Skip to main content

Diabetes Mellitus and Heart Disease

  • Chapter
Diabetes and Cardiovascular Disease

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 1310 Accesses

Abstract

Heart disease was thought to be associated with diabetes as early as 1883 when Vegley recommended testing the urine of patients with angina for glucose (1). However, as more diabetic patients survived with the discovery of insulin and improved treatments for renal failure and infection, there was a marked relative increase in morbidity and mortality from cardiovascular disease (CVD). Diabetes is the seventh leading cause of death in the United States, with much of that mortality as a result of CVD (2). However because these statistics are based on the underlying cause of death, they underestimate the true impact of diabetes on mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vergely P. De l’angine de poitrine dans ses rapports avec le diabete. Gaz Hebd Med Chir (Paris) (Series 2)1883;20:364–368.

    Google Scholar 

  2. Control CfD. Trends in diabetes mortality. MMWR Morb Mortal Wkly Rep 1988;38:285–288.

    Google Scholar 

  3. Grundy SM, et al. Diabetes and cardiovascular disease: a statement for healthcare professionals from the American Heart Association. Circulation 1999;100(10):1134–1146.

    PubMed  CAS  Google Scholar 

  4. Barrett-Connor E, Orchard T. Diabetes and heart disease, in National Diabetes Data Group, Diabetes Data Compiled 1984,1985, U.S. Dept. of Health and Human Services: Washington, DC, 1985, pp. XVI-1–XVI-41.

    Google Scholar 

  5. American Diabetes Association. Consensus Statement: role of cardiovascular risk factors in prevention and treatment of macrovascular disease in diabetes. Diabetes Care 1993;16:72–78.

    Google Scholar 

  6. Pyorala K, Laakso M, Uusitupa M. Diabetes and atherosclerosis: an epidemiologic view. Diabetes Metab Rev 1987;3:463–524.

    PubMed  CAS  Google Scholar 

  7. O’Leary D, et al. Distribution and correlates of sonographically detected carotid artery disease in the Cardiovascular Health Study. The CHS Collaborative Research Group. Stroke 1992;23(12):1752–1760.

    PubMed  CAS  Google Scholar 

  8. Folsom AR, et al. Relation of carotid artery wall thickness to diabetes mellitus, fasting glucose and insulin, body size, and physical activity. Atherosclerosis Risk in Communities (ARIC) Study Investigators. Stroke 1994;25(1):66–73.

    PubMed  CAS  Google Scholar 

  9. Stamler J, et al. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care 1993;16(2):434–444.

    Article  PubMed  CAS  Google Scholar 

  10. Schwartz CJ, et al. Pathogenesis of the atherosclerotic lesion. Implications for diabetes mellitus. Diabetes Care 1992;15(9):1156–1167.

    Article  PubMed  CAS  Google Scholar 

  11. Aronson D. Pharmacologic modulation of autonomic tone: implications for the diabetic patient. Diabetologia 1997;40(4):476–481.

    Article  PubMed  CAS  Google Scholar 

  12. Carter JS, Pugh JA, Monterrosa A. Non-insulin-dependent diabetes mellitus in minorities in the United States [see comments]. Ann Intern Med 1996;125(3):221–232.

    PubMed  CAS  Google Scholar 

  13. Mokdad AH, et al. The spread of the obesity epidemic in the United States 1991–1998. Jama 1999;282(16):1519–1522.

    Article  PubMed  CAS  Google Scholar 

  14. Lee WL, et al. Impact of diabetes on coronary artery disease in women and men: a meta-analysis of prospective studies. Diabetes Care 2000;23(7):962–968.

    Article  PubMed  CAS  Google Scholar 

  15. Barrett-Connor EL, et al. Why is diabetes mellitus a stronger risk factor for fatal ischemic heart disease in women than in men? The Rancho Bernardo Study [published erratum appears in JAMA 1991;265 (24): 3249]. JAMA 1991;265(5):627–631.

    Article  PubMed  CAS  Google Scholar 

  16. Gu, K, Cowie CC, Harris MI. Mortality in adults with and without diabetes in a national cohort of the U.S. population, 1971–1993. Diabetes Care 1998;21(7):1138–1145.

    Article  PubMed  CAS  Google Scholar 

  17. Krolewski AS, et al. Magnitude and determinants of coronary artery disease in juvenile-onset, insulin-dependent diabetes mellitus. Am J Cardiol 1987;59(8):750–755.

    Article  PubMed  CAS  Google Scholar 

  18. Krolewski AS, et al. Epidemiologic approach to the etiology of type I diabetes mellitus and its complications. N Engl J Med 1987;317(22):1390–1398.

    Article  PubMed  CAS  Google Scholar 

  19. Bale GS, Entmacher PS. Estimated life expectancy of diabetics. Diabetes 1977;26(5):434–438.

    Article  PubMed  CAS  Google Scholar 

  20. Haffner SM, et al. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 1998;339(4):229–234.

    Article  PubMed  CAS  Google Scholar 

  21. Mukamal KJ, et al. Impact of diabetes on long-term survival after acute myocardial infarction: comparability of risk with prior myocardial infarction. Diabetes Care 2001;24(8):1422–1427.

    Article  PubMed  CAS  Google Scholar 

  22. Malmberg K, et al. Impact of diabetes on long-term prognosis in patients with unstable angina and non-Q-wave myocardial infarction: results of the OASIS (Organization to Assess Strategies for Ischemic Syndromes) Registry. Circulation 2000;102(9):1014–1019.

    PubMed  CAS  Google Scholar 

  23. Gu, K, Cowie CC, Harris MI. Diabetes and decline in heart disease mortality in US adults. JAMA 1999;281(14):1291–1297.

    Article  PubMed  CAS  Google Scholar 

  24. Donahue RP, Orchard TJ. Diabetes mellitus and macrovascular complications. An epidemiological perspective. Diabetes Care 1992;15(9):1141–1155.

    Article  PubMed  CAS  Google Scholar 

  25. Maser RE, et al. Cardiovascular disease and arterial calcification in insulin-dependent diabetes mellitus: interrelations and risk factor profiles. Pittsburgh Epidemiology of Diabetes Complications Study-V. Arterioscler Thromb 1991;11(4):958–965.

    PubMed  CAS  Google Scholar 

  26. Borch-Johnsen K, et al. Is diabetic nephropathy an inherited complication? Kidney Int 1992;41(4):719–722.

    Article  PubMed  CAS  Google Scholar 

  27. Jensen T, et al. Coronary heart disease in young type 1 (insulin-dependent) diabetic patients with and without diabetic nephropathy: incidence and risk factors. Diabetologia 1987;30(3):144–148.

    Article  PubMed  CAS  Google Scholar 

  28. Manske CL, et al. Coronary revascularisation in insulin-dependent diabetic patients with chronic renal failure. Lancet 1992;340(8826):98–1002.

    Article  Google Scholar 

  29. Deckert T, et al. Microalbuminuria. Implications for micro-and macrovascular disease. Diabetes Care 1992;15(9):1181–1191.

    Article  PubMed  CAS  Google Scholar 

  30. Jensen T, Stender S, Deckert T. Abnormalities in plasmas concentrations of lipoproteins and fibrinogen in type 1 (insulin-dependent) diabetic patients with increased urinary albumin excretion. Diabetologia 1988;31(3):142–145.

    Article  PubMed  CAS  Google Scholar 

  31. Jones SL, et al. Plasma lipid and coagulation factor concentrations in insulin dependent diabetics with microalbuminuria. Bmj 1989;298(6672):487–490.

    PubMed  CAS  Google Scholar 

  32. Winocour PH, et al. Influence of early diabetic nephropathy on very low density lipoprotein (VLDL), intermediate density lipoprotein (IDL), and low density lipoprotein (LDL) composition. Atherosclerosis 1991;89(1):49–57.

    Article  PubMed  CAS  Google Scholar 

  33. Gruden G, et al. PAI-1 and factor VII activity are higher in IDDM patients with microalbuminuria. Diabetes 1994;43(3):426–429.

    Article  PubMed  CAS  Google Scholar 

  34. Makita Z, et al. Advanced glycosylation end products in patients with diabetic nephropathy [see comments]. N Engl J Med 1991;325(12):836–842.

    Article  PubMed  CAS  Google Scholar 

  35. Makita Z, et al. Reactive glycosylation endproducts in diabetic uraemia and treatment of renal failure. Lancet 1994;343(8912):1519–1522.

    Article  PubMed  CAS  Google Scholar 

  36. Earle K, et al. Familial clustering of cardiovascular disease in patients with insulin-dependent diabetes and nephropathy. N Engl J Med 1992;326(10):673–677.

    Article  PubMed  CAS  Google Scholar 

  37. Krolewski AS, et al. Predisposition to hypertension and susceptibility to renal disease in insulin-dependent diabetes mellitus. N Engl J Med 1988;318(3):140–145.

    Article  PubMed  CAS  Google Scholar 

  38. Marre M, et al. Contribution of genetic polymorphism in the renin-angiotensin system to the development of renal complications in insulin-dependent diabetes: Genetique de la Nephropathie Diabetique (GENEDIAB) study group. J Clin Invest 1997;99(7):1585–1595.

    PubMed  CAS  Google Scholar 

  39. Cambien F, et al. Deletion polymorphism in the gene for angiotensin-converting enzyme is a potent risk factor for myocardial infarction [see comments]. Nature 1992;359(6396):641–644.

    Article  PubMed  CAS  Google Scholar 

  40. Tarnow L, et al. Insertion/deletion polymorphism in the angiotensin-I-converting enzyme gene is associated with coronary heart disease in IDDM patients with diabetic nephropathy [see comments]. Diabetologia 1995;38(7):798–803.

    Article  PubMed  CAS  Google Scholar 

  41. Ruiz J, et al. Insertion/deletion polymorphism of the angiotensin-converting enzyme gene is strongly associated with coronary heart disease in non-insulin-dependent diabetes mellitus. Proc Natl Acad Sci USA 1994;91(9):3662–3665.

    Article  PubMed  CAS  Google Scholar 

  42. Keavney BD, et al. UK prospective diabetes study (UKPDS) 14: association of angiotensin-converting enzyme insertion/deletion polymorphism with myocardial infraction in NIDDM. Diabetologia 1995;38(8):948–952.

    Article  PubMed  CAS  Google Scholar 

  43. Kannel WB, McGee DL. Diabetes and cardiovascular disease. The Framingham study. JAMA 1979;241(19):2035–2038.

    Article  PubMed  CAS  Google Scholar 

  44. Jarrett RJ, McCartney P, Keen H. The Bedford survey: ten year mortality rates in newly diagnosed diabetics, borderline diabetics and normoglycaemic controls and risk indices for coronary heart disease in borderline diabetics. Diabetologia 1982;22(2):79–84.

    Article  PubMed  CAS  Google Scholar 

  45. Jarrett RJ, Shipley MJ. Type 2 (non-insulin-dependent) diabetes mellitus and cardiovascular disease— putative association via common antecedents; further evidence from the Whitehall Study. Diabetologia 1988;31(10):737–740.

    Article  PubMed  CAS  Google Scholar 

  46. Fontbonne A, et al. Hypertriglyceridaemia as a risk factor of coronary heart disease mortality in subjects with impaired glucose tolerance or diabetes. Results from the 11-year follow-up of the Paris Prospective Study. Diabetologia 1989;32(5):300–304.

    Article  PubMed  CAS  Google Scholar 

  47. Nathan DM. Long-term complications of diabetes mellitus. N Engl J Med 1993;328(23):1676–1685.

    Article  PubMed  CAS  Google Scholar 

  48. Barrett-Connor E, Wingard DL. Sex differential in ischemic heart disease mortality in diabetics: a prospective population-based study. Am J Epidemiol 1983;118(4):489–496.

    PubMed  CAS  Google Scholar 

  49. Reaven G. Syndrome X: 10 years after. Drugs 1999;58(Suppl 1):19–20; discussion 75–82.

    Article  PubMed  Google Scholar 

  50. Ferrannini E, et al. Insulin resistance in essential hypertension. N Engl J Med 1987;317(6):350–357.

    Article  PubMed  CAS  Google Scholar 

  51. Zavaroni I, et al. Risk factors for coronary artery disease in healthy persons with hyperinsulinemia and normal glucose tolerance [see comments]. N Engl J Med 1989;320(11):702–706.

    Article  PubMed  CAS  Google Scholar 

  52. Larsson B, et al. Abdominal adipose tissue distribution, obesity, and risk of cardiovascular disease and death: 13 year follow up of participants in the study of men born in 1913. Br Med J (Clin Res Ed) 1984;288(6428):1401–1404.

    CAS  Google Scholar 

  53. Laakso M, Barrett-Connor E. Asymptomatic hyperglycemia is associated with lipid and lipoprotein changes favoring atherosclerosis. Arteriosclerosis 1989;9(5):665–672.

    PubMed  CAS  Google Scholar 

  54. Laws A, et al. Relation of fasting plasma insulin concentration to high density lipoprotein cholesterol and triglyceride concentrations in men. Arterioscler Thromb 1991;11(6):1636–1642.

    PubMed  CAS  Google Scholar 

  55. Modan M, et al. Hyperinsulinemia is characterized by jointly disturbed plasma VLDL, LDL, and HDL levels. A population-based study. Arteriosclerosis 1988;8(3):227–236.

    PubMed  CAS  Google Scholar 

  56. Peiris AN, et al. Adiposity, fat distribution, and cardiovascular risk. Ann Intern Med 1989;110(11):867–872.

    PubMed  CAS  Google Scholar 

  57. Reaven GM. Role of insulin resistance in human disease (syndrome X): an expanded definition. Annu Rev Med 1993;44:121–131.

    Article  PubMed  CAS  Google Scholar 

  58. Reaven GM, Laws A. Insulin resistance, compensatory hyperinsulinaemia, and coronary heart disease. Diabetologia 1994;37(9):948–952.

    Article  PubMed  CAS  Google Scholar 

  59. Howard G, et al. Insulin sensitivity and atherosclerosis. The Insulin Resistance Atherosclerosis Study (IRAS) Investigators [see comments]. Circulation 1996;93(10):1809–1817.

    PubMed  CAS  Google Scholar 

  60. Laakso M, et al. Asymptomatic atherosclerosis and insulin resistance. Arterioscler Thromb 1991;11(4):1068–1076.

    PubMed  CAS  Google Scholar 

  61. Agewall S, et al. Urinary albumin excretion is associated with the intima-media thickness of the carotid artery in hypertensive males with non-insulin-dependent diabetes mellitus. J Hypertens 1995;13(4):463–469.

    Article  PubMed  CAS  Google Scholar 

  62. Bonora E, et al, Prevalence of insulin resistance in metabolic disorders: the Bruneck Study. Diabetes 1998;47(10):1643–1649.

    Article  PubMed  CAS  Google Scholar 

  63. Fuller JH, et al. Coronary-heart-disease risk and impaired glucose tolerance. The Whitehall study. Lancet 1980;1(8183):1373–1376.

    PubMed  CAS  Google Scholar 

  64. Morrish NJ, et al. Aprospective study of mortality among middle-aged diabetic patients (the London Cohort of the WHO Multinational Study of Vascular Disease in Diabetics) II: Associated risk factors [published erratum appears in Diabetologia 1991 Apr;34(4):287]. Diabetologia 1990;33(9):542–548.

    Article  PubMed  CAS  Google Scholar 

  65. Uusitupa M, et al. The relationship of cardiovascular risk factors to the prevalence of coronary heart disease in newly diagnosed type 2 (non-insulin-dependent) diabetes. Diabetologia 1985;28(9):653–659.

    Article  PubMed  CAS  Google Scholar 

  66. Head J, Fuller JH. International variations in mortality among diabetic patients: the WHO Multinational Study of Vascular Disease in Diabetics. Diabetologia 1990;33(8):477–481.

    Article  PubMed  CAS  Google Scholar 

  67. Despres JP, et al. Hyperinsulinemia as an independent risk factor for ischemic heart disease. N Engl J Med 1996;334(15):952–957.

    Article  PubMed  CAS  Google Scholar 

  68. Andersson DK, Svardsudd K. Long-term glycemic control relates to mortality in type II diabetes. Diabetes Care 1995;18(12):1534–1543.

    Article  PubMed  CAS  Google Scholar 

  69. Wei M, et al. Effects of diabetes and level of glycemia on all-cause and cardiovascular mortality. The San Antonio Heart Study. Diabetes Care 1998;21(7):1167–1172.

    Article  PubMed  CAS  Google Scholar 

  70. Klein, R, Klein BE, Moss SE. The Wisconsin Epidemiologic Study of Diabetic Retinopathy. XVI. The relationship of C-peptide to the incidence and progression of diabetic retinopathy. Diabetes 1995;44(7):796–801.

    Article  PubMed  CAS  Google Scholar 

  71. Wingard DL, et al. Prevalence of cardiovascular and renal complications in older adults with normal or impaired glucose tolerance or NIDDM. A population-based study. Diabetes Care 1993;16(7):1022–1025.

    Article  PubMed  CAS  Google Scholar 

  72. Kuusisto J, et al. Non-insulin-dependent diabetes and its metabolic control are important predictors of stroke in elderly subjects. Stroke 1994;25(6):1157–1164.

    PubMed  CAS  Google Scholar 

  73. Rodriguez BL, et al. Glucose intolerance and 23-year risk of coronary heart disease and total mortality: the Honolulu Heart Program. Diabetes Care 1999;22(8):1262–1265.

    Article  PubMed  CAS  Google Scholar 

  74. Singer DE, et al. Association of HbA1c with prevalent cardiovascular disease in the original cohort of the Framingham Heart Study. Diabetes 1992;41(2):202–208.

    Article  PubMed  CAS  Google Scholar 

  75. Kuusisto J, et al. NIDDM and its metabolic control predict coronary heart disease in elderly subjects. Diabetes 1994;43(8):960–967.

    Article  PubMed  CAS  Google Scholar 

  76. Mattock MB, et al. Prospective study of microalbuminuria as predictor of mortality in NIDDM. Diabetes 1992;41(6):736–741.

    Article  PubMed  CAS  Google Scholar 

  77. Neil A, et al. Aprospective population-based study of microalbuminuria as a predictor of mortality in NIDDM. Diabetes Care 1993;16(7):996–1003.

    Article  PubMed  CAS  Google Scholar 

  78. Ducimetiere P, et al. Relationship of plasma insulin levels to the incidence of myocardial infarction and coronary heart disease mortality in a middle-aged population. Diabetologia 1980;19(3):205–210.

    Article  PubMed  CAS  Google Scholar 

  79. Pyorala K. Relationship of glucose tolerance and plasma insulin to the incidence of coronary heart disease: results from two population studies in Finland. Diabetes Care 1979;2(2):131–141.

    Article  PubMed  CAS  Google Scholar 

  80. Welborn TA, Wearne K. Coronary heart disease incidence and cardiovascular mortality in Busselton with reference to glucose and insulin concentrations. Diabetes Care 1979;2(2):154–160.

    Article  PubMed  CAS  Google Scholar 

  81. Stout RW. Insulin and atheroma 20-yr perspective. Diabetes Care 1990;13(6):631–654.

    Article  PubMed  CAS  Google Scholar 

  82. Gowri MS, et al. Decreased protection by HDL from poorly controlled type 2 diabetic subjects against LDL oxidation may be due to the abnormal composition of HDL. Arterioscler Thromb Vasc Biol 1999;19(9):2226–2233.

    PubMed  CAS  Google Scholar 

  83. Tsai EC, et al. Reduced plasma peroxyl radical trapping capacity and increased susceptibility of LDL to oxidation in poorly controlled IDDM. Diabetes 1994;43(8):1010–1014.

    Article  PubMed  CAS  Google Scholar 

  84. Baynes JW, Thorpe SR. Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 1999;48(1):1–9.

    Article  PubMed  CAS  Google Scholar 

  85. Ceriello A, et al. Evidence for a possible role of oxygen free radicals in the abnormal functional arterial vasomotion in insulin dependent diabetes. Diabete Metab 1990;16(4):318–322.

    PubMed  CAS  Google Scholar 

  86. Kilhovd BK, et al. Serum levels of advanced glycation end products are increased in patients with type 2 diabetes and coronary heart disease. Diabetes Care 1999;22(9):1543–1548.

    Article  PubMed  CAS  Google Scholar 

  87. Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes 1991;40(4):405–412.

    Article  PubMed  CAS  Google Scholar 

  88. King GL, et al. Cellular and molecular abnormalities in the vascular endothelium of diabetes mellitus. Annu Rev Med 1994;45:179–188.

    Article  PubMed  CAS  Google Scholar 

  89. Gabbay KH. The sorbitol pathway and the complications of diabetes. N Engl J Med 1973;288(16):831–836.

    Article  PubMed  CAS  Google Scholar 

  90. Yusuf S, et al. Vitamin E supplementation and cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med 2000;342(3):154–160.

    Article  PubMed  CAS  Google Scholar 

  91. Bursell SE, et al. High-dose vitamin E supplementation normalizes retinal blood flow and creatinine clearance in patients with type 1 diabetes. Diabetes Care 1999;22(8):1245–1251.

    Article  PubMed  CAS  Google Scholar 

  92. Ahmed MU, Thorpe SR, Baynes JW. Identification of N epsilon-carboxymethyllysine as a degradation product of fructoselysine in glycated protein. J Biol Chem 1986;261(11):4889–4894.

    PubMed  CAS  Google Scholar 

  93. Sell DR, Monnier VM. Structure elucidation of a senescence cross-link from human extracellular matrix. Implication of pentoses in the aging process. J Biol Chem 1989;264(36):21,597–21,602.

    PubMed  CAS  Google Scholar 

  94. Baron AD. Insulin and the vasculature—old actors, new roles. J Investig Med 1996;44(8):406–412.

    PubMed  CAS  Google Scholar 

  95. Moncada S. Eighth Gaddum Memorial Lecture. University of London Institute of Education, December 1980. Biological importance of prostacyclin. Br J Pharmacol 1982;76(1):3–31.

    PubMed  CAS  Google Scholar 

  96. Fu MX, et al. The advanced glycation end product, Nepsilon-(carboxymethyl)lysine, is a product of both lipid peroxidation and glycoxidation reactions. J Biol Chem 1996;271(17):9982–9986.

    Article  PubMed  CAS  Google Scholar 

  97. Requena JR, et al. Quantification of malondialdehyde and 4-hydroxynonenal adducts to lysine residues in native and oxidized human low-density lipoprotein. Biochem J 1997;322 (Pt 1):317–325.

    PubMed  CAS  Google Scholar 

  98. Bucala R, et al. Lipid advanced glycosylation: pathway for lipid oxidation in vivo. Proc Natl Acad Sci USA 1993;90(14):6434–6438.

    Article  PubMed  CAS  Google Scholar 

  99. Haberland ME, Fong D, Cheng L. Malondialdehyde-altered protein occurs in atheroma of Watanabe heritable hyperlipidemic rabbits. Science 1988;241(4862):215–218.

    Article  PubMed  CAS  Google Scholar 

  100. Rosenfeld ME, et al. Distribution of oxidation specific lipid-protein adducts and apolipoprotein B in atherosclerotic lesions of varying severity from WHHL rabbits. Arteriosclerosis 1990;10(3):336–349.

    PubMed  CAS  Google Scholar 

  101. Carew TE, Schwenke DC, Steinberg D. Antiatherogenic effect of probucol unrelated to its hypocholesterolemic effect: evidence that antioxidants in vivo can selectively inhibit low density lipoprotein degradation in macrophage-rich fatty streaks and slow the progression of atherosclerosis in the Watanabe heritable hyperlipidemic rabbit. Proc Natl Acad Sci U S A 1987;84(21):7725–7729.

    Article  PubMed  CAS  Google Scholar 

  102. Regnstrom J, et al. Susceptibility to low-density lipoprotein oxidation and coronary atherosclerosis in man. Lancet 1992;339(8803):1183–1186.

    Article  PubMed  CAS  Google Scholar 

  103. Vlassara H, Brownlee M, Cerami A. Novel macrophage receptor for glucose-modified proteins is distinct from previously described scavenger receptors. J Exp Med 1986;164(4):1301–1309.

    Article  PubMed  CAS  Google Scholar 

  104. Vlassara H, et al. Cachectin/TNF and IL-1 induced by glucose-modified proteins: role in normal tissue remodeling. Science 1988;240(4858):1546–1548.

    Article  PubMed  CAS  Google Scholar 

  105. Bevilacqua MP, et al. Interleukin 1 (IL-1) induces biosynthesis and cell surface expression of procoagulant activity in human vascular endothelial cells. J Exp Med 1984;160(2):618–623.

    Article  PubMed  CAS  Google Scholar 

  106. Breviario F, et al. IL-1-induced adhesion of polymorphonuclear leukocytes to cultured human endothelial cells. Role of platelet-activating factor. J Immunol 1988;141(10):3391–3397.

    PubMed  CAS  Google Scholar 

  107. Raines EW, Dower SK, Ross R. Interleukin-1 mitogenic activity for fibroblasts and smooth muscle cells is due to PDGF-AA. Science 1989;243(4889):393–396.

    Article  PubMed  CAS  Google Scholar 

  108. O’Brien KD, et al. Vascular cell adhesion molecule-1 is expressed in human coronary atherosclerotic plaques. Implications for the mode of progression of advanced coronary atherosclerosis. J Clin Invest 1993;92(2):945–951.

    PubMed  CAS  Google Scholar 

  109. Beekhuizen H, van Furth R. Monocyte adherence to human vascular endothelium. J Leukoc Biol 1993;54(4):363–378.

    PubMed  CAS  Google Scholar 

  110. Pohlman TH, et al. An endothelial cell surface factor(s) induced in vitro by lipopolysaccharide, interleukin 1, and tumor necrosis factor-alpha increases neutrophil adherence by a CDw18-dependent mechanism. J Immunol 1986;136(12):4548–4553.

    PubMed  CAS  Google Scholar 

  111. Park L, et al. Suppression of accelerated diabetic atherosclerosis by the soluble receptor for advanced glycation endproducts. Nat Med 1998;4(9):1025–1031.

    Article  PubMed  CAS  Google Scholar 

  112. Brown AS, et al. Megakaryocyte ploidy and platelet changes in human diabetes and atherosclerosis. Arterioscler Thromb Vasc Biol 1997;17(4):802–807.

    PubMed  CAS  Google Scholar 

  113. Winocour PD, Watala C, Kinglough-Rathbone RL. Membrane fluidity is related to the extent of glycation of proteins, but not to alterations in the cholesterol to phospholipid molar ratio in isolated platelet membranes from diabetic and control subjects. Thromb Haemost 1992;67(5):567–571.

    PubMed  CAS  Google Scholar 

  114. Davi G, et al. Thromboxane biosynthesis and platelet function in type II diabetes mellitus. N Engl J Med 1990;322(25):1769–1774.

    Article  PubMed  CAS  Google Scholar 

  115. Ishii H, Umeda F, Nawata H. Platelet function in diabetes mellitus. Diabetes Metab Rev 1992;8(1):53–66.

    PubMed  CAS  Google Scholar 

  116. Hendra T, Betteridge DJ. Platelet function, platelet prostanoids and vascular prostacyclin in diabetes mellitus. Prostaglandins Leukot Essent Fatty Acids 1989;35(4):197–212.

    Article  PubMed  CAS  Google Scholar 

  117. Menys VC, et al. Spontaneous platelet aggregation in whole blood is increased in non-insulin-dependent diabetes mellitus and in female but not male patients with primary dyslipidemia. Atherosclerosis 1995;112(1):115–122.

    Article  PubMed  CAS  Google Scholar 

  118. Kannel WB, et al. Diabetes, fibrinogen, and risk of cardiovascular disease: the Framingham experience. Am Heart J 1990;120(3):672–676.

    Article  PubMed  CAS  Google Scholar 

  119. Lufkin EG, et al. Increased von Willebrand factor in diabetes mellitus. Metabolism 1979;28(1):63–66.

    Article  PubMed  CAS  Google Scholar 

  120. Kannel WB, et al. Fibrinogen and risk of cardiovascular disease. The Framingham Study. Jama 1987;258(9):1183–1186.

    Article  PubMed  CAS  Google Scholar 

  121. Eliasson M, et al. Proinsulin, intact insulin, and fibrinolytic variables and fibrinogen in healthy subjects. A population study. Diabetes Care 1997;20(8):1252–1255.

    Article  PubMed  CAS  Google Scholar 

  122. Ceriello A, et al. Decreased antithrombin III activity in diabetes may be due to non-enzymatic glycosylation—a preliminary report. Thromb Haemost 1983;50(3):633–634.

    PubMed  CAS  Google Scholar 

  123. Brownlee M, Vlassara H, Cerami A. Inhibition of heparin-catalyzed human antithrombin III activity by nonenzymatic glycosylation. Possible role in fibrin deposition in diabetes. Diabetes 1984;33(6):532–535.

    Article  PubMed  CAS  Google Scholar 

  124. Ceriello A, et al. Daily rapid blood glucose variations may condition antithrombin III biologic activity but not its plasma concentration in insulin-dependent diabetes. A possible role for labile non-enzymatic glycation. Diabete Metab 1987;13(1):16–19.

    PubMed  CAS  Google Scholar 

  125. Ceriello A, et al. Protein C deficiency in insulin-dependent diabetes: ahyperglycemia-related phenomenon. Thromb Haemost 1990;64(1):104–107.

    PubMed  CAS  Google Scholar 

  126. Auwerx J, et al. Tissue-type plasminogen activator antigen and plasminogen activator inhibitor in diabetes mellitus. Arteriosclerosis 1988;8(1):68–72.

    PubMed  CAS  Google Scholar 

  127. McGill JB, et al. Factors responsible for impaired fibrinolysis in obese subjects and NIDDM patients. Diabetes 1994;43(1):104–109.

    Article  PubMed  CAS  Google Scholar 

  128. Nordt TK, Schneider DJ, Sobel BE. Augmentation of the synthesis of plasminogen activator inhibitor type-1 by precursors of insulin. A potential risk factor for vascular disease. Circulation 1994;89(1):321–330.

    PubMed  CAS  Google Scholar 

  129. Small KW, Stefansson E, Hatchell DL. Retinal blood flow in normal and diabetic dogs. Invest Ophthalmol Vis Sci 1987;28(4):672–675.

    PubMed  CAS  Google Scholar 

  130. Clermont AC, et al. Normalization of retinal blood flow in diabetic rats with primary intervention using insulin pumps. Invest Ophthalmol Vis Sci 1994;35(3):981–990.

    PubMed  CAS  Google Scholar 

  131. Bursell SE, et al. Retinal blood flow changes in patients with insulin-dependent diabetes mellitus and no diabetic retinopathy. Invest Ophthalmol Vis Sci 1996;37(5):886–897.

    PubMed  CAS  Google Scholar 

  132. Miyamoto K, et al. Evaluation of retinal microcirculatory alterations in the Goto-Kakizaki rat. A spontaneous model of non-insulin-dependent diabetes. Invest Ophthalmol Vis Sci 1996;37(5):898–905.

    PubMed  CAS  Google Scholar 

  133. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980;288(5789):373–376.

    Article  PubMed  CAS  Google Scholar 

  134. Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987;327(6122):524–526.

    Article  PubMed  CAS  Google Scholar 

  135. Ignarro LJ, et al. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A 1987;84(24):9265–9269.

    Article  PubMed  CAS  Google Scholar 

  136. Dinerman JL, Lowenstein CJ, Snyder SH. Molecular mechanisms of nitric oxide regulation. Potential relevance to cardiovascular disease. Circ Res 1993;73(2):217–222.

    PubMed  CAS  Google Scholar 

  137. Lincoln TM, Cornwell RL, Taylor AE. cGMP-dependent protein kinase mediates the reduction of Ca2+ by cAMP in vascular smooth muscle cells. Am J Physiol 1990;258(3 Pt 1):C399–C407.

    PubMed  CAS  Google Scholar 

  138. Collins P, et al. Differences in basal endothelium-derived relaxing factor activity in different artery types. J Cardiovasc Pharmacol 1986;8(6):1158–1162.

    Article  PubMed  CAS  Google Scholar 

  139. Johnstone MT, et al. Impaired endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. Circulation 1993;88(6):2510–2516.

    PubMed  CAS  Google Scholar 

  140. McVeigh GE, et al. Impaired endothelium-dependent and independent vasodilation in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 1992;35(8):771–776.

    PubMed  CAS  Google Scholar 

  141. Williams SB, et al. Impaired nitric oxide-mediated vasodilation in patients with non-insulin-dependent diabetes mellitus. J Am Coll Cardiol 1996;27(3):567–574.

    Article  PubMed  CAS  Google Scholar 

  142. Steinberg HO, et al. Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance. J Clin Invest 1996;97(11):2601–2610.

    PubMed  CAS  Google Scholar 

  143. Ting HH, et al. Vitamin C improves endothelium-dependent vasodilation in patients with non-insulin-dependent diabetes mellitus. J Clin Invest 1996;97(1):22–28.

    PubMed  CAS  Google Scholar 

  144. Timimi FK, et al. Vitamin C improves endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. J Am Coll Cardiol 1998;31(3):552–557.

    Article  PubMed  CAS  Google Scholar 

  145. van Etten RW, et al. Intensive lipid lowering by statin therapy does not improve vasoreactivity in patients with type 2 diabetes. Arterioscler Thromb Vasc Biol 2002;22(5):799–804.

    Article  PubMed  CAS  Google Scholar 

  146. Cooke JP. Does ADMA cause endothelial dysfunction? Arterioscler Thromb Vasc Biol 2000;20(9):2032–2037.

    PubMed  CAS  Google Scholar 

  147. Fard A, Tuck C, Di Tullio MR, et al. Plasma assymetric dimethylarginine is elevated and endothelial function is impaired after a high fat meal in type 2 diabetics. Circulation 1999;100(Supplement II):3700(abstr).

    Google Scholar 

  148. Asagami T, Li W, Abbasi FA, Tsao, PS, Cooke JP, Reaven G. Metformin attenuates plasma asymetric dimethylarginine and monocyte adhesion in type 2 diabetes. Circulation 1999;102(Supplement II):1129(abstr).

    Google Scholar 

  149. Vigorita VJ, Moore GW, Hutchins GM. Absence of correlation between coronary arterial atherosclerosis and severity or duration of diabetes mellitus of adult onset. Am J Cardiol 1980;46(4):535–542.

    Article  PubMed  CAS  Google Scholar 

  150. Waller BF, et al. Status of the coronary arteries at necropsy in diabetes mellitus with onset after age 30 years. Analysis of 229 diabetic patients with and without clinical evidence of coronary heart disease and comparison to 183 control subjects. Am J Med 1980;69(4):498–506.

    Article  PubMed  CAS  Google Scholar 

  151. Granger CB, et al. Outcome of patients with diabetes mellitus and acute myocardial infarction treated with thrombolytic agents. The Thrombolysis and Angioplasty in Myocardial Infarction (TAMI) Study Group. J Am Coll Cardiol 1993;21(4):920–925.

    PubMed  CAS  Google Scholar 

  152. Stein B, et al. Influence of diabetes mellitus on early and late outcome after percutaneous transluminal coronary angioplasty. Circulation 1995;91(4):979–989.

    PubMed  CAS  Google Scholar 

  153. Barzilay JI, et al. Coronary artery disease and coronary artery bypass grafting in diabetic patients aged < or = 65 years (report from the Coronary Artery Surgery Study [CASS] Registry). Am J Cardiol 1994;74(4):334–339.

    Article  PubMed  CAS  Google Scholar 

  154. Davies MJ, et al. Factors influencing the presence or absence of acute coronary artery thrombi in sudden ischaemic death. Eur Heart J 1989;10(3):203–208.

    PubMed  CAS  Google Scholar 

  155. Silva JA, et al. Unstable angina. A comparison of angioscopic findings between diabetic and nondiabetic patients. Circulation 1995;92(7):1731–1736.

    PubMed  CAS  Google Scholar 

  156. Bradley RF, Schonfeld A. Diminished pain in diabetic patients with acute myocardial infarction. Geriatrics 1962;17:322–326.

    PubMed  CAS  Google Scholar 

  157. Margolis JR, et al. Clinical features of unrecognized myocardial infarction-silent and asymptomatic. Eighteen year follow-up: the Framingham study. Am J Cardiol 1973;32:1–7.

    Article  PubMed  CAS  Google Scholar 

  158. Soler NG, et al. Myocardial infarction in diabetics. Q J Med 1975;44(173):125–232.

    PubMed  CAS  Google Scholar 

  159. Marchant B, et al. Silent myocardial ischemia: role of subclinical neuropathy in patients with and without diabetes. J Am Coll Cardiol 1993;22(5):1433–1437.

    PubMed  CAS  Google Scholar 

  160. Hume L, et al. Asymptomatic myocardial ischemia in diabetes and its relationship to diabetic neuropathy: an exercise electrocardiography study in middle-aged diabetic men. Diabetes Care 1986;9(4):384–388.

    Article  PubMed  CAS  Google Scholar 

  161. O’Sullivan J, et al. Silent ischaemia in diabetic men with autonomic neuropathy. Br Heart J 1991;66(4):313–315.

    Article  PubMed  CAS  Google Scholar 

  162. Nesto RW, et al. Angina and exertional myocardial ischemia in diabetic and nondiabetic patients: assessment by exercise thallium scintigraphy [published erratum appears in Ann Intern Med 1988 Apr;108(4):646]. Ann Intern Med 1988;108(2):170–175.

    PubMed  CAS  Google Scholar 

  163. Abenavoli T, et al. Exercise testing with myocardial scintigraphy in asymptomatic diabetic males. Circulation 1981;63(1):54–64.

    PubMed  CAS  Google Scholar 

  164. Langer A, et al. Detection of silent myocardial ischemia in diabetes mellitus [see comments]. Am J Cardiol 1991;67(13):1073–1078.

    Article  PubMed  CAS  Google Scholar 

  165. Milan Study on Atherosclerosis and Diabetes (MiSAD) Group, Prevalence of unrecognized silent myocardial ischemia and its association with atherosclerotic risk factors in noninsulin-dependent diabetes mellitus. Am J Cardiol 1997;79(2):134–139.

    Article  Google Scholar 

  166. Callaham PR, et al. Exercise-induced silent ischemia: age, diabetes mellitus, previous myocardial infarction and prognosis. J Am Coll Cardiol 1989;14(5):1175–1180.

    Article  PubMed  CAS  Google Scholar 

  167. Caracciolo EA, et al. Diabetics with coronary disease have a prevalence of asymptomatic ischemia during exercise treadmill testing and ambulatory ischemia monitoring similar to that of nondiabetic patients. An ACIP database study. ACIP Investigators. Asymptomatic Cardiac Ischemia Pilot Investigators [see comments]. Circulation 1996;93(12):2097–2105.

    PubMed  CAS  Google Scholar 

  168. Faerman I, et al. Autonomic neuropathy and painless myocardial infarction in diabetic patients. Histologic evidence of their relationship. Diabetes 1977;26(12):1147–1158.

    Article  PubMed  CAS  Google Scholar 

  169. Ambepityia G, et al. Exertional myocardial ischemia in diabetes: a quantitative analysis of anginal perceptual threshold and the influence of autonomic function. J Am Coll Cardiol 1990;15(1):72–77.

    PubMed  CAS  Google Scholar 

  170. Wackers FJ, et al. Detection of silent myocardial ischemia in asymptomatic diabetic subjects: the DIAD study. Diabetes Care 2004;27(8):1954–1961.

    Article  PubMed  Google Scholar 

  171. Jaffe AS, et al. Increased congestive heart failure after myocardial infarction of modest extent in patients with diabetes mellitus. Am Heart J 1984;108(1):31–37.

    Article  PubMed  CAS  Google Scholar 

  172. Savage MP, et al. Acute myocardial infarction in diabetes mellitus and significance of congestive heart failure as a prognostic factor. Am J Cardiol 1988;62(10 Pt 1):665–669.

    Article  PubMed  CAS  Google Scholar 

  173. Malmberg K, Ryden L. Myocardial infarction in patients with diabetes mellitus. Eur Heart J 1988;9(3):259–264.

    PubMed  CAS  Google Scholar 

  174. Stone PH, et al. The effect of diabetes mellitus on prognosis and serial left ventricular function after acute myocardial infarction: contribution of both coronary disease and diastolic left ventricular dysfunction to the adverse prognosis. The MILIS Study Group. J Am Coll Cardiol 1989;14(1):49–57.

    PubMed  CAS  Google Scholar 

  175. Mak KH, et al. Influence of diabetes mellitus on clinical outcome in the thrombolytic era of acute myocardial infarction. GUSTO-I Investigators. Global Utilization of Streptokinase and Tissue Plasminogen Activator for Occluded Coronary Arteries. J Am. Coll. Cardiol 1997;30(1):171–179.

    Article  PubMed  CAS  Google Scholar 

  176. Barbash GI, et al. Significance of diabetes mellitus in patients with acute myocardial infarction receiving thrombolytic therapy. Investigators of the International Tissue Plasminogen Activator/Streptokinase Mortality Trial. J Am Coll Cardiol 1993;22(3):707–713.

    PubMed  CAS  Google Scholar 

  177. Lee KL, et al. Predictors of 30-day mortality in the era of reperfusion for acute myocardial infarction. Results from an international trial of 41,021 patients. GUSTO-I Investigators [see comments]. Circulation 1995;91(6):1659–1668.

    PubMed  CAS  Google Scholar 

  178. Zuanetti G, et al. Influence of diabetes on mortality in acute myocardial infarction: data from the GISSI-2 study. J Am Coll Cardiol 1993;22(7):1788–1794.

    PubMed  CAS  Google Scholar 

  179. Holmes DR Jr, et al. Cardiogenic shock in patients with acute ischemic syndromes with and without ST-segment elevation. Circulation 1999;100(20):2067–2073.

    PubMed  Google Scholar 

  180. Orlander PR, et al. The relation of diabetes to the severity of acute myocardial infarction and postmyocardial infarction survival in Mexican-Americans and non-Hispanic whites. The Corpus Christi Heart Project. Diabetes 1994;43(7):897–902.

    Article  PubMed  CAS  Google Scholar 

  181. Lehto S, et al. Myocardial infarct size and mortality in patients with non-insulin-dependent diabetes mellitus. J Intern Med 1994;236(3):291–297.

    PubMed  CAS  Google Scholar 

  182. Ulvenstam G, et al. Long-term prognosis after myocardial infarction in men with diabetes. Diabetes 1985;34(8):787–792.

    Article  PubMed  CAS  Google Scholar 

  183. Iwasaka T, et al. Residual left ventricular pump function after acute myocardial infarction in NIDDM patients. Diabetes Care 1992;15(11):1522–1526.

    Article  PubMed  CAS  Google Scholar 

  184. Aronson D, Rayfield EJ, Chesebro JH. Mechanisms determining course and outcome of diabetic patients who have had acute myocardial infarction. Ann Intern Med 1997;126(4):296–306.

    PubMed  CAS  Google Scholar 

  185. Fava S, et al. Factors that influence outcome in diabetic subjects with myocardial infarction. Diabetes Care 1993;16(12):1615–168.

    Article  PubMed  CAS  Google Scholar 

  186. Gwilt DJ, et al. Myocardial infarct size and mortality in diabetic patients. Br Heart J 1985;54(5):466–472.

    Article  PubMed  CAS  Google Scholar 

  187. Zarich SW, et al. Diastolic abnormalities in young asymptomatic diabetic patients assessed by pulsed Doppler echocardiography. J Am Coll Cardiol 1988;12(1):114–120.

    PubMed  CAS  Google Scholar 

  188. Takahashi N, et al. Left ventricular regional function after acute anterior myocardial infarction in diabetic patients. Diabetes Care 1989;12(9):630–635.

    Article  PubMed  CAS  Google Scholar 

  189. The GUSTO Angiographic Investigators, The effects of tissue plasminogen activator, streptokinase, or both on coronary-artery patency, ventricular function, and survival after acute myocardial infarction. N Engl J Med 1993;329(22):1615–1622.

    Google Scholar 

  190. Abaci A, et al. Effect of diabetes mellitus on formation of coronary collateral vessels. Circulation 1999;99(17):2239–2242.

    PubMed  CAS  Google Scholar 

  191. Herlitz J, et al. Mortality and morbidity during a five-year follow-up of diabetics with myocardial infarction. Acta Med Scand 1988;224(1):31–38.

    Article  PubMed  CAS  Google Scholar 

  192. Capone RJ, et al. Events in the cardiac arrhythmia suppression trial: baseline predictors of mortality in placebo-treated patients. J Am Coll Cardiol 1991;18(6):1434–1438.

    PubMed  CAS  Google Scholar 

  193. Gilpin E, et al. Factors associated with recurrent myocardial infarction within one year after acute myocardial infarction. Am Heart J 1991;121(2 Pt 1):457–465.

    Article  PubMed  CAS  Google Scholar 

  194. Taylor GJ, et al. Six-year survival after coronary thrombolysis and early revascularization for acute myocardial infarction. Am J Cardiol 1992;70(1):26–30.

    Article  PubMed  CAS  Google Scholar 

  195. Malmberg K, et al. Randomized trial of insulin-glucose infusion followed by subcutaneous insulin treatment in diabetic patients with acute myocardial infarction (DIGAMI study): effects on mortality at 1 year [see comments]. J Am Coll Cardiol 1995;26(1):57–65.

    Article  PubMed  CAS  Google Scholar 

  196. Malmberg K. Prospective randomised study of intensive insulin treatment on long term survival after acute myocardial infarction in patients with diabetes mellitus. DIGAMI (Diabetes Mellitus, Insulin Glucose Infusion in Acute Myocardial Infarction) Study Group [see comments]. BMJ 1997;314(7093):1512–1515.

    PubMed  CAS  Google Scholar 

  197. Tschoepe D, et al. Platelets in diabetes: the role in the hemostatic regulation in atherosclerosis. Semin Thromb Hemost 1993;19(2):122–128.

    Article  PubMed  CAS  Google Scholar 

  198. DiMinno G, et al. Trial of repeated low-dose aspirin in diabetic angiopathy. Blood 1986;68(4):886–891.

    PubMed  CAS  Google Scholar 

  199. Randomized trial of intravenous streptokinase, o.a, both, or neither among 17,187 cases of suspected acute myocardial infarction: ISIS-2. ISIS-2 (Second International Study of Infarct Survival) Collaborative Group. Lancet 1988;2:349–360.

    Google Scholar 

  200. Antiplatelet Trialist’ Collaboration, Collaborative overview of randomized trials of antiplatelet therapy. I. Prevention of death, myocardial infarction, and stroke by prolonged antiplatelet therapy in various categories of patients. BMJ 1994;308:81–106.

    Google Scholar 

  201. Colwell JA. Aspirin therapy in diabetes. Diabetes Care 1997;20(11):1767–1771.

    PubMed  CAS  Google Scholar 

  202. Association AD. Aspirin therapy in diabetes. Diabetes Care 1997;20(11):1772–1773.

    Google Scholar 

  203. Kendall MJ, et al. Beta-blockers and sudden cardiac death [see comments]. Ann Intern Med 1995;123(5):358–367.

    PubMed  CAS  Google Scholar 

  204. Mangano DT, et al. Effect of atenolol on mortality and cardiovascular morbidity after noncardiac surgery. Multicenter Study of Perioperative Ischemia Research Group [see comments] [published erratum appears in N Engl J Med 1997 Apr 3;336(14):1039]. N Engl J Med 1996;335(23):1713–1720.

    Article  PubMed  CAS  Google Scholar 

  205. Shorr RI, et al. Antihypertensives and the risk of serious hypoglycemia in older persons using insulin or sulfonylureas [see comments]. JAMA 1997;278(1):40–43.

    Article  PubMed  CAS  Google Scholar 

  206. Pfeffer MA. ACE inhibitors in acute myocardial infarction: patient selection and timing [editorial; comment]. Circulation 1998;97(22):2192–2194.

    PubMed  CAS  Google Scholar 

  207. Zuanetti G, et al. Effect of the ACE inhibitor lisinopril on mortality in diabetic patients with acute myocardial infarction: data from the GISSI-3 study [see comments]. Circulation 1997;96(12):4239–4245.

    PubMed  CAS  Google Scholar 

  208. Moye LA, et al. Uniformity of captopril benefit in the SAVE Study: subgroup analysis. Survival and Ventricular Enlargement Study. Eur Heart J 1994;15(Suppl B):2–8; discussion 26–30.

    PubMed  Google Scholar 

  209. Gustafsson I, et al. Effect of the angiotensin-converting enzyme inhibitor trandolapril on mortality and morbidity in diabetic patients with left ventricular dysfunction after acute myocardial infarction. Trace Study Group. J Am Coll Cardiol 1999;34(1):83–89.

    Article  PubMed  CAS  Google Scholar 

  210. Yusuf S, et al. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med 2000;342(3):145–153.

    Article  PubMed  CAS  Google Scholar 

  211. Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Heart Outcomes Prevention Evaluation Study Investigators. Lancet 2000;355(9200):253–259.

    Google Scholar 

  212. Torlone E, et al. ACE-inhibition increases hepatic and extrahepatic sensitivity to insulin in patients with type 2 (non-insulin-dependent) diabetes mellitus and arterial hypertension. Diabetologia 1991;34(2):119–125.

    Article  PubMed  CAS  Google Scholar 

  213. Pollare T, Lithell H, Berne C. A comparison of the effects of hydrochlorothiazide and captopril on glucose and lipid metabolism in patients with hypertension [see comments]. N Engl J Med 1989;321(13):868–873.

    Article  PubMed  CAS  Google Scholar 

  214. Bak JF, et al. Effects of perindopril on insulin sensitivity and plasma lipid profile in hypertensive non-insulin-dependent diabetic patients. Am J Med 1992;92(4B):69S–72S.

    Article  PubMed  CAS  Google Scholar 

  215. Lewis EJ, et al. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group [see comments] [published erratum appears in N Engl J Med 1993;330(2): 152]. N Engl J Med 1993;329(20):1456–1462.

    Article  PubMed  CAS  Google Scholar 

  216. Ravid M, et al., Long-term stabilizing effect of angiotensin-converting enzyme inhibition on plasma creatinine and on proteinuria in normotensive type II diabetic patients [see comments]. Ann Intern Med 1993;118(8):577–581.

    PubMed  CAS  Google Scholar 

  217. Inhibition of the platelet glycoprotein IIb/IIIa receptor with tirofiban in unstable angina and non-Q-wave myocardial infarction. Platelet Receptor Inhibition in Ischemic Syndrome Management in Patients Limited by Unstable Signs and Symptoms (PRISM-PLUS) Study Investigators. N Engl J Med 1998;338(21):1488–14897.

    Google Scholar 

  218. Steinhubl SR, et al. Attainment and maintenance of platelet inhibition through standard dosing of abciximab in diabetic and nondiabetic patients undergoing percutaneous coronary intervention. Circulation 1999;100(19):1977–1982.

    PubMed  CAS  Google Scholar 

  219. Platelet glycoprotein IIb/IIIa receptor blockade and low-dose heparin during percutaneous coronary revascularization. The EPILOG Investigators. N Engl J Med 1997;336(24):1689–1696.

    Google Scholar 

  220. Randomised placebo-controlled and balloon-angioplasty-controlled trial to assess safety of coronary stenting with use of platelet glycoprotein-IIb/IIIa blockade. The EPISTENT Investigators. Evaluation of Platelet IIb/IIIa Inhibitor for Stenting. Lancet 1998;352(9122):87–92.

    Google Scholar 

  221. Roffi M, et al. Impact of different platelet glycoprotein IIb/IIIa receptor inhibitors among diabetic patients undergoing percutaneous coronary intervention: Do Tirofiban and ReoPro Give Similar Efficacy Outcomes Trial (TARGET) 1-year follow-up. Circulation 2002;105(23):2730–2736.

    Article  PubMed  CAS  Google Scholar 

  222. Woodfield SL, et al. Angiographic findings and outcome in diabetic patients treated with thrombolytic therapy for acute myocardial infarction: the GUSTO-I experience. J Am. Coll. Cardiol 1996;28(7):1661–1669.

    Article  PubMed  CAS  Google Scholar 

  223. Fibrinolytic Therapy Trialists’ (FTT) Collaborative Group:, indications for fibrinolytic therapy in suspected acute myocardial infarction: collaborative overview of early mortality and major morbidity results from all randomized trials of more then 1000 patients. Lancet 1994;343:311–322.

    Google Scholar 

  224. Mahaffey KW, et al. Diabetic retinopathy should not be a contraindication to thrombolytic. J Am Coll Cardiol 1997;30(7):1606–1610.

    Article  PubMed  CAS  Google Scholar 

  225. Detre K, et al. Percutaneous transluminal coronary angioplasty in 1985–1986 and 1977–1981. The National Heart, Lung, and Blood Institute Registry. N Engl J Med 1988;318:265–270.

    Article  PubMed  CAS  Google Scholar 

  226. Adelman A, et al. Acomparison of directional atherectomy with balloon angioplasty for lesions of the left anterior descending coronary artery [see comments]. N Engl J Med 1993;329:228–233.

    Article  PubMed  CAS  Google Scholar 

  227. Parisi A, Folland E, Hartigan P. Acomparison of angioplasty with medical therapy in the treatment of single-vessel coronary artery disease. N Engl J Med 1993;326:10–16.

    Article  Google Scholar 

  228. The Bypass Angioplasty Revascularization Investigation (B ARI) Investigators, Comparison of coronary bypass surgery with angioplasty in patients with multivessel disease. N Engl J Med 1996;335(4):217–225.

    Google Scholar 

  229. Kurbaan AS, et al. Difference in the mortality of the CABRI diabetic and nondiabetic populations and its relation to coronary artery disease and the revascularization mode. Am J Cardiol 2001;87(8):947–950,A3.

    Article  PubMed  CAS  Google Scholar 

  230. Holmes DJ, et al. Restenosis after percutanous transluminal coronary angioplasty (PTCA): a report from the PTCA Registry of the National Heart, Lung, and Blood Institute. Am J Cardiol 1984;53:77C–81C.

    Article  PubMed  Google Scholar 

  231. Weintraub W, et al. Can restenosis after coronary angioplasty be predicted from clinical variables. J Am Coll Cardiol 1993;21:6–14.

    PubMed  CAS  Google Scholar 

  232. Vandormael MG, et al. Multilesion coronary angioplasty: clinical and angiographic follow-up. J Am. Coll. Cardiol 1987;10(2):246–252.

    PubMed  CAS  Google Scholar 

  233. Quigley PJ, et al. Repeat percutaneous transluminal coronary angioplasty and predictors of recurrent restenosis. Am J Cardiol 1989;63(7):409–413.

    Article  PubMed  CAS  Google Scholar 

  234. Rensing BJ, et al. Luminal narrowing after percutaneous transluminal coronary angioplasty. A study of clinical, procedural, and lesional factors related to long-term angiographic outcome. Coronary Artery Restenosis Prevention on Repeated Thromboxane Antagonism (CARPORT) Study Group. Circulation 1993;88(3):975–985.

    PubMed  CAS  Google Scholar 

  235. Bach R, et al. Factors affecting the restenosis rate after percutaneous transluminal coronary angioplasty. Thromb Hemost 1994;74:(Suppl 1):S55–S77.

    Google Scholar 

  236. Lambert M, et al. Multiple coronary angioplasty: a model to discriminate systemic and procedural factors related to restenosis. J Am Coll Cardiol 1988;12(2):310–314.

    PubMed  CAS  Google Scholar 

  237. Popma JJ, et al. Clinical and angiographic outcome after directional coronary atherectomy. A qualitative and quantitative analysis using coronary arteriography and intravascularultrasound. Am. J Cardiol 1993;72(13):55E–64E.

    Article  PubMed  CAS  Google Scholar 

  238. Warth D, et al. Rotational atherectomy multicenter registry: acute results, complications and 6-month angiographic follow-up in 709 patients. J Am Coll Cardiol 1994;24:641–648.

    PubMed  CAS  Google Scholar 

  239. Levine GN, et al. Impact of diabetes mellitus on percutaneous revascularization (CAVEAT-I). CA-VEAT-I Investigators. Coronary Angioplasty Versus Excisional Atherectomy Trial. Am J Cardiol 1997;79(6):748–755.

    Article  PubMed  CAS  Google Scholar 

  240. Rabbani L, et al. Relation of restenosis after excimer laser angioplasty to fasting insulin levels. Am J Cardiol 1994;73:323–327.

    Article  PubMed  CAS  Google Scholar 

  241. Fischman DL, et al. Arandomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. Stent Restenosis Study Investigators [see comments]. N Engl J Med 1994;331(8):496–501.

    Article  PubMed  CAS  Google Scholar 

  242. Kastrati A, et al. Predictive factors of restenosis after coronary stent placement. J Am Coll Cardiol 1997;30:1428–1436.

    Article  PubMed  CAS  Google Scholar 

  243. Kastrati A, et al. Interlesion dependence of the risk for restenosis in patients with coronary stent placement in in multiple lesions. Circulation 1998;97(24):2396–2401.

    PubMed  CAS  Google Scholar 

  244. Carrozza J, et al. Restenosis after arterial injury caused by coronary stenting in patients with diabetes mellitus. Ann Intern Med 1993;118:344–349.

    PubMed  Google Scholar 

  245. Wang N, et al. Percutaneous transluminal coronary angioplasty failures in patients with multivessel disease. Is there an increased risk? J Thorac Cardiovasc Surg 1995;110(1):214–221; discussion 221–223.

    Article  PubMed  CAS  Google Scholar 

  246. Van Belle E, et al. Restenosis rates in diabetic patients: a comparison of coronary stenting and balloon angioplasty in native coronary vessels. Circulation 1997;96:1454–1460.

    PubMed  Google Scholar 

  247. Kip KE, et al. Coronary angioplasty in diabetic patients. The National Heart, Lung, and Blood Institute Percutaneous Transluminal Coronary Angioplasty Registry [see comments]. Circulation 1996;94(8):1818–1825.

    PubMed  CAS  Google Scholar 

  248. Gum P, et al. Bypass surgery versus coronary angioplasty for revascularization of treated diabetic patients. Circulation 1997;96(9 Suppl):II–II710.

    PubMed  CAS  Google Scholar 

  249. Ellis CJ, et al. Results of percutaneous coronary angioplasty in patients <40 years of age. Am J Cardiol 1998;82(2):135–139.

    Article  PubMed  CAS  Google Scholar 

  250. Dauerman HL, et al, Mechanical debulking versus balloon angioplasty for the treatment of diffuse in-stent restenosis. Am J Cardiol 1998;82(3):277–284.

    Article  PubMed  CAS  Google Scholar 

  251. Walton BL, et al, Diabetic patients treated with abciximab and intracoronary stenting. Catheter Cardiovasc Interv 2002;55(3):321–325.

    Article  PubMed  Google Scholar 

  252. Marso SP, et al. Optimizing the percutaneous interventional outcomes for patients with diabetes mellitus: results of the EPISTENT (Evaluation of platelet IIb/IIIa inhibitor for stenting trial) diabetic substudy [see comments]. Circulation 1999;100(25):2477–2484.

    PubMed  CAS  Google Scholar 

  253. Kornowski R, et al. Increased restenosis in diabetes mellitus after coronary interventions is due to exaggerated intimal hyperplasia. A serial intravascular ultrasound study. Circulation 1997;95(6):1366–1369.

    PubMed  CAS  Google Scholar 

  254. Aronson D, Bloomgarden Z, Rayfield EJ. Potential mechanisms promoting restenosis in diabetic patients. J Am Coll Cardiol 1996;27(3):528–535.

    Article  PubMed  CAS  Google Scholar 

  255. Moreno PR, et al. Coronary composition and macrophage infiltration in atherectomy specimens from patients with diabetes mellitus. Circulation 2000;102(18):2180–2184.

    PubMed  CAS  Google Scholar 

  256. Sobel BE. Acceleration of restenosis by diabetes: pathogenetic implications. Circulation 2001;103(9):1185–1187.

    PubMed  CAS  Google Scholar 

  257. Sobel BE. Increased plasminogen activator inhibitor-1 and vasculopathy. A reconcilable paradox. Circulation 1999;99(19):2496–2498.

    PubMed  CAS  Google Scholar 

  258. Roguin A, et al. Haptoglobin phenotype and the risk of restenosis after coronary artery stent implantation. Am J Cardiol 2002;89(7):806–810.

    Article  PubMed  Google Scholar 

  259. Fietsam R Jr, Bassett J, Glover JL. Complications of coronary artery surgery in diabetic patients. Am Surg 1991;57(9):551–557.

    PubMed  Google Scholar 

  260. Slaughter MS, et al. Afifteen-year wound surveillance study after coronary artery bypass. Ann Thorac Surg 1993;56(5):1063–1068.

    Article  PubMed  CAS  Google Scholar 

  261. Palac RT, et al. Risk factors related to progressive narrowing in aortocoronary vein grafts studied 1 and 5 years after surgery. Circulation 1982;66(2 Pt 2):I40–I44.

    PubMed  CAS  Google Scholar 

  262. Lytle BW, et al. Long-term (5 to 12 years) serial studies of internal mammary artery and saphenous vein coronary bypass grafts. J Thorac Cardiovasc Surg 1985;89(2):248–258.

    PubMed  CAS  Google Scholar 

  263. Hirotani T, et al. Effects of coronary artery bypass grafting using internal mammary arteries for diabetic patients. J Am Coll Cardiol 1999;34(2):532–538.

    Article  PubMed  CAS  Google Scholar 

  264. Davies M, et al. Diabetes mellitus and experimental vein graft structure and function. J Vasc Surg 1994;19:1031–1043.

    PubMed  CAS  Google Scholar 

  265. Morris JJ, et al. Influence of diabetes and mammary artery grafting on survival after coronary bypass. Circulation 1991;84(5 Suppl):III275–III284.

    PubMed  CAS  Google Scholar 

  266. Herlitz J, et al. Mortality and morbidity during a period of 2 years after coronary artery bypass surgery in patients with and without a history of hypertension. J Hypertens 1996;14(3):309–314.

    Article  PubMed  CAS  Google Scholar 

  267. Lawrie GM, Morris GC Jr, Glaeser DH. Influence of diabetes mellitus on the results of coronary bypass surgery. Follow-up of 212 diabetic patients ten to 15 years after surgery. JAMA 1986;256(21):2967–2971.

    Article  PubMed  CAS  Google Scholar 

  268. Ferguson J. NHLBIB ARI clinical alert on diabetics treated with angioplasty. Circulation 1995;92:3371.

    PubMed  CAS  Google Scholar 

  269. The Bypass Angioplasty Revascularization Investigation (BARI), Influence of diabetes on 5-year mortality and morbidity in a randomized trial comparing C ABG and PTCA in patients with multivessel disease [see comments]. Circulation 1997;96(6):1761–1769.

    Google Scholar 

  270. Barsness GW, et al. Relationship between diabetes mellitus and long-term survival after coronary bypass and angioplasty. Circulation 1997;96(8):2551–2556.

    PubMed  CAS  Google Scholar 

  271. Weintraub W, et al. Outcome of coronary bypass surgery versus coronary angioplasty in diabetic patients with multivessel coronary artery disease. J Am Coll Cardiol 1998;31:10–19.

    Article  PubMed  CAS  Google Scholar 

  272. Zhao X, et al. Effectiveness of revascularization in the Emory angioplasty versus surgery trial. A randomized comparison of coronary angioplasty with bypass surgery. Circulation 1996;93:1954–1962.

    PubMed  CAS  Google Scholar 

  273. Bell MR, et al. Effect of completeness of revascularization on long-term outcome of patients with three-vessel disease undergoing coronary artery bypass surgery. A report from the Coronary Artery Surgery Study (CASS) Registry. Circulation 1992;86(2):446–457.

    PubMed  CAS  Google Scholar 

  274. Schaff HV, et al. Clinical and operative characteristics of patients randomized to coronary artery bypass surgery in the Bypass Angioplasty Revascularization Investigation (BARI). Am J Cardiol 1995;75(9):18C–26C.

    Article  PubMed  CAS  Google Scholar 

  275. Van Belle E, et al. Patency of percutaneous transluminal coronary angioplasty sites at 6-month angiographic follow-up: A key determinant of survival in diabetics after coronary balloon angioplasty. Circulation 2001;103(9):1218–1224.

    PubMed  Google Scholar 

  276. Nashar P, et al. Maximal coronary flow reserve and metabolic coronary vasodilation in patients with diabetes mellitus. Circulation 1995;91:635–640.

    Google Scholar 

  277. Grundy SM, et al. Prevention Conference VI: Diabetes and Cardiovascular Disease: executive summary: conference proceeding for healthcare professionals from a special writing group of the American Heart Association. Circulation 2002;105(18):2231–2239.

    Article  PubMed  Google Scholar 

  278. Scandinavian Simvastatin Survival Study Group, Randomized trial of cholesterol lowering in 4444 patients with coronary heart disease: Scandinavian Simvastatin Survival Study (4S). Lancet 1994;334:1383–1389.

    Google Scholar 

  279. Pyorala K, et al. Cholesterol lowering with simvastatin improves prognosis of diabetic patients with coronary heart disease. A subgroup analysis of the Scandinavian Simvastatin Survival Study (4S) [see comments]. Diabetes Care 1997;20(4):614–620.

    Article  PubMed  CAS  Google Scholar 

  280. Sacks FM, et al. Relationship between plasma LDL concentrations during treatment with pravastatin and recurrent coronary events in the Cholesterol and Recurrent Events trial. Circulation 1998;97(15):1446–1452.

    PubMed  CAS  Google Scholar 

  281. Selby JV, et al. LDL subclass phenotypes and the insulin resistance syndrome in women. Circulation 1993;88(2):381–387.

    PubMed  CAS  Google Scholar 

  282. Lyons TJ. Glycation and oxidation: a role in the pathogenesis of atherosclerosis. Am J Cardiol 1993;71(6):26B–31B.

    Article  PubMed  CAS  Google Scholar 

  283. Collins R, et al. MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomised placebo-controlled trial. Lancet 2003;361(9374):2005–2016.

    Article  PubMed  CAS  Google Scholar 

  284. Colhoun HM, et al. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet 2004;364(9435):685–696.

    Article  PubMed  CAS  Google Scholar 

  285. Grundy SM, et al. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation 2004;110(2):227–239.

    Article  PubMed  Google Scholar 

  286. Goldberg RB, et al. Cardiovascular events and their reduction with pravastatin in diabetic and glucose-intolerant myocardial infarction survivors with average cholesterol levels: subgroup analyses in the cholesterol and recurrent events (CARE) trial. The Care Investigators. Circulation 1998;98(23):2513–2519.

    PubMed  CAS  Google Scholar 

  287. Haffner SM. Epidemiological studies on the effects of hyperglycemia and improvement of glycemic control on macrovascular events in type 2 diabetes. Diabetes Care 1999;22(Suppl 3):C54–C56.

    PubMed  Google Scholar 

  288. Rubins HB, et al. Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. N Engl J Med 1999;341(6):410–418.

    Article  PubMed  CAS  Google Scholar 

  289. Sacks FM, et al. Coronary heart disease in patients with low LDL-cholesterol: benefit of pravastatin in diabetics and enhanced role for HDL-cholesterol and triglycerides as risk factors. Circulation 2002;105(12):1424–1428.

    Article  PubMed  CAS  Google Scholar 

  290. National High Blood Pressure Education Program Working group report on Hypertension and Diabetes, Hypertension 1994;23:145–158.

    Google Scholar 

  291. American diabetes association, Consensus statement on the treatment of hypertension in diabetes. Diabetes Care 1993;16:1394–1401.

    Google Scholar 

  292. The sixth report of the Joint National Committee on prevention, d, evaluation, and treatment of high blood pressure. Arch Intern Med 1997;157(21):2413–2446.

    Google Scholar 

  293. Estacio RO, et al, The effect of nisoldipine as compared with enalapril on cardiovascular outcomes in patients with non-insulin-dependent diabetes and hypertension [see comments]. N Engl J Med 1998;338(10):645–652.

    Article  PubMed  CAS  Google Scholar 

  294. Tatti P, et al. Outcome results of the Fosinopril Versus Amlodipine Cardiovascular Events Randomized Trial (FACET) in patients with hypertension and NIDDM. Diabetes Care 1998;21(4):597–603.

    Article  PubMed  CAS  Google Scholar 

  295. Curb JD, et al. Effect of diuretic-based antihypertensive treatment on cardiovascular disease risk in older diabetic patients with isolated systolic hypertension. Systolic Hypertension in the Elderly Program Cooperative Research Group [published erratum appears in JAMA 1997;277(17):1356] [see comments]. JAMA 1996;276(23):1886–1892.

    Article  PubMed  CAS  Google Scholar 

  296. Pahor M, Psaty BM, Furberg CD. Treatment of hypertensive patients with diabetes [see comments]. Lancet 1998;351(9104):689–690.

    Article  PubMed  CAS  Google Scholar 

  297. Sowers JR. Comorbidity of hypertension and diabetes: the fosinopril versus amlodipine cardiovascular events trial (FACET). Am J Cardiol 1998;82(9B):15R–19R.

    Article  PubMed  CAS  Google Scholar 

  298. Tuomilehto J, et al. Effects of calcium-channel blockade in older patients with diabetes and systolic hypertension. Systolic Hypertension in Europe Trial Investigators [see comments]. N Engl J Med 1999;340(9):677–684.

    Article  PubMed  CAS  Google Scholar 

  299. Hansson L, et al. Effects of intensive blood-pressure lowering and low-dose aspirin in patients with hypertension: principal results of the Hypertension Optimal Treatment (HOT) randomised trial. HOT Study Group [see comments]. Lancet 1998;351(9118):1755–1762.

    Article  PubMed  CAS  Google Scholar 

  300. Cooper ME. Pathogenesis, prevention, and treatment of diabetic nephropathy. Lancet 1998;352(9123):213–219.

    Article  PubMed  CAS  Google Scholar 

  301. Parving HH. Renoprotection in diabetes: genetic and non-genetic risk factors and treatment. Diabetologia 1998;41(7):745–759.

    Article  PubMed  CAS  Google Scholar 

  302. Lindholm LH, et al. Cardiovascular morbidity and mortality in patients with diabetes in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet 2002;359(9311):1004–1010.

    Article  PubMed  CAS  Google Scholar 

  303. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med 1993;329(14):977–986.

    Google Scholar 

  304. Effect of intensive diabetes management on macrovascular events and risk factors in the Diabetes Control and Complications Trial. Am J Cardiol 1995;75(14):894–903.

    Google Scholar 

  305. Kunjathoor VV, Wilson DL, LeBoeuf RC. Increased atherosclerosis in streptozotocin-induced diabetic mice. J Clin Invest 1996;97(7):1767–1773.

    PubMed  CAS  Google Scholar 

  306. Jensen-Urstad KJ, et al. Early atherosclerosis is retarded by improved long-term blood glucose control in patients with IDDM. Diabetes 1996;45(9):1253–1258.

    Article  PubMed  CAS  Google Scholar 

  307. UK Prospective Diabetes Study (UKPDS) Group, Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998;352(9131):837–853.

    Article  Google Scholar 

  308. The absence of a glycemic threshold for the development of long-term complications: the perspective of the Diabetes Control and Complications Trial. Diabetes 1996;45(10):1289–1298.

    Google Scholar 

  309. Klein R, et al. Glycosylated hemoglobin in a population-based study of diabetes. Am J Epidemiol 1987;126(3):415–428.

    PubMed  CAS  Google Scholar 

  310. Consensus statement, The pharmacological treatment of hyperglycemia in NIDDM. Diabetes Care 1995;18:1510–1518.

    Google Scholar 

  311. Clark RS, et al. Effect of intravenous infusion of insulin in diabetics with acute myocardial infarction. Br Med J (Clin Res Ed) 1985;291(6491):303–305.

    CAS  Google Scholar 

  312. Malmberg K, et al. Glycometabolic state at admission: important risk marker of mortality in conventionally treated patients with diabetes mellitus and acute myocardial infarction: long-term results from the Diabetes and Insulin-Glucose Infusion in Acute Myocardial Infarction (DIGAMI) study. Circulation 1999;99(20):2626–2632.

    PubMed  CAS  Google Scholar 

  313. Consensus development conference on the diagnosis of coronary heart disease in people with diabetes: 10-11 February 1998, Miami, Florida. American Diabetes Association. Diabetes Care 1998;21(9):1551–1559.

    Google Scholar 

  314. Knowler WC, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002;346(6):393–403.

    Article  PubMed  CAS  Google Scholar 

  315. Kannel WB, Hjortland M, Castelli WP. Role of diabetes in congestive heart failure: the Framingham study. Am J Cardiol 1974;34(1):29–34.

    Article  PubMed  CAS  Google Scholar 

  316. Croft JB, et al. National trends in the initial hospitalization for heart failure. J Am Geriatr Soc 1997;45(3):270–275.

    PubMed  CAS  Google Scholar 

  317. Polanczyk CA, et al. Ten-year trends in hospital care for congestive heart failure: improved outcomes and increased use of resources. Arch Intern Med 2000;160(3):325–332.

    Article  PubMed  CAS  Google Scholar 

  318. Reis SE, et al. Treatment of patients admitted to the hospital with congestive heart failure: specialty-related disparities in practice patterns and outcomes. J Am Coll Cardiol 1997;30(3):733–738.

    Article  PubMed  CAS  Google Scholar 

  319. Butler R, et al. The clinical implications of diabetic heart disease. Eur Heart J 1998;19(11):1617–1627.

    Article  PubMed  CAS  Google Scholar 

  320. Garcia MJ, et al. Morbidity and mortality in diabetics in the Framingham population. Sixteen year follow-up study. Diabetes 1974;23(2):105–111.

    PubMed  CAS  Google Scholar 

  321. Hamby RI, Zoneraich S, Sherman L. Diabetic cardiomyopathy. Jama 1974;229(13):1749–1754.

    Article  PubMed  CAS  Google Scholar 

  322. Litwin SE, Grossman W. Diastolic dysfunction as a cause of heart failure. J Am Coll Cardiol 1993;22(4 Suppl A):49A–55A.

    PubMed  CAS  Google Scholar 

  323. Melchior T, et al. The impact of heart failure on prognosis of diabetic and non-diabetic patients with myocardial infarction: a 15-year follow-up study. Eur J Heart Fail 2001;3(1):83–90.

    Article  PubMed  CAS  Google Scholar 

  324. Timmis AD. Diabetic heart disease: clinical considerations. Heart 2001;85(4):463–469.

    Article  PubMed  CAS  Google Scholar 

  325. Hypertension in Diabetes Study (HDS): II. Increased risk of cardiovascular complications in hypertensive type 2 diabetic patients. J Hypertens 1993;11(3):319–325.

    Google Scholar 

  326. Rubler S, et al. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 1972;30(6):595–602.

    Article  PubMed  CAS  Google Scholar 

  327. Coughlin SS, et al. Diabetes mellitus and risk of idiopathic dilated cardiomyopathy. The Washington, DC Dilated Cardiomyopathy Study. Ann Epidemiol 1994;4(1):67–74.

    Article  PubMed  CAS  Google Scholar 

  328. Coughlin SS, Tefft MC. The epidemiology of idiopathic dilated cardiomyopathy in women: the Washington DC Dilated Cardiomyopathy Study. Epidemiology 1994;5(4):449–455.

    Article  PubMed  CAS  Google Scholar 

  329. Mildenberger RR, et al. Clinically unrecognized ventricular dysfunction in young diabetic patients. J Am Coll Cardiol 1984;4(2):234–238.

    PubMed  CAS  Google Scholar 

  330. Vered A, et al. Exercise-induced left ventricular dysfunction in young men with asymptomatic diabetes mellitus (diabetic cardiomyopathy). Am J Cardiol 1984;54(6):633–637.

    Article  PubMed  CAS  Google Scholar 

  331. Zola B, et al. Abnormal cardiac function in diabetic patients with autonomic neuropathy in the absence of ischemic heart disease. J Clin Endocrinol Metab 1986;63(1):208–214.

    PubMed  CAS  Google Scholar 

  332. Mustonen JN, et al. Impaired left ventricular systolic function during exercise in middle-aged insulin-dependent and noninsulin-dependent diabetic subjects without clinically evident cardiovascular disease. Am J Cardiol 1988;62(17):1273–1279.

    Article  PubMed  CAS  Google Scholar 

  333. Arvan S, et al. Subclinical left ventricular abnormalities in young diabetics. Chest 1988;93(5):1031–1034.

    PubMed  CAS  Google Scholar 

  334. Rynkiewicz A, Semetkowska-Jurkiewicz E, Wyrzykowski B. Systolic and diastolic time intervals in young diabetics. Br Heart J 1980;44(3):280–283.

    Article  PubMed  CAS  Google Scholar 

  335. Shapiro LM, et al. Left ventricular function in diabetes mellitus. II: Relation between clinical features and left ventricular function. Br Heart J 1981;45(2):129–132.

    Article  PubMed  CAS  Google Scholar 

  336. Shapiro LM, Howat AP, Calter MM. Left ventricular function in diabetes mellitus. I: Methodology, and prevalence and spectrum of abnormalities. Br Heart J 1981;45(2):122–128.

    Article  PubMed  CAS  Google Scholar 

  337. Sanderson JE, et al. Diabetic cardiomyopathy? An echocardiographic study of young diabetics. Br Med J 1978;1(6110):404–407.

    PubMed  CAS  Google Scholar 

  338. Hausdorf G, Rieger U, Koepp P. Cardiomyopathy in childhood diabetes mellitus: incidence, time of onset, and relation to metabolic control. Int J Cardiol 1988;19(2):225–236.

    Article  PubMed  CAS  Google Scholar 

  339. Danielsen R. Factors contributing to left ventricular diastolic dysfunction in long-term type I diabetic subjects. Acta Med Scand 1988;224(3):249–256.

    Article  PubMed  CAS  Google Scholar 

  340. Takenaka K, et al. Left ventricular filling determined by Doppler echocardiography in diabetes mellitus. Am J Cardiol 1988;61(13):1140–1143.

    Article  PubMed  CAS  Google Scholar 

  341. Bouchard A, et al. Noninvasive assessment of cardiomyopathy in normotensive diabetic patients between 20 and 50 years old. Am J Med 1989;87(2):160–166.

    Article  PubMed  CAS  Google Scholar 

  342. Paillole C, et al. Prevalence and significance of left ventricular filling abnormalities determined by Doppler echocardiography in young type I (insulin-dependent) diabetic patients. Am J Cardiol 1989;64(16):1010–1016.

    Article  PubMed  CAS  Google Scholar 

  343. Di Bello V, et al. Increased echodensity of myocardial wall in the diabetic heart: an ultrasound tissue characterization study. J Am Coll Cardiol 1995;25(6):1408–1415.

    Article  PubMed  Google Scholar 

  344. Factor SM, et al. Myocardial alterations in diabetes and hypertension. Diabetes Res Clin Pract 1996;31(Suppl):S133–S142.

    Article  PubMed  Google Scholar 

  345. van Hoeven KH, Factor SM. A comparison of the pathological spectrum of hypertensive, diabetic, and hypertensive-diabetic heart disease. Circulation 1990;82(3):848–855.

    PubMed  Google Scholar 

  346. Hardin NJ. The myocardial and vascular pathology of diabetic cardiomyopathy. Coron Artery Dis 1996;7(2):99–108.

    Article  PubMed  CAS  Google Scholar 

  347. Katz EB, et al. Cardiac and adipose tissue abnormalities but not diabetes in mice deficient in GLUT4. Nature 1995;377(6545):151–155.

    Article  PubMed  CAS  Google Scholar 

  348. Stenbit AE, et al. GLUT4 heterozygous knockout mice develop muscle insulin resistance and diabetes. Nat Med 1997;3(10):1096–1101.

    Article  PubMed  CAS  Google Scholar 

  349. Lagadic-Gossmann D, et al. Altered Ca2+ handling in ventricular myocytes isolated from diabetic rats. Am J Physiol 1996;270(5 Pt 2):H1529–H1537.

    PubMed  CAS  Google Scholar 

  350. Liu X, Takeda N, Dhalla NS. Troponin I phosphorylation in heart homogenate from diabetic rat. Biochim Biophys Acta 1996;1316(2):78–84.

    PubMed  Google Scholar 

  351. Liu X, Takeda N, Dhalla NS. Myosin light-chain phosphorylation in diabetic cardiomyopathy in rats. Metabolism 1997;46(1):71–75.

    Article  PubMed  CAS  Google Scholar 

  352. Norton GR, Candy G, Woodiwiss AJ. Aminoguanidine prevents the decreased myocardial compliance produced by streptozotocin-induced diabetes mellitus in rats. Circulation 1996;93(10):1905–1912.

    PubMed  CAS  Google Scholar 

  353. Barrett EJ, et al. Effect of chronic diabetes on myocardial fuel metabolism and insulin sensitivity. Diabetes 1988;37(7):943–948.

    Article  PubMed  CAS  Google Scholar 

  354. Laughlin MR, et al. Nonglucose substrates increase glycogen synthesis in vivo in dog heart. Am J Physiol 1994;267(1 Pt 2):H219–H223.

    PubMed  CAS  Google Scholar 

  355. Russell RR 3rd, et al. Regulation of exogenous and endogenous glucose metabolism by insulin and acetoacetate in the isolated working rat heart. A three tracer study of glycolysis, glycogen metabolism, and glucose oxidation. J Clin Invest 1997;100(11):2892–2899.

    PubMed  CAS  Google Scholar 

  356. Taegtmeyer H. On the inability of ketone bodies to serve as the only energy providing substrate for rat heart at physiological work load. Basic Res Cardiol 1983;78(4):435–450.

    Article  PubMed  CAS  Google Scholar 

  357. Russell RR 3rd, Taegtmeyer H. Coenzyme A sequestration in rat hearts oxidizing ketone bodies. J Clin Invest 1992;89(3):968–973.

    Article  PubMed  CAS  Google Scholar 

  358. Spallone V, Menzinger G. Autonomic neuropathy: clinical and instrumental findings. Clin Neurosci 1997;4(6):346–358.

    PubMed  CAS  Google Scholar 

  359. Toyry JP, et al. Occurrence, predictors, and clinical significance of autonomic neuropathy in NIDDM. Ten-year follow-up from the diagnosis. Diabetes 1996;45(3):308–315.

    Article  PubMed  CAS  Google Scholar 

  360. Sampson MJ, et al. Abnormal diastolic function in patients with type 1 diabetes and early nephropathy. Br Heart J 1990;64(4):266–271.

    Article  PubMed  CAS  Google Scholar 

  361. O’Brien IA, McFadden JP, Corrall RJ. The influence of autonomic neuropathy on mortality in insulin-dependent diabetes. Q J Med 1991;79(290):495–502.

    PubMed  CAS  Google Scholar 

  362. Orchard TJ, et al. Why does diabetic autonomic neuropathy predict IDDM mortality? An analysis from the Pittsburgh Epidemiology of Diabetes Complications Study. Diabetes Res Clin Pract 1996;34 Suppl:S165–S171.

    Article  PubMed  Google Scholar 

  363. Muller JE, Tofler GH, Stone PH. Circadian variation and triggers of onset of acute cardiovascular disease. Circulation 1989;79(4):733–743.

    PubMed  CAS  Google Scholar 

  364. Zarich S, et al, Effect of autonomic nervous system dysfunction on the circadian pattern of myocardial ischemia in diabetes mellitus. J Am Coll Cardiol 1994;24(4):956–962.

    Article  PubMed  CAS  Google Scholar 

  365. Bernardi L, et al. Impaired circadian modulation of sympathovagal activity in diabetes. A possible explanation for altered temporal onset of cardiovascular disease. Circulation 1992;86(5):1443–1452.

    PubMed  CAS  Google Scholar 

  366. Kahn JK, et al. Decreased exercise heart rate and blood pressure response in diabetic subjects with cardiac autonomic neuropathy. Diabetes Care 1986;9(4):389–394.

    Article  PubMed  CAS  Google Scholar 

  367. Hilsted J, Galbo H, Christensen NJ. Impaired cardiovascular responses to graded exercise in diabetic autonomic neuropathy. Diabetes 1979;28(4):313–319.

    PubMed  CAS  Google Scholar 

  368. Di Carli MF, et al. Effects of cardiac sympathetic innervation on coronary blood flow. N Engl J Med 1997;336(17):1208–1215.

    Article  PubMed  Google Scholar 

  369. Di Carli MF, et al. Effects of autonomic neuropathy on coronary blood flow in patients with diabetes mellitus. Circulation 1999;100(8):813–819.

    PubMed  Google Scholar 

  370. Spallone V, Menzinger G. Diagnosis of cardiovascular autonomic neuropathy in diabetes. Diabetes 1997;46(Suppl 2):S67–S76.

    PubMed  CAS  Google Scholar 

  371. Ziegler D, et al. Prevalence of cardiovascular autonomic dysfunction assessed by spectral analysis and standard tests of heart-rate variation in newly diagnosed IDDM patients. Diabetes Care 1992;15(7):908–911.

    Article  PubMed  CAS  Google Scholar 

  372. Ewing DJ, et al. Twenty four hour heart rate variability: effects of posture, sleep, and time of day in healthy controls and comparison with bedside tests of autonomic function in diabetic patients. Br Heart J 1991;65(5):239–244.

    Article  PubMed  CAS  Google Scholar 

  373. Kreiner G, et al. Myocardial m-[123I]iodobenzylguanidine scintigraphy for the assessment of adrenergic cardiac innervation in patients with IDDM. Comparison with cardiovascular reflex tests and relationship to left ventricular function. Diabetes 1995;44(5):543–549.

    Article  PubMed  CAS  Google Scholar 

  374. Kleiger RE, et al. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol 1987;59(4):256–262.

    Article  PubMed  CAS  Google Scholar 

  375. Farrell TG, et al. Risk stratification for arrhythmic events in postinfarction patients based on heart rate variability, ambulatory electrocardiographic variables and the signal-averaged electrocardiogram. J Am Coll Cardiol 1991;18(3):687–697.

    PubMed  CAS  Google Scholar 

  376. Bigger JT Jr, et al. Frequency domain measures of heart period variability and mortality after myocardial infarction. Circulation 1992;85(1):164–171.

    PubMed  Google Scholar 

  377. Pozzati A, et al. Transient sympathovagal imbalance triggers “ischemic” sudden death in patients undergoing electrocardiographic Holter monitoring. J Am Coll Cardiol 1996;27(4):847–852.

    Article  PubMed  CAS  Google Scholar 

  378. Curb JD, et al. Sudden death, impaired glucose tolerance, and diabetes in Japanese American men. Circulation 1995;91(10):2591–2595.

    PubMed  CAS  Google Scholar 

  379. Kahn JK, Sisson JC, Vinik AI. QT interval prolongation and sudden cardiac death in diabetic autonomic neuropathy. J Clin Endocrinol Metab 1987;64(4):751–754.

    Article  PubMed  CAS  Google Scholar 

  380. Burgos LG, et al. Increased intraoperative cardiovascular morbidity in diabetics with autonomic neuropathy. Anesthesiology 1989;70(4):591–597.

    Article  PubMed  CAS  Google Scholar 

  381. Keyl C, et al. Cardiovascular autonomic dysfunction and hemodynamic response to anesthetic induction in patients with coronary artery disease and diabetes mellitus. Anesth Analg 1999;88(5):985–991.

    Article  PubMed  CAS  Google Scholar 

  382. Mueller HS, et al. Predictors of early morbidity and mortality after thrombolytic therapy of acute myocardial infarction. Analyses of patient subgroups in the Thrombolysis in Myocardial Infarction (TIMI) trial, phase II. Circulation 1992;85(4):1254–1264.

    PubMed  CAS  Google Scholar 

  383. Wong ND, et al. The metabolic syndrome, diabetes, and subclinical atheroscleroisi assessed by coronary calcium. JACC 2003;41(9):1547–1553.

    PubMed  CAS  Google Scholar 

  384. Hoff JA, et al. The prevalence of coronary calcium among diabetic individuals without known coronary artery disease. JACC 2003;41(6):1008–1012.

    PubMed  CAS  Google Scholar 

  385. Qu W, et al. Value of coronary artery calcium scanning by computed tomography for predicting coronary heart disease in diabetic subjects. Diabetes Care 2003;26(3):905–910.

    Article  PubMed  Google Scholar 

  386. Arad Y, Spardaro LA, Goodman K, et al. Prediciton of coronary events with electron beam computed tomography. J Am Coll Cardiol 2000;36:1253.

    Article  PubMed  CAS  Google Scholar 

  387. Fayad AZ, et al. In vivo magnetic resonance evaluation of atherosclerotic plaquesin the human thoracic aorta: a comparison with transesophageal echocardiography. Circulation 2000;101:2503–2509.

    PubMed  CAS  Google Scholar 

  388. Kim WY, Danias PG, Stuber M, Flamm SD. Coronary magnetic resonance angiography for the detection of coronary stenoses. N Engl J Med 2001;345:1863.

    Article  PubMed  CAS  Google Scholar 

  389. Fayad ZA, Fuster V, Fallon J, et al. Noninvasive in vivo human coronary artery lumen and wall imaging using black-blood magnetic resonance imaging. Circulation 2000;102:506–510.

    PubMed  CAS  Google Scholar 

  390. Botnar RM, et al. Noninvasive coronary vessel wall and plaque imaging with magnetic resonance imaging. Circulation 2000;102:2582–2587.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Johnstonemd, M.T., Kinzfogl, G.P. (2005). Diabetes Mellitus and Heart Disease. In: Johnstone, M.T., Veves, A. (eds) Diabetes and Cardiovascular Disease. Contemporary Cardiology. Humana Press. https://doi.org/10.1385/1-59259-908-7:579

Download citation

  • DOI: https://doi.org/10.1385/1-59259-908-7:579

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-413-5

  • Online ISBN: 978-1-59259-908-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics