PubMed  CAS  Google Scholar 

  70. Morano, I., Adler, K., Agostini, B. and Hasselbach, W. (1992) Expression of myosin heavy and light chains and phosphorylation of the phosphorylatable myosin light chain in the heart ventricle of the European hamster during hibernation and in summer. J. Muscle Res. Cell Motility 13:64–70.

    Article  CAS  Google Scholar 

  71. McCarron, R.M., Sieckmann, D.G., Yu, E.Z., Frerichs, K. and Hallenbeck, J.M. (2001) Hibernation, a state of natural tolerance to profound reduction in organ blood flow and oxygen delivery capacity. In Molecular Mechanisms of Metabolic Arrest (Storey, KB., ed.) BIOS Scientific Publishers, Oxford, pp. 23–42.

    Google Scholar 

  72. Larade, K. and Storey, K.B. (2002) Characterization of a novel gene upregulated during anoxia exposure in the marine snail Littorina littorea. Gene 283:145–154.

    Article  PubMed  CAS  Google Scholar 

  73. Larade, K. and Storey, K.B. (2004) Anoxia-induced transcriptional upregulation of sarp-19: cloning and characterization of a novel EF-hand containing gene expressed in hepatopancreas of Littorina littorea. Biochem. Cell Biol. 82:285–293.

    Article  PubMed  CAS  Google Scholar 

  74. Cai, Q. and Storey, K.B. (1997) Up-regulation of a novel gene by freezing exposure in the freeze-tolerant wood frog (Rana sylvatica). Gene 198:305–312.

    Article  PubMed  Google Scholar 

  75. McNally, J.D., Wu, S., Sturgeon, C.M. and Storey, K.B. (2002) Identification and characterization of a novel freezing inducible gene, li16, in the wood frog, Rana sylvatica. FASEB J. 10.1096/fj.02-0017fje (online) http://www.fasebj.org/cgi/content/abstract/02-0017 fjev1.

  76. McNally, J.D., Sturgeon, C.M. and Storey, K.B. (2003) Freeze induced expression of a novel gene, fr47, in the liver of the freeze tolerant wood frog, Rana sylvatica. Biochim. Biophys. Acta 1625:183–191.

    PubMed  CAS  Google Scholar 

  77. Holden, C.P. and Storey, K.B. (1997) Second messenger and cAMP-dependent protein kinase responses to dehydration and anoxia stresses in frogs. J. Comp. Physiol. B 167:305–312.

    Article  PubMed  CAS  Google Scholar 

  78. Eddy, S.F. and Storey, K.B. (2002) Dynamic use of cDNA arrays: heterologous probing for gene discovery and exploration of animal adaptations in stressful environments. In Cell and Molecular Responses to Stress (Storey, K.B. and Storey, J.M., eds.), Elsevier Press, Amsterdam, Vol. 3, pp. 315–325.

    Google Scholar 

  79. Buzadzic, B., Spasic, M.B., Saicic, Z.S., Radojicic, R., Petrovic, V.M. and Halliwell, B. (1990) Antioxidant defenses in the ground squirrel Citellus citellus. 1. The effect of hibernation. Free Rad Biol Med 9: 407–413.

    Article  PubMed  CAS  Google Scholar 

  80. Eddy, S.F. and Storey, K.B. (2003) Differential expression of Akt, PPAR-γ and PGC-1 during hibernation in bats. Biochem. Cell Biol. 81:269–274.

    Article  PubMed  CAS  Google Scholar 

  81. Sullivan, D.T., MacIntyre, R., Fuda, N., Fiori, J., Barrilla, J. and Ramizel, L. (2003) Analysis of glycolytic enzyme co-localization in Drosophila flight muscle. J. Exp. Biol. 206:2031–2038.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Storey, K.B., Storey, J.M. (2005). Biochemical Adaptation to Extreme Environments. In: Walz, W. (eds) Integrative Physiology in the Proteomics and Post-Genomics Age. Humana Press. https://doi.org/10.1385/1-59259-925-7:169

Download citation

Publish with us

Policies and ethics