Skip to main content

Cellular and Molecular Properties of Multipotent Neural Stem Cells Throughout Ontogeny

  • Chapter
  • 575 Accesses

Part of the book series: Contemporary Neuroscience ((CNEURO))

Abstract

Single cells isolated from the both the developing and the adult central nervous system (CNS) can give rise to neurons, astrocytes and oligodendrocytes and retain the ability to self-renew, in vitro. This observation has led to the conclusion that the CNS develops from multipotent, self-renewing stem cells (CNS stem cells) (19). However, since the isolation of CNS stem cells from embryonic and adult CNS (1,3,4,6,10,11), identification of their origin in vivo remains unclear (12,13). Moreover, the cellular and molecular relationship between neural stem cell populations at different stages of ontogeny and different anatomical regions is unresolved. To understand exactly what characteristics define neural stem cell identity in vivo and in vitro it is first necessary to elucidate the lineage relationship between the various types of stem cells and how they contribute to the development, differentiation, maintenance, and function of the CNS (14). To achieve this certain methodologies need to be developed for the direct isolation and characterization of neural stem cells from the embryonic and adult CNS.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Davis, A. A. and Temple, S. (1994) A self renewing multipotential stem cell in embryonic rat cerebral cortex. Neuron 372, 263–266.

    CAS  Google Scholar 

  2. Morshead, C. M., Reynolds, B. A., Craig, C. G., et al. (1994) Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron 13, 1071–1082.

    PubMed  CAS  Google Scholar 

  3. Gritti, A., Parati, E. A., Cova, L., et al. (1996) Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J. Neurosci. 16, 1091–1100.

    PubMed  CAS  Google Scholar 

  4. Johe, K. K., Hazel, T. G., Muller, T., Dugich-Djordjevic, M. M., and McKay, R. D. G. (1996) Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes Dev. 10, 3129–3140.

    PubMed  CAS  Google Scholar 

  5. Reynolds, B. A. and Weiss, S. (1996) Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev. Biol. 175, 1–13.

    PubMed  CAS  Google Scholar 

  6. Palmer, T. D., Takahashi, J., and Gage, F. H. (1997) The adult rat hippocampus contains primordial neural stem cells. Mol. Cell. Neurosci. 8, 389–404.

    PubMed  CAS  Google Scholar 

  7. Gage, F. (2000) Mammalian neural stem cells. Science 28, 1433–1438.

    Google Scholar 

  8. Temple, S. and Buylla-Alvarez, A. (1999) Stem cells in the adult mammalian central nervous system. Curr. Opin. Neurobiol. 9, 135–141.

    PubMed  CAS  Google Scholar 

  9. Seaberg, R. M. and van der Kooy, D. (2003) Stem and progenitor cells: the premature desertion of rigorous definitions. Trends Neurosci. 26, 125–131.

    PubMed  CAS  Google Scholar 

  10. Kilpatrick, T. J. and Barlett, B. F. (1995) Cloned multipotential precursors from the mouse cerebrum require FGF-2 whereas glial restricted precursors are stimulated by either FGF-2 or EGF. J. Neurosci. 15, 3653–3661.

    PubMed  CAS  Google Scholar 

  11. Weiss, S., Dunne, C., Hewson, J., et al. (1996) Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J. Neurosci. 16, 7599–7609.

    PubMed  CAS  Google Scholar 

  12. Doetsch, F., Caille, I., Lim, D. A., Garcia-Verdugo, J. M., and Alvarez-Buylla, A. (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716.

    PubMed  CAS  Google Scholar 

  13. Johansson, C. B., Momma, S., Clarke, D. L., Risling, M., Lendahl, U., and Frisen, J. (1999) Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96, 25–34.

    PubMed  CAS  Google Scholar 

  14. Pevny, L. and Rao, M. S. (2003) The stem-cell menagerie. Trends Neurosci. 26, 351–359.

    PubMed  CAS  Google Scholar 

  15. Cai, J., Wu, Y., Mirua, T., et al. (2002) Properties of a fetal multipotent neural stem cell (NEP cell). Dev. Biol. 251, 221–240.

    PubMed  CAS  Google Scholar 

  16. Qian, X., Davis, A. A., Goderie, S. K., and Temple, S. (1997) FGF2 concentration regulates the generation of neurons and glia from multipotent cortical stem cells. Neuron 18, 81–93.

    PubMed  CAS  Google Scholar 

  17. Kalyani, A., Hobson, K., and Rao, M. S. (1997) Neuroepithelial stem cells from the embryonic spinal cord: isolation, characterisation, and clonal analysis. Dev. Biol. 186, 202–223.

    PubMed  CAS  Google Scholar 

  18. Mujtaba, T., Piper, D. R., Kalyani, A., Groves, A. K., Lucero, M. T., and Rao, M. S. (1999) Lineage-restricted neural precursors can be isolated from both the mouse neural tube and cultured ES cells. Dev. Biol. 214, 113–127.

    PubMed  CAS  Google Scholar 

  19. Altman, J. and Bayer, S. A. (1984) The Development of the Rat Spinal Cord. Springer-Verlag, Berlin.

    Google Scholar 

  20. Bayer, S. A. and Altman, J. (1991) Neocortical Development. Raven, New York.

    Google Scholar 

  21. Lillien, L. (1998) Neural progenitors and stem cells: mechanisms of progenitor heterogeneity. Curr. Opin. Neurobiol. 8, 37–44.

    PubMed  CAS  Google Scholar 

  22. McConnell, S. K. (1995) Constructing the cerebral cortex: neurogenesis and fate determination. Neuron 15, 791–803.

    Google Scholar 

  23. Rakic, P. (1988) Specification of cerebral cortical areas. Science 241, 170–176.

    PubMed  CAS  Google Scholar 

  24. Wentworth, L. E. (1984) The development of the cervical spinal cord of the mouse embryo. II. A Golgi analysis of sensory, commissural, and association cell differentiation. J. Comp. Neurol. 222, 96–115.

    PubMed  CAS  Google Scholar 

  25. Ortega, S., Ittmann, M., Tsang, S. H., Ehrlich, M., and Basilico, C. (1998) Neuronal defects and delayed wound healing in mice lacking fibroblast growth factor 2. Proc. Natl. Acad. Sci. USA 95, 5672–5677.

    PubMed  CAS  Google Scholar 

  26. Raballo, R., Rhee, J., Lyn-Cook, R., Leckman, J. F., Schwartz, M. L., and Vaccarino, F. M. (2000) Basic fibroblast growth factor (Fgf2) is necessary for cell proliferation and neurogenesis in the developing cerebral cortex. J. Neurosci. 20, 12–23.

    Google Scholar 

  27. Vaccarino, F. M., Schwartz, M. L., Raballo, R., et al. (1999) Changes in cerebral cortex size are governed by fibroblast growth factor during embryogenesis. Nat. Neurosci. 2, 246–253.

    PubMed  CAS  Google Scholar 

  28. Reynolds, B. A. and Weiss, S. (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707–1710.

    PubMed  CAS  Google Scholar 

  29. Reynolds, B. A., Tetzlaff, W., and Weiss, S. A. (1992) Multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J. Neurosci. 12, 4565–4574.

    PubMed  CAS  Google Scholar 

  30. Nakamura, N., Mitamura, T., Takahashi, T., Kobayashi, T., and Mekada, E. (2000) Importance of the major extracellular domain of CD9 and the epidermal growth factor (EGF)-like domain of heparin-binding EGF-like growth factor for up-regulation of binding and activity. J. Biol. Chem. 275, 18284–18290.

    PubMed  CAS  Google Scholar 

  31. Gotz, M., Hartfuss, E., and Malatesta, P. (2002) Radial glial cells as neuronal precursors: a new perspective on the correlation of morphology and lineage restriction in the developing cerebral cortex of mice. Brain Res. Bull. 57, 777–788.

    PubMed  Google Scholar 

  32. Heins, N., Malatesta, P., Cecconi, F., et al. (2002) Glial cells generate neurons: the role of the transcription factor Pax6. Nat. Neurosci. 5, 308–315.

    PubMed  CAS  Google Scholar 

  33. Hall, A. C., Mira, H., Wagner, J., and Arenas, E. (2003) Region-specific effects of glia on neuronal induction and differentiation with a focus on dopaminergic neurons. Glia 43, 47–51.

    PubMed  Google Scholar 

  34. Malatesta, P., Hack, M. A., Hartfuss, E., et al. (2003) Neuronal or glial progeny: regional differences in radial glia fate. Neuron 37, 751–764.

    PubMed  CAS  Google Scholar 

  35. Johnson, M. W., Miyata, H., and Vinters, H. V. (2002) Ezrin and moesin expression within the developing human cerebrum and tuberous sclerosis-associated cortical tubers. Acta Neuropathol. (Berl.) 104, 188–196.

    CAS  Google Scholar 

  36. Noctor, S. C., Flint, A. C., Weissman, T. A., Wong, W. S., Clinton, B. K., and Kreigstein, A. R. (2002) Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J. Neurosci. 15, 3161–3173.

    Google Scholar 

  37. Miyata, T., Kawaguchi, A., Okano, H., and Ogawa, M. (2001) Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 31, 727–741.

    PubMed  CAS  Google Scholar 

  38. Rakic, P. (1971) Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electronmicroscopic study in Macacus Rhesus. J. Comp. Neurol. 141, 283–312.

    PubMed  CAS  Google Scholar 

  39. Sidman, R. L. and Rakic, P. (1973) Neuronal migration, with special reference to developing human brain: a review. Brain Res. 62, 1–35.

    PubMed  CAS  Google Scholar 

  40. Gray, G. E. and Sanes, J. R. (1992) Lineage of radial glia in the chicken optic tectum. Development 114, 271–283.

    PubMed  CAS  Google Scholar 

  41. Hartfuss, E., Forster, E., Bock, H. H., et al. (2003) Reelin signaling directly affects radial glia morphology and biochemical maturation. Development 130, 4597–4609.

    PubMed  CAS  Google Scholar 

  42. Malatesta, P., Hartfuss, E., and Gotz, M. (2000) Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127, 5253–5263.

    PubMed  CAS  Google Scholar 

  43. Noctor, S. C., Flint, A. C., Weissman, T. A., Dammerman, R. S., and Kreigstein, A. R. (2001) Neurons derived from radial glial cells establish radial units in neocortex. Nature 409, 714–720.

    PubMed  CAS  Google Scholar 

  44. Alvarez-Buylla, A., Seri, B., and Doetsch, F. (2002) Identification of neural stem cells in the adult vertebrate brain. Brain Res. Bull. 57, 737–749.

    Google Scholar 

  45. Tramontin, A. D., Garcia-Verdugo, J. M., Lim, D. A., and Alvarez-Buylla, A. (2003) Postnatal development of radial glia and the ventricular zone (VZ): a continuum of the neural stem cell compartment. Cereb. Cortex 13, 580–587.

    PubMed  Google Scholar 

  46. Lumsden, A. and Krumlauf, R. (1996) Patterning the vertebrate neuraxis. Science 274, 1009–1115.

    Google Scholar 

  47. Wilson, S. I. and Rubenstein, J. L. (2000) Induction and dorsoventral patterning of the telencephalon. Neuron 28, 641–651.

    PubMed  CAS  Google Scholar 

  48. Jessell, T. M. (2000) Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat. Rev. Genet. 1, 20–29.

    PubMed  CAS  Google Scholar 

  49. Briscoe, J., Pierani, A., Jessell, T. M., and Ericson, J. (2000) A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell 101, 435–445.

    PubMed  CAS  Google Scholar 

  50. Hitoshi, S., Tropepe, V., Ekker, M., and van der Kooy, D. (2002) Neural stem cell lineages are regionally specified, but not committed, within distinct compartments of the developing brain. Development 129, 233–244.

    PubMed  CAS  Google Scholar 

  51. Nakagawa, Y., Kaneko, T., Ogura, T., et al. (1996) Roles of cell-autonomous mechanisms for differential expression of region-specific transcription factors in neuroepithelial cells. Development 122, 2449–2464.

    PubMed  CAS  Google Scholar 

  52. Zappone, M. S., Galli, R., Catena, R., et al. (2000) Sox2 regulatory sequences direct expression of a (beta)-geo transgene to telencephalic neural stem cells and precursors of the mouse embryo, revealing regionalization of gene expression in CNS stem cells. Development 127, 2367–2382.

    PubMed  CAS  Google Scholar 

  53. McConnell, S. K. and Kaznowski, C. E. (1991) Cell cycle dependence of laminar determination in developing neocortex. Science 254, 282–285.

    PubMed  CAS  Google Scholar 

  54. Anderson, C. W. (2001) Anatomical evidence for brainstem circuits mediating feeding motor programs in the leopard frog, Rana pipiens. Exp. Brain Res. 140, 12–19.

    PubMed  CAS  Google Scholar 

  55. Edlund, T. and Jessell, T. M. (1999) Progression from extrinsic to intrinsic signaling in cell fate specification: a view from the nervous system. Cell 96, 211–224.

    PubMed  CAS  Google Scholar 

  56. Gabay, L., Lowell, S., Rubin, L. L., and Anderson, D. J. (2003) Deregulation of dorsoventral patterning by FGF confers trilineage differentiation capacity on CNS stem cells in vitro. Neuron 40, 485–499.

    PubMed  CAS  Google Scholar 

  57. Alvarez-Buylla, A. and Garcia Verdugo, J. M. (2002) Neurogenesis in the adult subventricular zone. J. Neurosci. 22, 629–634.

    PubMed  CAS  Google Scholar 

  58. Gage, F. H. (2000) Mammalian neural stem cells. Science 287, 1433–1438.

    PubMed  CAS  Google Scholar 

  59. Johansson, C. B., Svensson, M., Wallstedt, L., Janson, A. M., and Frisen, J. (1999) Neural stem cells in the adult human brain. Exp. Cell Res. 253, 733–736.

    PubMed  CAS  Google Scholar 

  60. Seaberg, R. M. and van der Kooy, D. (2002) Adult rodent neurogenic regions: the ventricular subependyma contains neural stem cells, but the dentate gyrus contains restricted progenitors. J. Neurosci. 22, 1784–1793.

    PubMed  CAS  Google Scholar 

  61. Taupin, P. and Gage, F. (2002) Adult neurogenesis and neural stem cells of the central nervous system in mammals. J. Neurosci. Res. 69, 745–749.

    PubMed  CAS  Google Scholar 

  62. Barres, B. A. (1999) A new role for glia: generation of neurons. Cell 97, 667–670.

    PubMed  CAS  Google Scholar 

  63. Momma, S., Johansson, C. B., and Frisen, J. (2000) Get to know your stem cells. Curr. Opin. Neurobiol. 10, 45–49.

    PubMed  CAS  Google Scholar 

  64. Josephson, R., Muller, T., Pickel, J., et al. (1998) POU transcription factors control expression of CNS stem cell-specific genes. Development 125, 3087–3100.

    PubMed  CAS  Google Scholar 

  65. Chiasson, B. J., Tropepe, V., Morshead, C. M., and van der Kooy, D. (1999) Adult mammalian forebrain ependymal and subependymal cells demonstrate proliferative potential, but only subependymal cells have neural stem cell characteristics. J. Neurosci. 19, 4462–4471.

    PubMed  CAS  Google Scholar 

  66. Alvarez-Buylla, A., Herrara, D. G., and Wichterle, H. (2000) The subventricular zone: source of neuronal precursors for brain repair. Prog. Brain Res. 127, 1–11.

    PubMed  CAS  Google Scholar 

  67. Garcia-Verdugo, J. M., Doetsch, F., Wichterle, H., Lim, D. A., and Alvarez-Buylla, A. (1998) Architecture and cell types of the adult subventricular zone: in search of stem cells. J. Neurobiol. 36, 234–248.

    PubMed  CAS  Google Scholar 

  68. Doetsch, F., Petreanu, L., Caille, I., Garcia-Verdugo, J. M., and Alvarez-Buylla, A. (2002) EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36, 1021–1034.

    PubMed  CAS  Google Scholar 

  69. Altman, J. and Das, G. D. (1965) Autoradiographic and histological evidence of postnatal neurogenesis in rats. J. Comp. Neurol. 124, 319–335.

    PubMed  CAS  Google Scholar 

  70. Kuhn, H. G., Dickinson-Anson, H., and Gage, F. H. (1996) Neurogenesis in the dentate gyrus of the adult rat: age related decrease of neuronal progenitor proliferation. J. Neurosci. 16, 2027–2033.

    PubMed  CAS  Google Scholar 

  71. Gage, F. H. (1998) Stem cells of the central nervous system. Curr. Opin. Neurobiol. 8, 671–676.

    PubMed  CAS  Google Scholar 

  72. Shihabuddin, L. S., Horner, P. J., Ray, J., and Gage, F. H. (2000) Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus. J. Neurosci. 20, 8727–8735.

    PubMed  CAS  Google Scholar 

  73. Marmur, R., Mabie, P. C., Gokhan, S., Song, Q., Kessler, J. A., and Mehler, M. F. (1998) Isolation and developmental characterization of cerebral cortical multipotent progenitors. Dev. Biol. 204, 577–591.

    PubMed  CAS  Google Scholar 

  74. Cameron, H. A. and McKay, R. (1998) Stem cells and neurogenesis in the adult brain. Curr. Opin. Neurobiol. 8, 677–680.

    PubMed  CAS  Google Scholar 

  75. Stanfield, B. B. and Trice, J. E. (1988) Evidence that granule cells generated in the dentate gyrus of adult rats extend axonal projections. Exp. Brain Res. 72, 399–406.

    PubMed  CAS  Google Scholar 

  76. Palmer, T. D., Markakis, E. A., Willhoite, A. R., Safar, F., and Gage, F. H. (1999) Fibro-blast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS. J. Neurosci. 19, 8487–8497.

    PubMed  CAS  Google Scholar 

  77. Markakis, E. A., Palmer, T. D., Randolph-Moore, L., Rakic, P., and Gage, F. H. (2004) Novel neuronal phenotypes from neural progenitor cells. J. Neurosci. 24, 2886–2897.

    PubMed  CAS  Google Scholar 

  78. Carlen, M., Cassidy, R. M., Brismar, H., Smith, G. A., Enquist, L. W., and Frisen, J. (2002) Functional integration of adult-born neurons. Curr. Biol. 12, 606–608.

    PubMed  CAS  Google Scholar 

  79. Feng, R., Rampon, C., Tang, Y. P., et al. (2001) Deficient neurogenesis in forebrain-specific presenilin-1 knockout mice is associated with reduced clearance of hippocampal memory traces. Neuron 32, 911–926 (Erratum 33, 313).

    PubMed  CAS  Google Scholar 

  80. Macklis, J. D. (2001) New memories from new neurons. Nature 410, 314–415.

    PubMed  CAS  Google Scholar 

  81. Shors, T. J., Miesefaes, G., Beylin, A., Zhao, M., Rydel, T., and Gould, E. (2001) Neurogenesis in the adult is involved in the formation of trace memories. Nature 410, 372–375.

    PubMed  CAS  Google Scholar 

  82. Gould, E. and Gross, C. G. (2002) Neurogenesis in adult mammals: some progress and problems. J. Neurosci. 22, 619–623.

    PubMed  CAS  Google Scholar 

  83. Kempermann, G., Kuhn, H. G., and Gage, F. (1997) More hippocampal neurons in adult mice living in an enriched environment. Nature 386, 493–495.

    PubMed  CAS  Google Scholar 

  84. Kempermann, G. and Gage, F. (2002) Genetic influence on phenotypic differentiation of adult hippocampal neurogenesis. Brain Res. Dev. Brain Res. 134, 1–12.

    PubMed  CAS  Google Scholar 

  85. Kokaia, Z. and Lindvall, O. (2003) Neurogenesis after ischaemic brain insults. Curr. Opin. Neurobiol. 13, 127–132.

    PubMed  CAS  Google Scholar 

  86. Leber, S. M., Breedlove, S. M., and Sanes, J. R. (1990) Lineage, arrangement and death of clonally related motoneurons in chick spinal cord. J. Neurosci. 10, 2451–2462.

    PubMed  CAS  Google Scholar 

  87. Luskin, M. B., Parnavelas, J. G., and Barfield, J. A. (1993) Neurons, astrocytes and oligodendrocytes of the rat cerebral cortex originate from separate progenitor cells: an ultra-structural analysis of clonally related cells. J. Neurosci. 13, 1730–1750.

    PubMed  CAS  Google Scholar 

  88. Kondo, T. and Raff, M. C. (2000) Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science 289, 1754–1757.

    PubMed  CAS  Google Scholar 

  89. Brewer, G. J. (1999) Regeneration and proliferation of embryonic and adult rat hippocampal neurons in culture. Exp. Neurol. 159, 237–247.

    PubMed  CAS  Google Scholar 

  90. Shihabuddin, L. S., Ray, J., and Gage, F. H. (1997) FGF-2 is sufficient to isolate progenitors found in the adult mammalian spinal cord. Exp. Neurol. 148, 577–586.

    PubMed  CAS  Google Scholar 

  91. Brustle, O., Maskos, U., and McKay, R. D. G. (1995) Host-guided migration allows targeted introduction of neurons into the embryonic brain. Neuron 15, 1275–1285.

    PubMed  CAS  Google Scholar 

  92. Campbell, K., Olsson, M., and Bjorklund, A. (1995) Regional incorporation and site-specific differentiation of striatal precursors transplanted to the embryonic forebrain ventricle. Neuron 15, 1259–1273.

    PubMed  CAS  Google Scholar 

  93. Fishell, G. (1995) Striatial precursors adopt cortical identities in response to local cues. Development 121, 803–812.

    PubMed  CAS  Google Scholar 

  94. Vicario-Abejon, C., Johe, K. K., Hazel, T. G., Collazo, D., and McKay, R. (1995) Functions of basic fibroblast growth factor and neurotrophins in the differentiation of hippocampal neurons. Neuron 15, 105–114.

    PubMed  CAS  Google Scholar 

  95. Gage, F. H., Ray, J., and Fisher, L. J. (1995) Isolation, characterisation and use of stem cells from the CNS. Annu. Rev. Neurosci. 18, 159–192.

    PubMed  CAS  Google Scholar 

  96. Takahashi, M., Palmer, T. D., Takahashi, J., and Gage, F. H. (1998) Widespread intergration and survival of adult-derived neural progenitor cells in the developing optic retina. Mol. Cell. Neurosci. 12, 340–348.

    PubMed  CAS  Google Scholar 

  97. Frederiksen, K. and McKay, R. D. (1998) Proliferation and differentiation of rat neuro-epithelial precursor cells in vivo. J. Neurosci. 9, 1144–1151.

    Google Scholar 

  98. Lendahl, U., Zimmerman, L. B., and McKay, R. D. G. (1990) CNS stem cells express a new class of intermediate filament protein. Cell 60, 585–595.

    PubMed  CAS  Google Scholar 

  99. Pevny, L. H., Sockanathan, S., Placzek, M., and Lovell-Badge, R. (1998) A role for SOX1 in neural determination. Development 125, 1967–1978.

    PubMed  CAS  Google Scholar 

  100. Sakakibara, S., Imai, T., Hamaguchi, K., et al. (1996) Mouse Musashi-1, a neural RNA-1 binding protein highly enriched in the mammalian CNS stem cell. Dev. Biol. 176, 230–242.

    PubMed  CAS  Google Scholar 

  101. Sakakibara, S. and Okano, H. (1997) Expression of neural RNA-binding proteins in the postnatal CNS: implications of their roles in neuronal and glial cell development. J. Neurosci. 17, 8300–8312.

    PubMed  CAS  Google Scholar 

  102. Weinmaster, G., Roberts, V. J., and Lemke, G. (1991) A homolog of Drosophila Notch expressed during mammalian development. Development 113, 199–205.

    PubMed  CAS  Google Scholar 

  103. Lim, D. A., Tramontin, A. D., Trevejo, J. M., Herrera, D. G., Garcia-Verdugo, J. M., and Alvarez-Buylla, A. (2000) Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 28, 713–726.

    PubMed  CAS  Google Scholar 

  104. Graham, V., Khudyakov, J., Ellis, P., and Pevny, L. (2003) SOX2 Functions to maintain neural progenitor identity. Neuron 39, 749–765.

    PubMed  CAS  Google Scholar 

  105. Bylund, M., Andersson, E., Novitch, B. G., and Muhr, J. (2003) Vertebrate neurogenesis is counteracted by Sox1-3 activity. Nat. Neurosci. 6, 1162–1168.

    PubMed  CAS  Google Scholar 

  106. Shi, Y., Chichung Lie, D., Taupin, P., et al. (2004) Expression and function of orphan nuclear receptor TLX in adult neural stem cells. Nature 427, 78–83.

    PubMed  CAS  Google Scholar 

  107. Sakakibara, S., Nakamura, Y., Yoshida, T., et al. (2002) RNA-binding protein Musashi family: roles for CNS stem cells and a subpopulation of ependymal cells revealed by targeted disruption and antisense ablation. Proc. Natl. Acad. Sci. USA 99, 15194–15199.

    PubMed  CAS  Google Scholar 

  108. Chambers, C. B., Peng, Y., Nguyen, H., Gaiano, N., Fishell, G., and Nye, J. S. (2001) Spatiotemporal selectivity of response to Notch 1 signals in mammalian forebrain precursors. Development 128, 689–702.

    PubMed  CAS  Google Scholar 

  109. Gaiano, N., Nye, J. S., and Fishell, G. (2000) Radial glial identity is promoted by Notch1 signaling in the murine forebrain. Neuron 26, 395–404.

    PubMed  CAS  Google Scholar 

  110. Gaiano, N. and Fishell, G. (2002) The role of notch in promoting glial and neural stem cell fates. Annu. Rev. Neurosci. 25, 471–490.

    PubMed  CAS  Google Scholar 

  111. Ishibashi, M., Moriyoshi, K., Sasai, Y., Shiota, K., Nakanishi, S., and Kageyama, R. (1994) Persistent expression of helix-loop-helix factor HES-1 prevents mammalian neural differentiation in the central nervous system. EMBO J. 13, 1799–1805.

    PubMed  CAS  Google Scholar 

  112. Ishibashi, M., Ang, S. L., Shiota, K., Nakanishi, S., Kageyama, R., and Guillemot, F. (1995) Targeted disruption of mammalian hairy and Enhancer of split homolog-1 (HES-1) leads to up-regulation of neural helix-loop-helix factors, premature neurogenesis, and severe neural tube defects. Genes Dev. 9, 3136–3148.

    PubMed  CAS  Google Scholar 

  113. Furukawa, T., Morrow, E. M., and Cepko, C. L. (1997) Crx, a novel otx-like homeobox gene, shows photoreceptor-specific expression and regulates photoreceptor differentiation. Cell 91, 531–541.

    PubMed  CAS  Google Scholar 

  114. Akita, J., Takahashi, M., Hojo, M., Nishida, A., Haruta, M., and Honda, Y. (2002) Neuronal differentiation of adult rat hippocampus-derived neural stem cells transplanted into embryonic rat explanted retinas with retinoic acid pretreatment. Brain Res. 954, 286–293.

    PubMed  CAS  Google Scholar 

  115. Morrison, S. J., Csete, M., Groves, A. K., Melega, W., Wold, B., and Anderson, D. J. (2000) Culture in reduced levels of oxygen promotes clonogenic sympathoadrenal differentiation by isolated neural crest stem cells. J. Neurosci. 20, 7370–7376.

    PubMed  CAS  Google Scholar 

  116. Scheer, N., Groth, A., Hans, S., and Campos-Ortega, J. A. (2001) An instructive function for Notch in promoting gliogenesis in the zebrafish retina. Development 128, 1099–1107.

    PubMed  CAS  Google Scholar 

  117. Hojo, M., Ohtsuka, T., Hashimoto, N., Gradwohl, G., Guillemot, F., and Kageyama, R. (2000) Glial cell fate specification modulated by the bHLH gene Hes5 in mouse retina. Development 127, 2515–2522.

    PubMed  CAS  Google Scholar 

  118. Park, I. K., Morrison, S. J., and Clarke, M. F. (2004) Bmi1, stem cells, and senescence regulation. J. Clin. Invest. 113, 175–179.

    PubMed  CAS  Google Scholar 

  119. Molofsky, A. V., Pardal, R., Iwashita, T., Park, I. K., Clarke, M. F., and Morrison, S. J. (2003) Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425, 962–967.

    PubMed  CAS  Google Scholar 

  120. Ezoe, S., Matsumura, I., Satoh, Y., Tanaka, H., and Kanakura, Y. (2004) Cell cycle regulation in hematopoietic stem/progenitor cells. Cell Cycle 3, 314–318.

    PubMed  CAS  Google Scholar 

  121. Raaphorst, F. M. (2003) Self-renewal of hematopoietic and leukemic stem cells: a central role for the Polycomb-group gene Bmi-1. Trends Immunol. 24, 522–524.

    PubMed  CAS  Google Scholar 

  122. Akasaka, T., Tsuji, K., Kawahira, H., et al. (1997) The role of mel-18, a mammalian Polycomb group gene, during IL-7-dependent proliferation of lymphocyte precursors. Immunity 7, 135–146.

    PubMed  CAS  Google Scholar 

  123. Ivanova, N. B., Dimos, J. T., Schaniel, C., Hackney, J. A., Moore, K. A., and Lemischka, I. R. (2002) A stem cell molecular signature. Science 298, 601–604.

    PubMed  CAS  Google Scholar 

  124. Ramalho-Santos, M., Yoon, S., Matsuzaki, Y., Mulligan, R. C., and Melton, D. A. (2002) “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science 298, 597–600.

    PubMed  CAS  Google Scholar 

  125. Terskikh, A. V., Easterday, M. C., Li, L., Hood, L., Kornblum, H. I., and Geschwind, D. (2001) From hematopoiesis to neuropoiesis: evidence of overlapping genetic programs. Proc. Natl. Acad. Sci. USA 98, 7934–7939.

    PubMed  CAS  Google Scholar 

  126. Geschwind, D., Ou, J., Easterday, M. C., et al. (2001) A genetic analysis of neural progenitor differentiation. Neuron 29, 325–339.

    PubMed  CAS  Google Scholar 

  127. D’Amour, K. A. and Gage, F. H. (2003) Genetic and functional differences between multipotent neural and pluripotent embryonic stem cells. Proc. Natl. Acad. Sci. USA 100(Suppl 1), 11866–11872.

    PubMed  CAS  Google Scholar 

  128. Rao, M. (1999) Multipotent and restricted precursors in the central nervous system. Anat. Rec. 257, 137–148.

    PubMed  CAS  Google Scholar 

  129. Maric, D., Maric, I., Chang, Y. H., and Barker, J. L. (2003) Prospective cell sorting of embryonic rat neural stem cells and neuronal and glial progenitors reveals effects of basic fibroblast growth factor and epidermal growth factor on self-renewal and differentiation. J. Neurosci. 23, 240–251.

    PubMed  CAS  Google Scholar 

  130. Bartlett, P. F., Brooker, G. J., Faux, C. H., et al. (1998) Regulation of neural stem cell differentiation in the forebrain. Immunol. Cell Biol. 76, 414–418.

    PubMed  CAS  Google Scholar 

  131. Capela, A. and Temple, S. (2002) LeX/SSEA-1 is expressed by adult mouse CNS stem cells, identifying them as non-ependymal. Neuron 35, 865–875.

    PubMed  Google Scholar 

  132. Quesenberry, P. J., Hulspas, R., Joly, C., et al. (1999) Correlates between hematopoiesis and neuropoiesis: neural stem cells. J. Neurotrauma 16, 661–666.

    PubMed  CAS  Google Scholar 

  133. Hulspas, R. and Quesenberry, P. J. (2000) Characterization of neurosphere cell phenotypes by flow cytometry. Cytometry 40, 245–250.

    PubMed  CAS  Google Scholar 

  134. Goodell, M. A., Brose, K., Paradis, G., Conner, A. S., and Mulligan, R. C. (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J. Exp. Med. 183, 1797.

    PubMed  CAS  Google Scholar 

  135. Yamaguchi, M., Saito, H., Suzuki, M., and Mori, K. (2000) Visualization of neurogenesis in the central nervous system using nestin promoter-GFP transgenic mice. Dev. Neurosci. 11, 1991–1996.

    CAS  Google Scholar 

  136. Roy, N. S., Benraiss, A., Wang, S., et al. (2000) Promoter-targeted selection and isolation of neural progenitor cells from the adult ventricular zone. J. Neurosci. Res. 59, 321–331.

    PubMed  CAS  Google Scholar 

  137. Sawamoto, K., Nakao, N., Kakishita, K., et al. (2001) Generation of dopaminergic neurons in the adult brain from mesencephalic precursor cells labeled with nestin-GFP transgene. J. Neurosci. 21, 3895–3903.

    PubMed  CAS  Google Scholar 

  138. Mignone, J. L., Kukekov, V., Chiang, A. S., Steindler, D., and Enikolopov, G. (2004) Neural stem and progenitor cells in nestin-GFP transgenic mice. J. Comp. Neurol. 469, 311–324.

    PubMed  CAS  Google Scholar 

  139. Ellis, P., Fagan, M., Taranova, O., et al. SOX2, a persistent marker for neural stem cells derived from ES cells, the embryo or the adult. Dev. Neurosci., in press.

    Google Scholar 

  140. Aubert, J., Stavridis, M. P., Tweedie, S., et al. (2003) Screening for mammalian neural genes via fluorescence-activated cell sorter purification of neural precursors from Sox1-gfp knock-in mice. Proc. Natl. Acad. Sci. USA 100(Suppl 1), 11836–11841.

    PubMed  CAS  Google Scholar 

  141. Li, M., Pevny, L., Lovell-Badge, R., and Smith, A. (1998) Generation of purified neural precursors from embryonic stem cells by lineage selection. Curr. Biol. 8, 971–974.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Pevny, L.H. (2006). Cellular and Molecular Properties of Multipotent Neural Stem Cells Throughout Ontogeny. In: Rao, M.S. (eds) Neural Development and Stem Cells. Contemporary Neuroscience. Humana Press. https://doi.org/10.1385/1-59259-914-1:049

Download citation

Publish with us

Policies and ethics