Heart Failure and Cardiac Dysfunction in Diabetes

  • Lawrence H. Young
  • Raymond R. RussellIII
  • Deborah Chyun
Part of the Contemporary Cardiology book series (CONCARD)


Heart failure is a well-recognized clinical problem in patients with diabetes. The Framingham Heart Study demonstrated that patients with diabetes have an increased incidence of heart failure, which contributes significantly to their high cardiovascular morbidity and mortality (1,2). The age-adjusted risk of developing heart failure was 2.4 times higher in diabetic than in nondiabetic men. In women, the impact of diabetes was even more striking, with the risk of heart failure being 5.1 times greater in the presence of diabetes. The incidence of heart failure in older patients was substantial: 22–27 per 1000 patient years over 18 years. Although Framingham and many other studies did not distinguish between patients with type 1 and type 2 diabetes, the majority of their patients had type 2 diabetes. However, in the era before treatment with combined oral hypoglycemic agents, many patients with type 2 diabetes were treated with insulin and such patients had a four- to fivefold increased risk of heart failure compared to nondiabetic patients.


Heart Failure Left Ventricular Ejection Fraction Diastolic Dysfunction Aldose Reductase Diabetic Cardiomyopathy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Garcia MJ, McNamara PM, Gordon T, Kannell WB. Morbidity and mortality in diabetics in the Framingham population. Diabetes 1973;23:105–111.Google Scholar
  2. 2.
    Kannel WB, Hjortland M, Castelli WP. Role of diabetes in congestive heart failure: The Framingham Study. Am J Cardiol 1974;34:29–34.PubMedCrossRefGoogle Scholar
  3. 3.
    Nichols GA, Erbey JR, Hillier TA, Brown JB. Congestive heart failure in type 2 diabetes. Diabetes Care 2001;24:1614–1619.PubMedCrossRefGoogle Scholar
  4. 4.
    Bertoni AG, Bonds DE, Hundley WG, et al. Heart failure prevalence, incidence, and mortality in the elderly with diabetes. Diabetes Care 2004;27:699–703.PubMedCrossRefGoogle Scholar
  5. 5.
    Aronow WS, Ahn C. Incidence of heart failure in 2,737 older persons with and without diabetes mellitus. Chest. 1999;115:867–868.PubMedCrossRefGoogle Scholar
  6. 6.
    Stamler J, Vaccaro O, Neaton JD, et al. Diabetes, other risk factors, and 12-year cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care 1993;16:434–444.PubMedCrossRefGoogle Scholar
  7. 7.
    Executive Summary of the Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III. JAMA 2001;285:2486–2497.Google Scholar
  8. 8.
    Alberti K, Zimmet P. Definition, diagnosis and classification of diabetes mellitus and its complications; Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabetic Med 1998;15:539–553.PubMedCrossRefGoogle Scholar
  9. 9.
    Wackers FJT, Young LH, Inzucchi SE, et al. Detection of silent myocarial ischemia in asymptomatic patients with type 2 diabetes—The DIAD Study. Diabetes Care 2004;27:1954–1961.PubMedCrossRefGoogle Scholar
  10. 10.
    Ho KK, Pinsky JL, Kannel WB, Levy D. The epidemiology of heart failure: the Framingham Study. J Am Coll Cardiol 1993;22:6A–13A.PubMedGoogle Scholar
  11. 11.
    Chen YT, Vaccarino V, Williams CS, et al. Risk factors for heart failure in the elderly: a prospective community-based study. Am J Med 1999;106:605–612.PubMedCrossRefGoogle Scholar
  12. 12.
    Chae CU, Pfeffer MA, Glynn RJ, et al. Increased pulse pressure and risk of heart failure in the elderly. JAMA 1999;281:634–639.PubMedCrossRefGoogle Scholar
  13. 13.
    He J, Ogden LG, Bazzano LA, et al. Risk factors for congestive heart failure in US men and women: NHANES I epidemiologic follow-up study. Archives of Internal Medicine. 2001;161:996–1002.PubMedCrossRefGoogle Scholar
  14. 14.
    Massie BM, Cleland JG, Armstrong PW, et al. Regional differences in the characteristics and treatment of patients participating in an international heart failure trial. The Assessment of Treatment with Lisinopril and Survival (ATLAS) Trial Investigators. J Card Fail 1998;4:3–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Pitt B, Segal R, Martinez FA, et al. Randomised trial of losartan versus captopril in patients over 65 with heart failure (Evaluation of Losartan in the Elderly Study, ELITE). Lancet 1997;349:747–752.PubMedCrossRefGoogle Scholar
  16. 16.
    Harris MI, Flegal KM, Cowie CC, et al. Prevalence of diabetes, impaired fasting glucose tolerance in US adults: The Third National Health and Nutrition Examination Survey, 1988–1994. Diabetes Care 1998;21:518–524.PubMedCrossRefGoogle Scholar
  17. 17.
    Mokdad AH, Engelgau MM, Ford ES, et al. Diabetes trends in the US: 1900–1998. Diabetes Care 2000;23:1278–1283.PubMedCrossRefGoogle Scholar
  18. 18.
    Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Follow-up report on the diagnosis of diabetes mellitus. Diabetes Care 2003;26:3160–3167.CrossRefGoogle Scholar
  19. 19.
    Dash H, Johnson RA, Dinsmore RE, et al. Cardiomyopathic syndrome due to coronary artery disease. Br Heart J 1977;39:740–747.PubMedCrossRefGoogle Scholar
  20. 20.
    Litwin SE,Grossman W. Diastolic dysfunction as a cause of heart failure. J Am Coll Cardiol 1993;22:49A–55A.PubMedGoogle Scholar
  21. 21.
    Zile MR, Brutsaert DL. New concepts in diastolic dysfunction and diastolic heart failure: Part II: causal mechanisms and treatment. Circulation 2002;105:1503–1508.PubMedCrossRefGoogle Scholar
  22. 22.
    Zile MR, Brutsaert DL. New concepts in diastolic dysfunction and diastolic heart failure: Part I: diagnosis, prognosis, and measurements of diastolic function. Circulation 2002;105:1387–1393.PubMedCrossRefGoogle Scholar
  23. 23.
    Zile MR, Baicu CF, Gaasch WH. Diastolic heart failure—abnormalities in active relaxation and passive stiffness of the left ventricle. N Engl J Med 2004;350:1953–1959.PubMedCrossRefGoogle Scholar
  24. 24.
    Hypertension in Diabetes Study Group. HDS 1: Prevalence of hypertension in newly presenting type 2 diabetic patients and the association with risk factors or cardiovascular disease. J Hypertension 1993;11:309–317.CrossRefGoogle Scholar
  25. 25.
    Ho KKL, Anderson KM, Kannel WB, et al. Survival after the onset of congestive heart failure in Framingham Heart Study subjects. Circulation 1993;88:107–115.PubMedGoogle Scholar
  26. 26.
    Levy D, Larson MG, Vasan RS, et al. The progression from hypertension to congestive heart failure. JAMA 1996;275:1557–1562.PubMedCrossRefGoogle Scholar
  27. 27.
    Vasan RS, Levy D. Defining diastolic heart failure: a call for standardized diagnostic criteria. Circulation 2000;101:2118–2121.PubMedGoogle Scholar
  28. 28.
    Piccini JP, Klein L, Gheorghiade M, Bonow RO. New insights into diastolic heart failure: role of diabetes mellitus. Am J Med 2004;116(Suppl 5A):64S–75S.PubMedCrossRefGoogle Scholar
  29. 29.
    Grossman E, Messerli FH. Diabetic and hypertensive heart disease. Ann Intern Med 1996;125:304–310.PubMedGoogle Scholar
  30. 30.
    Rubler S, Dlugash J, Yuceoglu YZ et al. New type of cardiomyopathy associated with diabetes glomerulosclerosis. Am J Cardiol 1972;30:595–602.PubMedCrossRefGoogle Scholar
  31. 31.
    Factor SM, Minase T, Sonnenblick EH. Clinical and morphological features of human hypertensive-diabetic cardiomyopathy. Am Heart J 1980;99:446–458.PubMedCrossRefGoogle Scholar
  32. 32.
    van Hoeven KH, Factor SM. A comparison of the pathological spectrum of hypertensive, diabetic, and hypertensive-diabetic heart disease. Circulation 1990;82:848–855.PubMedGoogle Scholar
  33. 33.
    Regan TJ, Lyons MM, Ahemd SS, et al. Evidence for cardiomyopathy in familial diabetes mellitus. J Clin Invest 1977;60:885–899.CrossRefGoogle Scholar
  34. 34.
    Blumenthal HT, Alex M, Goldenberg S. A study of lesions of the intramural coronary artery branches in diabetes mellitus. Arch Pathol 1960;70:27–42.Google Scholar
  35. 35.
    Ledet T. Histological and histochemical changes in the coronary arteries of old diabetic patients. Diabetologia 1968;4:268–272.PubMedCrossRefGoogle Scholar
  36. 36.
    Zoneraich S, Silverman G, Zoneraich O. Primary myocardial disease, diabetes mellitus, and small vessel disease. Am Heart J 1980;100:754–755.PubMedCrossRefGoogle Scholar
  37. 37.
    Factor SM, Okun EM, Minase T. Capillary microaneurysms in the human diabetic heart. N Engl J Med 1980;302:384–388.PubMedCrossRefGoogle Scholar
  38. 38.
    Johnstone M, Creager S, Scales K, et al. Impaired endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. Circulation 1993;88:2510–2516.PubMedGoogle Scholar
  39. 39.
    Yokoyama I, Momomura S, Ohtake T, et al. Reduced myocardial flow reserve in non-insulin-dependent diabetes mellitus. J Am Coll Cardiol 1997;30:1472–1477.PubMedCrossRefGoogle Scholar
  40. 40.
    Yokoyama I, Ohtake T, Momomura S, et al. Hyperglycemia rather than insulin resistance is related to reduced coronary flow reserve in NIDDM. Diabetes 1998;47:119–124.PubMedCrossRefGoogle Scholar
  41. 41.
    Strauer BE, Motz W, Vogt M, Schwartzkopf f B. Evidence for reduced coronary flow reserve in patients with insulin-dependent diabetes. A possible cause for diabetic heart disease in man. Exp Clin Endocrinol Diabetes 1997;105:15–20.PubMedCrossRefGoogle Scholar
  42. 42.
    Galderisi M, Anderson KM, Wilson PW, Levy D. Echocardiographic evidence for the existence of a distinct diabetic cardiomyopathy (the Framingham Heart Study). Am J Cardiol 1991;68:85–91.PubMedCrossRefGoogle Scholar
  43. 43.
    Howard BV, Cowan LD, Go O, Welty TK, Robbins DC, Lee ET. Adverse effects of diabetes on multiple cardiovascular risk factors in women. Diabetes Care 1998;14:1258–1265.CrossRefGoogle Scholar
  44. 44.
    Ohya Y, Abe I, Fujii K, et al. Hyperinsulinemia and left ventricular geometry in a work-site population in Japan. Hypertension 1996;27:729–734.PubMedGoogle Scholar
  45. 45.
    Young LH, McNulty PH, Morgan C, et al. Myocardial protein turnover in patients with coronary artery disease. Effect of branched chain amino acid infusion. Journal of Clinical Investigation 1991;87:554–560.PubMedCrossRefGoogle Scholar
  46. 46.
    McNulty P, Louard R, Deckelbaum L, et al. Hyperinsulinemia inhibits myocardial protein degradation in patients with cardiovascular disease and insulin resistance. Circ 1995;92:2151–2156.Google Scholar
  47. 47.
    Shindler DM, Kostis JB, Yusuf S, et al. Diabetes mellitus, a predictor of morbidity and moratlity in the Studies of Left Ventricular Dysfunction (SOLVD) Trials and Registry. Am J Cardiol 1996;77:1017–1020.PubMedCrossRefGoogle Scholar
  48. 48.
    Dries DL, Sweitzer NK, Drazner MH, et al. Prognostic impact of diabetes mellitus in patients with heart failure according to the etiology of left ventricular systolic dysfunction. Journal of the American College of Cardiology. 2001;38:421–428.PubMedCrossRefGoogle Scholar
  49. 49.
    Domanski M, Krause-Steinrauf H, Deedwania P, et al. The effect of diabetes on outcomes of patients with advanced heart failure in the BEST trial. Journal of the American College of Cardiology. 2003;42:914–922.PubMedCrossRefGoogle Scholar
  50. 50.
    Hildebrandt P, Kaiser-Nielsen P, Seibæk M, Køber L. Myocardial infarction in diabetic patients: Presentation, residual systolic function and heart failure. Circulation 1996;94.Google Scholar
  51. 51.
    Stone PH, Muller JE, Hartwell T, et al. The effect of diabetes mellitus on prognosis and serial left ventricular function after acute myocardial infarction: Contribution of both coronary disease and diastolic left ventricular dysfunction to adverse prognosis. Journal of the American College of Cardiology 1989;14:49–57.PubMedCrossRefGoogle Scholar
  52. 52.
    Jaffe AS, Spadaro JJ, Schechtman K, et al. Increased congestive heart failure after myocardial infarction of modest extent in patients with diabetes mellitus. American Heart Journal 1984;108:31–37.PubMedCrossRefGoogle Scholar
  53. 53.
    Chyun D, Vaccarino V, Murillo J, et al. Cardiac outcomes after myocardial infarction in elderly patients with diabetes mellitus. American Journal of Critical Care 2002;11:504–519.PubMedGoogle Scholar
  54. 54.
    Lewis EF, Moye LA, Rouleau JL, et al. Predictors of late development of heart failure in stable survivors of myocardial infarction: the CARE study. Journal of the American College of Cardiology. 2003;42:1446–1453.PubMedCrossRefGoogle Scholar
  55. 55.
    Gustafsson I, Brendorp B, Seibaek M, et al. Influence of diabetes and diabetes-gender interaction on the risk of death in patients hospitalized with congestive heart failure. J Am Coll Cardiol 2004;43:771–777.PubMedCrossRefGoogle Scholar
  56. 56.
    American College of Cardiology/American Heart Association Task Force on Practice Guidelines. ACC/AHA Guidelines for the evaluation and management of chronic heart failure in the adult: Executive summary. Circulation 2001;104:2996.CrossRefGoogle Scholar
  57. 57.
    Havranek EP, Masoudi FA, Westfall KA, et al. Spectrum of heart failure in older patients: results from the National Heart Failure project. American Heart Journal. 2002;143:412–417.PubMedCrossRefGoogle Scholar
  58. 58.
    Guazzi M, Brambilla R, Pontone G, et al. Effect of non-insulin-dependent diabetes mellitus on pulmonary function and exercise tolerance in chronic congestive heart failure. American Journal of Cardiology. 2002;89:191–197.PubMedCrossRefGoogle Scholar
  59. 59.
    Guazzi M, Brambilla R, De Vita S, Guazzi MD. Diabetes worsens pulmonary diffusion in heart failure, and insulin counteracts this effect. [see comment]. American Journal of Respiratory & Critical Care Medicine. 2002;166:978–982.CrossRefGoogle Scholar
  60. 60.
    Guazzi M, Tumminello G, Matturri M, Guazzi MD. Insulin ameliorates exercise ventilatory efficiency and oxygen uptake in patients with heart failure-type 2 diabetes comorbidity. [see comment]. Journal of the American College of Cardiology. 2003;42:1044–1050.PubMedCrossRefGoogle Scholar
  61. 61.
    UK Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. Br Med J 1998;317:703–713.Google Scholar
  62. 62.
    Chobanian AV, Bakris GL, Black HR, et al. The seventh report of the Joint National Committee on Prevention, Detection, Evaluation and Treatment of High Blood Pressure. JAMA 2003;289:1560–1572.CrossRefGoogle Scholar
  63. 63.
    American Diabetes Association. Treatment of hypertension in diabetes. Diabetes Care 2003;26:S80–S82.CrossRefGoogle Scholar
  64. 64.
    Investigators THOPES. Effects of an angiotensin-converting enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. N Engl J Med 2000;342:145–153.CrossRefGoogle Scholar
  65. 65.
    Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group [see comments] [published erratum appears in N Engl J Med 1993;330 (2):152]. N Engl J Med 1993;329:1456–1462.PubMedCrossRefGoogle Scholar
  66. 66.
    Maschio G, Alberti D, Janin G, et al. Effect of the angiotensin-converting-enzyme inhibitor benazepril on the progression of chronic renal insufficiency. The Angiotensin-Converting-Enzyme Inhibition in Progressive Renal Insufficiency Study Group [see comments]. N Engl J Med 1996;334:939–945.PubMedCrossRefGoogle Scholar
  67. 67.
    Brenner BM, Cooper ME, de Zeeuw D, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 2001;345:861–869.PubMedCrossRefGoogle Scholar
  68. 68.
    Lindholm LH, Ibsen H, Borch-Johnsen K, et al. Risk of new-onset diabetes in the Losartan Intervention For Endpoint reduction in hypertension study. J Hypertens 2002;20:1879–1886.PubMedCrossRefGoogle Scholar
  69. 69.
    Pfeffer MA, McMurray JJV, Velazquez EJ, et al. Valsartan, Captopril, or both in myocardial infarction complicated by heart failure, left ventricular dysfunction, or both. N Engl J Med 2003;349:1893–1906.PubMedCrossRefGoogle Scholar
  70. 70.
    Haas SJ, Vos T, Gilbert RE, Krum H. Are beta-blockers as efficacious in patients with diabetes mellitus as in patients without diabetes mellitus who have chronic heart failure? A meta-analysis of large-scale clinical trials. Am Heart J 2003;146:848–853.PubMedCrossRefGoogle Scholar
  71. 71.
    Bristow MR, Gilbert EM, Abraham WT, et al. Carvedilol produces dose-related improvements in left ventricular function and survival in subjects with chronic heart failure. MOCHA Investigators [comment] [see comments]. Circulation 1996;94:2807–2816.PubMedGoogle Scholar
  72. 72.
    Shekelle PG, Rich MW, Morton SC, et al. Efficacy of angiotensin-converting enzyme inhibitors and beta-blockers in the management of left ventricular systolic dysfunction according to race, gender, and diabetic status: a meta-analysis of major clinical trials. Journal of the American College of Cardiology 2003;41:1529–1538.PubMedCrossRefGoogle Scholar
  73. 73.
    Viscoli CM, Horwitz RI, Singer BH. Beta-blockers after myocardial infarction: influence of first-year clinical course on long-term effectiveness. Ann Intern Med 1993;118:99–105.PubMedGoogle Scholar
  74. 74.
    Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators [see comments]. New England Journal of Medicine 1999;341:709–717.PubMedCrossRefGoogle Scholar
  75. 75.
    Pitt B, Perez A. Spironolactone in patients with heart failure. NEJ.M. 2000;342:132.Google Scholar
  76. 76.
    Morgan JA, John R, Weinberg AD, et al. Heart transplantation in diabetic recipients: A decade review of 161 patients at Columbia Presbyterian. J Thorac Cardiovasc Surg 2004;127:1486–1492.PubMedCrossRefGoogle Scholar
  77. 77.
    Mills RM, Naftel DC, Kirklin JK, et al. Heart transplant rejection with hemodynamic compromise: a multiinstitutional study of the role of endomyocardial cellular infiltrate. Cardiac Transplant Research Database. J Heart Lung Transplant 1997;16:813–821.PubMedGoogle Scholar
  78. 78.
    Wachtell K, Bella JN, Rokkedal J, et al. Change in diastolic left ventricular filling after one year of antihypertensive treatment: The Losartan Intervention For Endpoint Reduction in Hypertension (LIFE) Study. Circulation 2002;105:1071–1076.PubMedCrossRefGoogle Scholar
  79. 79.
    Grundy SM. Higher incidence of new-onset diabetes in patients with heart failure. [comment]. American Journal of Medicine. 2003;114:331–332.PubMedCrossRefGoogle Scholar
  80. 80.
    Tenenbaum A, Motro M, Fisman EZ, et al. Functional class in patients with heart failure is associated with the development of diabetes. [see comment]. American Journal of Medicine. 2003;114:271–275.PubMedCrossRefGoogle Scholar
  81. 81.
    Fragasso G, Piatti Md PM, Monti L, et al. Short-and long-term beneficial effects of trimetazidine in patients with diabetes and ischemic cardiomyopathy. Am Heart J 2003;146:E18.PubMedCrossRefGoogle Scholar
  82. 82.
    Nesto RW, LeWinter M, Bell D, et al. Thiazolidinedione use, fluid retention, and congestive heart failure. Diabetes Care 2004;27:256–263.PubMedCrossRefGoogle Scholar
  83. 83.
    Tang WH, Francis GS, Hoogwerf BJ, Young JB. Fluid retention after initiation of thiazolidinedione therapy in diabetic patients with established chronic heart failure. J Am Coll Cardiol 2003;41:1394–1398.PubMedCrossRefGoogle Scholar
  84. 84.
    Masoudi FA, Wang Y, Inzucchi SE, et al. Metformin and thiazolidinedione use in Medicare patients with heart failure. JAMA 2003;290:81–85.PubMedCrossRefGoogle Scholar
  85. 85.
    Malmberg K, Ryden L, Suad E, et al. Randomized trial of insulin-glucose infusion followed by subcutaneous insulin treatment in diabetic patients with acute myocardial infarction (DIGAMI Study): Effects on mortality at 1 year. Journal of the American College of Cardiology 1995;26:57–65.PubMedCrossRefGoogle Scholar
  86. 86.
    Malmberg K, Ryden L, Hamsten A, et al. Effects of insulin treatment on cause-specific one-year mortality and morbidity in diabetic patients with acute myocardial infarction. European Heart Journal 1996;17:1337–1344.PubMedGoogle Scholar
  87. 87.
    Malmberg K. Prospective randomised study of intensive insulin treatment on long term survival after acute myocardial infarction in patients with diabetes mellitus. DIGAMI (Diabetes Mellitus, Insulin Glucose Infusion in Acute Myocardial Infarction) Study Group [see comments]. British Medical Journal 1997;314:1512–1515.PubMedGoogle Scholar
  88. 88.
    Shishehbor MH, Hoogwerf BJ, Schoenhagen P, et al. Relation of hemoglobin A1c to left ventricular relaxation in patients with type 1 diabetes mellitus and without overt heart disease. Am J Cardiol 2003;91:1514–1517, A9.PubMedCrossRefGoogle Scholar
  89. 89.
    Poirier P, Marois L, Bogaty P, et al. Diastolic dysfunction in normotensive men with well-controlled type 2 diabetes. Diabetes Care 2001;24:5–10.PubMedCrossRefGoogle Scholar
  90. 90.
    Rynkiewicz A, Semetkowska-Jurkiewicz E, Wyrzykowski B. Systolic and diastolic time intervals in young diabetics. Br Heart J 1980;44:280–283.PubMedCrossRefGoogle Scholar
  91. 91.
    Shapiro LM, Howat AP, Calter MM. Left ventricular function in diabetes mellitus I: Methodology, and prevalence and spectrum of abnormalities. British Heart Journal 1981;45:122–128.PubMedCrossRefGoogle Scholar
  92. 92.
    Shapiro LM, Leatherdale BA, MacKinnon J, Fletcher RF. Left ventricular function in diabetes mellitus II: Relation between clinical features and ventricular function. British Heart Journal 1981;45:129–132.PubMedCrossRefGoogle Scholar
  93. 93.
    Sanderson JE, Brown DJ, Rivellese A, Kohner E. Diabetic cardiomyopathy? An echocardiographic study of young diabetics. Br Med J 1978;1:404–407.PubMedCrossRefGoogle Scholar
  94. 94.
    Hausdorf G, Rieger U, Koepp P. Cardiomyopathy in childhood diabetes mellitus: incidence, time of onset, and relation to metabolic control. Internat J Cardiol 1988;19:225–236.CrossRefGoogle Scholar
  95. 95.
    Danielsen R. Factors contributing to left ventricular diastolic dysfunction in long-term type 1 diabetic subjects. Acta Med Scand 1988;224:249–256.PubMedCrossRefGoogle Scholar
  96. 96.
    Zarich SW, Arbuckle BE, Cohen LR, et al. Diastolic abnormalities in young asymptomatic diabetic patients assessed by pulsed Doppler echocardiography. J Am Coll Cardiol 1988;12:114–120.PubMedGoogle Scholar
  97. 97.
    Takenaka K, Sakamoto T, Amano K, et al. Left ventricular filling determined by doppler echocardiography in diabetes mellitus. Am J Cardiol 1988;61:1140–1143.PubMedCrossRefGoogle Scholar
  98. 98.
    Bouchard A, Sanz N, Botvinick EH, et al. Noninvasive assessment of cardiomyopathy in normotensive diabetic patients between 20 and 50 years old. Am J Med 1989;87:160–166.PubMedCrossRefGoogle Scholar
  99. 99.
    Paillole C, Dahan M, Paycha F, et al. Prevalence and significance of left ventricular filling abnormalities determined by doppler echocardiography in type I (insulin-dependent) diabetic patients. Am J Cardiol 1989;64:1010–1016.PubMedCrossRefGoogle Scholar
  100. 100.
    Mustonen JN, Uusitupa MIJ, Tahvanainen K, et al. Impaired left ventricular systolic function during exercise in middle-aged insulin-dependent and noninsulin-dependent diabetic subjects without clinically evident cardiovascular disease. Am J Cardiol 1988;62:1273–1279.PubMedCrossRefGoogle Scholar
  101. 101.
    Kahn JK, Zola B, Juni JE, Vinik AI. Decreased exercise heart rate and blood pressue response in diabetic subjects with cardiac autonomic neuropathy. Diabetes Care 1986;9:389–394.PubMedCrossRefGoogle Scholar
  102. 102.
    Ruddy TD, Shumak SL, Liu PP, et al. The relationship of cardiac diastolic dysfunction to concurrent hormonal and metabolic status in type I diabetes mellitus. J Clin Endocrin Met 1988;66:113–118.CrossRefGoogle Scholar
  103. 103.
    Raev DC. Which left ventricular function is impaired earlier in the evolution of diabetic cardiomyopathy? Diabetes Care 1994;17:633–639.PubMedCrossRefGoogle Scholar
  104. 104.
    Boyer JK, Thanigaraj S, Schechtman KB, Perez JE. Prevalence of ventricular diastolic dysfunction in asymptomatic, normotensive patients with diabetes mellitus. Am J Cardiol 2004;93:870–875.PubMedCrossRefGoogle Scholar
  105. 105.
    Diamant M, Lamb HJ, Groeneveld Y, et al. Diastolic dysfunction is associated with altered myocardial metabolism in asymptomatic normotensive patients with well-controlled type 2 diabetes mellitus. J Am Coll Cardiol 2003;42:328–335.PubMedCrossRefGoogle Scholar
  106. 106.
    Ahmed SS, Jaferi GA, Narang RM, Regan TJ. Preclinical abnormality of left ventricular function in diabetes melitus. Am Heart J 1975;89:153–158.PubMedCrossRefGoogle Scholar
  107. 107.
    Seneviratne BIB. Diabetic cardiomyopathy: The preclinical phase. Br Med J 1977;1:1444–1446.PubMedCrossRefGoogle Scholar
  108. 108.
    Sykes CA, Wright AD, Malins JM, Pentecost BL. Changes in systolic time intervals during treatment of diabetes mellitus. Br Heart J 1977;39:255–259.PubMedCrossRefGoogle Scholar
  109. 109.
    Zoneraich S, Zoneraich O, Rhee JJ. Left ventricular performance in diabetic patients without clinical heart disease. Chest 1977;72:748–751.PubMedCrossRefGoogle Scholar
  110. 110.
    Shapiro LM, Leatherdale B A, Coyne ME, et al. Prospective study of heart disease in untreated maturity onset diabetics. Br Heart J 1980;44:342–348.PubMedCrossRefGoogle Scholar
  111. 111.
    Uusitupa M, Siitonen O, Pyorala K, Lansimies E. Left ventricular function in newly diagnosed noninsulin-dependent (type 2) diabetics evaluated by systolic time intervals and echocardiography. Acta Med Scand 1985;217:379–388.PubMedCrossRefGoogle Scholar
  112. 112.
    Friedman NE, Levitsky LL, Edidin DV, et al. Echocardiographic evidence of impaired performance in children with type I diabetes mellitus. Am J Med 1982;73:846–850.PubMedCrossRefGoogle Scholar
  113. 113.
    Lababidi ZA,Goldstein DE. High prevalence of echocardiographic abnormalities in diabetic youths. Diabetes Care 1983;6:18–22.PubMedCrossRefGoogle Scholar
  114. 114.
    Fang ZY, Yuda S, Anderson V, et al. Echocardiographic detection of early diabetic myocardial disease. J Am Coll Cardiol 2003;41:611–617.PubMedCrossRefGoogle Scholar
  115. 115.
    Thuesen L, Christiansen JS, Falstie-Jensen N, et al. Increased myocardial contractility in short-term type 1 diabetic patients: an echocardiographic study. Diabetologia 1985;28:822–826.PubMedCrossRefGoogle Scholar
  116. 116.
    Thuesen L, Christiansen JS, Mogensen CE, Henningsen P. Cardiac hyperfunction in insulin-dependent diabetic patients developing microvascular complications. Diabetes 1988;37:851–856.PubMedCrossRefGoogle Scholar
  117. 117.
    Johnson BF, Nesto RW, Pfeifer MA, et al. Cardiac abnormalities in diabetic patients with neuropathy: Effects of aldose reductase inhibitor administration. Diabetes Care 2004;27:448–454.PubMedCrossRefGoogle Scholar
  118. 118.
    Mildenberger RR, Bar-Shlomo B, Druck MN. Clinically unrecognized ventricular dysfunction in young diabetic patients. J Am Coll Cardiol 1984;4:234–238.PubMedGoogle Scholar
  119. 119.
    Vered Z, Battler A, Sega P, et al. Exercise-induced left ventricular dysfunction in young men with asymptomatic diabetes mellitus (diabetic cardiomyopathy). American Journal of Cardiology 1984;54:633–637.PubMedCrossRefGoogle Scholar
  120. 120.
    Zola B, Kahn JK, Juni JE, Vinik AI. Abnormal cardiac function in diabetic patients with autonomic neuropathy in the absence of ischemic heart disease. J Clin Endocrinol Metab 1986;63:208–214.PubMedCrossRefGoogle Scholar
  121. 121.
    Arvan S, Singal B, Knapp R, Vagnucci A. Subclinical left ventricular abnormalities in young diabetics. Chest 1988;93:1031–1034.PubMedCrossRefGoogle Scholar
  122. 122.
    Borow KM, Jaspan JB, Williams KA, et al. Myocardial mechanics in young adult patients with diabetes mellitus: effects of altered load, inotropic state and dynamic exercise. J Am Coll Cardiol 1990;15:1508–1517.PubMedCrossRefGoogle Scholar
  123. 123.
    Fraser GE, Luke R, Thompson S, et al. Comparison of echocardiographic variables between type I diabetics and normal controls. Am J Cardiol 1995;75:141–145.PubMedCrossRefGoogle Scholar
  124. 124.
    Vinereanu D, Nicolaides E, Tweddel AC, et al. Subclinical left ventricular dysfunction in asymptomatic patients with Type II diabetes mellitus, related to serum lipids and glycated haemoglobin. Clin Sci (Lond) 2003;105:591–599.CrossRefGoogle Scholar
  125. 125.
    Liu JE, Robbins DC, Palmieri V, et al. Association of albuminuria with systolic and diastolic left ventricular dysfunction in type 2 diabetes: the Strong Heart Study. J Am Coll Cardiol 2003;41:2022–2028.PubMedCrossRefGoogle Scholar
  126. 126.
    Hilsted J, Jeensen SB. A simple test for autonomic neuropathy in juvenile diabetics. Acta Med Scand 1979:385–387.Google Scholar
  127. 127.
    Fava S, Azzopardi J, Muscatt HA, Fenech FF. Factors that influence outcomes in diabetic subjects with myocardial infarction. Diabetes Care 1993:1615–1618.Google Scholar
  128. 128.
    Page MM, Watkins PJ. The heart in diabetes: automomic neuropathy and cardiomyopathy. Clin Endocrinol Metab 1977:377–388.Google Scholar
  129. 129.
    Didangelos TP, Arsos GA, Karamitsos DT, et al. Left ventricular systolic and diastolic function in normotensive type 1 diabetic patients with or without autonomic neuropathy: a radionuclide ventriculography study. Diabetes Care 2003;26:1955–1960.PubMedCrossRefGoogle Scholar
  130. 130.
    Scognamiglio R, Avogaro A, Casara D, et al. Myocardial dysfunction and adrenergic cardiac innervation in patients with insulin-dependent diabetes mellitus. J Am Coll Cardiol 1998;31:404–412.PubMedCrossRefGoogle Scholar
  131. 131.
    Vinik AI, Maser RE, Mitchell BD, Freeman R. Diabetic autonomic neuropathy. Diabetes Care 2003;26:1553–1579.PubMedCrossRefGoogle Scholar
  132. 132.
    Fein FS, Kornstein LB, Strobeck JE, et al. Altered myocardial mechanics in diabetic rats. Circ Res 1980;47:922–933.PubMedGoogle Scholar
  133. 133.
    Lucchesi B, Medina M, Kniffen F. The positive inotropic action of insulin in the canine heart. Eur J Pharmacol 1972;18:107–115.PubMedCrossRefGoogle Scholar
  134. 134.
    Farah A, Alousi A. The actions of insulin on cardiac contractility. Life Sciences 1981;29:975–1000.PubMedCrossRefGoogle Scholar
  135. 135.
    Russell RR, III, Chyun D, Song S, et al. Cardiac responses to insulin-induced hypoglycemia in non-diabetic and intensively treated type 1 diabetic patients. Am J Physiol Endocrinol Metab 2001;281:E1029–E1036.PubMedGoogle Scholar
  136. 136.
    Scherrer U,Sartori C. Insulin as a vascular and sympathoexcitatory hormone: Implications for blood pressure regulation, insulin sensitivity, and cardiovascular morbidity. Circulation 1997;96:4104–4113.PubMedGoogle Scholar
  137. 137.
    Schaffer SW, Mozaffari MS, Artman M, Wilson GL. Basis for myocardial mechanical defects associated with non-insulin-dependent diabetes. Am J Physiol 1989;19:E25–E30.Google Scholar
  138. 138.
    Schaffer SW. Cardiomyopathy associated with noninsulin-dependent diabetes. [Review]. Mol Cell Biochem 1991;107:1–20.PubMedCrossRefGoogle Scholar
  139. 139.
    Rodrigues B,McNeill JH. The diabetic heart: metabolic causes for the development of a cardiomyopathy. Cardiovascular Research 1992;26:913–922.PubMedCrossRefGoogle Scholar
  140. 140.
    Pierce GN, Dhalla NS. Sarcolemmal Na+-K+ ATPase activity in diabetic rat heart. American Journal of Physiology 1983;245:241–247.Google Scholar
  141. 141.
    Heyliger CE, Prakash A, McNeill JH. Alterations in cardiac sarcolemmal Ca2+ pump activity during diabetes mellitus. Am J Physiol 1987;252:540–544.Google Scholar
  142. 142.
    Lopaschuk GD, Tahiliani A, Vadlamudi RVSV, et al. Cardiac sarcoplasmic reticulum function in insulin or carnitine-treated diabetic rats. Am J Physiol 1983;245:969–976.Google Scholar
  143. 143.
    Penpargkul S, Fein FS, Sonnenblick EH, Scheuer J. Depressed cardiac sarcoplasmic reticular function from diabetic rats. J Mol Cell Cardiol 1981;13:303–309.PubMedCrossRefGoogle Scholar
  144. 144.
    Lagadic-Gossmann D, Buckler KJ, Le Prigent K, Feuvray D. Altered Ca2+ handling in ventricular myocytes isolated from diabetic rats. Am J Physiol 1996;270:H1529–H1537.PubMedGoogle Scholar
  145. 145.
    Trost SU, Belke DD, Bluhm WF, et al. Overexpression of the sarcoplasmic reticulum Ca2+-ATPase improves myocardial contractility in diabetic cardiomyopathy. Diabetes 2002;51:1166–1171.PubMedCrossRefGoogle Scholar
  146. 146.
    Flarsheim CE, Grupp IL, Matlib MA. Mitochondrial dysfunction accompanies diastolic dysfunction in diabetic rat heart. Am J Physiol 1996;271:H192–H202.PubMedGoogle Scholar
  147. 147.
    Wakasaki H, Koya D, Schoen FJ, et al. Targeted overexpression of protein kinase C beta2 isoform in myocardium causes cardiomyopathy. Proc Natl Acad Sci USA 1997;94:9320–9325.PubMedCrossRefGoogle Scholar
  148. 148.
    Dillmann WH. Diabetes mellitus induces changes in cardiac myosin of the rat. Diabetes 1980;29:579–582.PubMedGoogle Scholar
  149. 149.
    Malhotra A, Penpargkul S, Fein FS, et al. The effect of streptozotocin-induced diabetes in rats on cardiac contractile proteins. Circ Res 1981;49:1243–12450.PubMedGoogle Scholar
  150. 150.
    Liu X, Takeda N, Dhalla NS. Troponin I phosphorylation in heart homogenate from diabetic rat. Biochem Biophys Acta 1996;1316:78–84.PubMedGoogle Scholar
  151. 151.
    Liu X, Takeda N, Dhalla NS. Myosin light-chain phosphorylation in diabetic cardiomyopathy in rats. Metabolism 1997;46:71–75.PubMedCrossRefGoogle Scholar
  152. 152.
    Norton GR, Candy G, Woodiwiss AJ. Aminoguanidine prevents the decreased myocardial compliance produced by streptozotocin-induced diabetes mellitus in rats. Circulation 1996;93:1905–1912.PubMedGoogle Scholar
  153. 153.
    Berg TJ, Snorgaard O, Faber J, et al. Serum levels of advanced glycation end products are associated with left ventricular diastolic function in patients with type 1 diabetes. Diabetes Care 1999;22:1186–1190.PubMedCrossRefGoogle Scholar
  154. 154.
    Watts GF, Marwick TH. Ventricular dysfunction in early diabetic heart disease: detection, mechanisms and significance. Clin Sci (Lond) 2003;105:537–540.CrossRefGoogle Scholar
  155. 155.
    Davidoff AJ, Ren J. Low insulin and high glucose induce abnormal relaxation in cultured adult rat ventricular myocytes. Am J Physiol 1997;272:H159–H167.PubMedGoogle Scholar
  156. 156.
    Ren J, Gintant GA, Miller RE, Davidoff AJ. High extracellular glucose impairs cardiac E-C coupling in a glycosylation-dependent manner. Am J Physiol 1997;273:H2876–H2883.PubMedGoogle Scholar
  157. 157.
    Young LH, Russell RR, Yin R, et al. Regulation of myocardial glucose uptake and transport during ischemia and energetic stress. Am J Cardiol 1999;83:25H–30H.PubMedCrossRefGoogle Scholar
  158. 158.
    Young LH, Renfu Y, Russell RR, et al. Low-flow ischemia leads to translocation of canine heart GLUT-4 and GLUT-1 glucose transporters to the sarcolemma in vivo. Circulation 1997;95:415–422.PubMedGoogle Scholar
  159. 159.
    Russell RR, Yin R, Caplan MJ, et al. Additive effects of hyperinsulinemia and ischemia on myocardial GLUT1 and GLUT4 translocation in vivo. Circulation 1998;98:2180–2186.PubMedGoogle Scholar
  160. 160.
    Kainulainen H, Breiner M, Schurmann A, et al. In vivo glucose uptake and glucose transporter proteins GLUT1 and GLUT4 in heart and various types of skeletal muscle from streptozotocin-diabetic rats. Biochim Biophys Acta 1994;1225:275–282.PubMedGoogle Scholar
  161. 161.
    Garvey WT, Hardin D, Juhaszova M, Dominguez JH. Effects of diabetes on myocardial glucose transport system in rats: implications for diabetic cardiomyopathy. American Journal of Physiology 1993;264:837–844.Google Scholar
  162. 162.
    Depre C,Taegtmeyer H. Metabolic aspects of programmed cell survival and cell death in the heart. Cardiovasc Res 2000;45:538–548.PubMedCrossRefGoogle Scholar
  163. 163.
    Burcelin R, Printz RL, Kande J, et al. Regulation of glucose transporter and hexokinase II expression in tissues of diabetic rats. Am J Physiol 1993;265:E392–E401.PubMedGoogle Scholar
  164. 164.
    Hall J, Sexton W, Stanley W. Exercise training attenuates the reduction in myocardial GLUT-4 in diabetic rats. J Appl Physiol 1995;78:76–81.PubMedGoogle Scholar
  165. 165.
    Hall J, Stanley W, Lopaschuk G, et al. Impaired pyruvate oxidation but normal glucose uptake in diabetic pig heart during dobutamine-induced work. Am J Physiol 1996;271:H2320–H2329.PubMedGoogle Scholar
  166. 166.
    Slieker LJ, Sundell KL, Heath WF, et al. Glucose transporter levels in tissues of spontaneously diabetic Zucker fa/fa rat (ZDF/drt) and viable yellow mouse (Avy/a). Diabetes 1992;41:187–193.PubMedCrossRefGoogle Scholar
  167. 167.
    Liu L, Azhar G, Gao W, et al. Bcl-2 and Bax expression in adult rat hearts after coronary occlusion: age-associated differences. American Journal of Physiology 1998;275:R315–R322.PubMedGoogle Scholar
  168. 168.
    Barrett EJ, Schwartz RG, Young LH, et al. Effect of chronic diabetes on myocardial fuel metabolism and insulin sensitivity. Diabetes 1988;37:943–948.PubMedCrossRefGoogle Scholar
  169. 169.
    Voipio-Pulkki LM, Nuutila P, Knuuti MJ, et al. Heart and skeletal muscle glucose disposal in type 2 diabetic patients as determined by positron emission tomography. J Nucl Med 1993;34:2064–2067.PubMedGoogle Scholar
  170. 170.
    Ohtake T, Yokoyama I, Watanabe T, et al. Myocardial glucose metabolism in noninsulin-dependent diabetes mellitus patients evaluated by FDG-PET. J Nucl Med 1995;36:456–463.PubMedGoogle Scholar
  171. 171.
    Utriainen T, Takala T, Luotolahti M, et al. Insulin resistance characterizes glucose uptake in skeletal muscle but not in the heart in NIDDM. Diabetologia 1998;41:555–559.PubMedCrossRefGoogle Scholar
  172. 172.
    Maki M, Nuutila P, Laine H, et al. Myocardial glucose uptake in patients with NIDDM and stable coronary artery disease. Diabetes 1997;46:1491–1496.PubMedCrossRefGoogle Scholar
  173. 173.
    Avogaro A, Nosadini R, Doria A, et al. Myocardial metabolism in insulin-deficient diabetic humans without coronary artery disease. Am J Physiol 1990;258:E606–E618.PubMedGoogle Scholar
  174. 174.
    Nuutila P, Knuuti J, Ruotsalainen U, et al. Insulin resistance is localized to skeletal but not heart muscle in type 1 diabetes. Am J Physiol 1993;264:E756–E762.PubMedGoogle Scholar
  175. 175.
    Russell R, Bergeron R, Shulman G, Young L. Translocation of myocardial GLUT4 and increased glucose uptake through activation of AMP-activated protein kinase by AICAR. Am J Physiol 1999;277:H643–H649.PubMedGoogle Scholar
  176. 176.
    Coven DL, Hu X, Cong L, et al. Physiological role of AMP-activated protein kinase in the heart: graded activation during exercise. Am J Physiol 2003;285:E629–E636.Google Scholar
  177. 177.
    Atkinson LL, Kozak R, Kelly SE, et al. Potential mechanisms and consequences of cardiac triacylglycerol accumulation in insulin-resistant rats. Am J Physiol 2003;284:E923–E930.Google Scholar
  178. 178.
    Sochor M, Kunjara S, Ali M, McLean P. Vanadate treatment increases the activity of glycolytic enzymes and raises fructose 2,6-bisphosphate concentration in hearts from diabetic rats. Biochem Int 1992;28:525–531.PubMedGoogle Scholar
  179. 179.
    Randle P, Garland P, Hales C, Newsholme E. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963;1:785–789.PubMedCrossRefGoogle Scholar
  180. 180.
    Laughlin MR, Petit WA, Shulman RG, Barrett EJ. Measurement of myocardial glycogen synthesis in diabetic and fasted rats. Am J Physiol 1990;258:E184–E190.PubMedGoogle Scholar
  181. 181.
    Laughlin MR, Morgan C, Barrett EJ. Hypoxic stimulation of heart glycogen synthase and synthesis. Effects of insulin and diabetes mellitus. Diabetes 1991;40:385–390.PubMedCrossRefGoogle Scholar
  182. 182.
    Laughlin M, Taylor J, Chesnick A, Balaban R. Nonglucose substrates increase glycogen synthesis in vivo in dog heart. Am J Physiol 1994;267:H217–H223.Google Scholar
  183. 183.
    Russell R, Cline G, Guthrie P, et al. Regulation of exogenous and endogenous glucose metabolism by insulin and acetoacetate in the isolated working rat heart: A three tracer study of glycolysis, glycogen metabolism and glucose oxidation. J Clin Invest 1997;100:2892–2899.PubMedCrossRefGoogle Scholar
  184. 184.
    Williamson JR, Chang K, Frangos M, et al. Hyperglycemic pseudohypoxia and diabetic complications. Diabetes 1993;42:801–813.PubMedCrossRefGoogle Scholar
  185. 185.
    Trueblood N, Ramasamy R. Aldose reductase inhibition improves altered glucose metabolism of isolated diabetic rat hearts. Am J Physiol 1998;275:H75–H83.PubMedGoogle Scholar
  186. 186.
    Ramasamy R, Oates PJ, Schaefer S. Aldose reductase inhibition protects diabetic and nondiabetic rat hearts from ischemic injury. Diabetes 1997;46:292–300.PubMedCrossRefGoogle Scholar
  187. 187.
    Ramasamy R, Trueblood N, Schaefer S. Metabolic effects of aldose reductase inhibition during low-flow ischemia and reperfusion. Am J Physiol 1998;275:H195–H203.PubMedGoogle Scholar
  188. 188.
    Young ME, McNulty P, Taegtmeyer H. Adaptation and maladaptation of the heart in diabetes: Part II: potential mechanisms. Circulation. 2002;105:1861–1870.PubMedCrossRefGoogle Scholar
  189. 189.
    Rosen SG, Linares OA, Sanfield JA, et al. Epinephrine kinetics in humans: radiotracer methodology. J Clin Endocrinol Metab 1989;69:753–761.PubMedCrossRefGoogle Scholar
  190. 190.
    Py G, Lambert K, Milhavet O, et al. Effects of streptozotocin-induced diabetes on markers of skeletal muscle metabolism and monocarboxylate transporter 1 to monocarboxylate transporter 4 transporters. Metabolism 2002;51:807–813.PubMedCrossRefGoogle Scholar
  191. 191.
    Enoki T, Yoshida Y, Hatta H, Bonen A. Exercise training alleviates MCT1 and MCT4 reductions in heart and skeletal muscles of STZ-induced diabetic rats. J Appl Physiol 2003;94:2433–2438.PubMedGoogle Scholar
  192. 192.
    Seymour AM, Chatham JC. The effects of hypertrophy and diabetes on cardiac pyruvate dehydrogenase activity. J Mol Cell Cardiol 1997;29:2771–2778.PubMedCrossRefGoogle Scholar
  193. 193.
    Wu P, Sato J, Zhao Y, et al. Starvation and diabetes increase the amount of pyruvate dehydrogenase kinase isoenzyme 4 in rat heart. Biochem J 1998;329:197–201.PubMedGoogle Scholar
  194. 194.
    Kobayashi K, Neely J. Effects of increased cardiac work on pyruvate dehydrogenase activity in hearts from diabetic animals. J Mol Cell Cardiol 1983;15:347–357.PubMedCrossRefGoogle Scholar
  195. 195.
    Chatham JC, Forder JR. A 13C-NMR study of glucose oxidation in the intact functioning rat heart following diabetes-induced cardiomyopathy. J Mol Cell Cardiol 1993;25:1203–1213.PubMedCrossRefGoogle Scholar
  196. 196.
    Randle P, Priestman D, Mistry S, Halsall A. Mechanisms modifying glucose oxidation in diabetes mellitus. Diabetologia 1994;37:S155–S161.PubMedCrossRefGoogle Scholar
  197. 197.
    Ballard FB, Danforth WH, Naegle S, Bing RJ. Myocardial metabolism of fatty acids. J Clin Invest 1960;39:717–723.PubMedCrossRefGoogle Scholar
  198. 198.
    Garland P, Randle P. Regulation of glucose uptake by muscle. 10. Effects of alloxan-diabetes, starvation, hypophysectomy and andrenalectomy, and of fatty acids, ketone bodies and pyruvate on the glycerol ouput and concentrations of free fatty acids, long-chain fatty acyl-coenzyme A, glycerol phosphate and citrate-cycle intermediates in rat heart and diaphragm muscles. Biochem J 1964;93:678–687.PubMedGoogle Scholar
  199. 199.
    Lopaschuk G, Tsang H. Metabolism of palmitate in isolated working hearts from spontaneously diabetic ‘BB’ Wistar rats. Cir Res 1987;61:853–858.Google Scholar
  200. 200.
    Belke DD, Larsen TS, Gibbs EM, Severson DL. Altered metabolism causes cardiac dysfunction in perfused hearts from diabetic (db/db) mice. Am J Physiol 2000;279:E1104–E1113.Google Scholar
  201. 201.
    Young ME, Guthrie PH, Razeghi P, et al. Impaired long-chain fatty acid oxidation and contractile dysfunction in the obese Zucker rat heart. Diabetes 2002;51:2587–2595.PubMedCrossRefGoogle Scholar
  202. 202.
    Chatham JC, Gao ZP, Forder JR. Impact of 1 wk of diabetes on the regulation of myocardial carbohydrate and fatty acid oxidation. Am J Physiol 1999;277:E342–E351.PubMedGoogle Scholar
  203. 203.
    Turpeinen AK, Kuikka JT, Vanninen E, Uusitupa MI. Abnormal myocardial kinetics of 123I-heptadecanoic acid in subjects with impaired glucose tolerance. Diabetologia 1997;40:541–549.PubMedCrossRefGoogle Scholar
  204. 204.
    Denton RM, Randle PJ. Concentration of glycerides and phospholipids in rat heart and gastrocnemius muscles. Biochem J 1967;104:416–422.PubMedGoogle Scholar
  205. 205.
    Rodrigues B, Cam MC, McNeill JH. Metabolic disturbances in diabetic cardiomyopathy. Molecular Cellular Biochemistry 1998;180:53–57.CrossRefGoogle Scholar
  206. 206.
    Nicholl T, Lopaschuk G, McNeill J. Effects of free fatty acids and dichloroacetate on isolated working diabetic rat heart. Am J Physiol 1991;261:H1053–H1059.PubMedGoogle Scholar
  207. 207.
    Semeniuk LM, Kryski AJ, Severson DL. Echocardiographic assessment of cardiac function in diabetic db/db and transgenic db/db-hGLUT4 mice. Am J Physiol 2002;283:H976–H982.Google Scholar
  208. 208.
    Rodrigues B, Xiang H, McNeill JH. Effect of L-carnitine treatment on lipid metabolism and cardiac performance in chronically diabetic rats. Diabetes 1988;37:1358–1364.PubMedCrossRefGoogle Scholar
  209. 209.
    Chatham JC, Forder JR. Relationship between cardiac function and substrate oxidation in hearts of diabetic rats. Am J Physiol 1997;273:H52–H58.PubMedGoogle Scholar
  210. 210.
    Finck BN, Han X, Courtois M, Aimond F, et al. A critical role for PPARa-mediated lipotoxicity in the pathogenesis of diabetic cardiomyopathy: Modulation by dietary fat content. PNAS 2003;100:1226–1231.PubMedCrossRefGoogle Scholar
  211. 211.
    Djouadi F, Weinheimer CJ, Saffitz JE, et al. A gender-related defect in lipid metabolism and glucose homeostasis in peroxisome proliferator-activated receptor alpha-deficient mice. J Clin Invest 1998;102:1083–1091.PubMedCrossRefGoogle Scholar
  212. 212.
    Aasum E, Belke DD, Severson DL, et al. Cardiac function and metabolism in type 2 diabetic mice after treatment with BM 17.0744, a novel PPAR-alpha activator. Am J Physiol 2002;283:H949–H957.Google Scholar
  213. 213.
    Williamson J, Krebs H. Acetoacetate as fuel of respiration in the perfused rat heart. Biochem J 1961;80:540–547.PubMedGoogle Scholar
  214. 214.
    Taegtmeyer H. On the inability of ketone bodies to serve as the only energy providing substrate for rat heart at physiological work load. Basic Res Cardiol 1983;78:435–450.PubMedCrossRefGoogle Scholar
  215. 215.
    Russell R, Taegtmeyer H. Coenzyme A sequestration in rat hearts oxidizing ketone bodies. J Clin Invest 1992;89:968–973.PubMedCrossRefGoogle Scholar
  216. 216.
    Zimmermann A, Meijler F, Hülsmann W. The inhibitory effect of acetoacetate on myocardial contraction. Lancet 1962;2:757–758.CrossRefGoogle Scholar
  217. 217.
    Hasselbaink DM, Glatz JF, Luiken JJ, et al. Ketone bodies disturb fatty acid handling in isolated cardiomyocytes derived from control and diabetic rats. Biochem J 2003;371:753–760.PubMedCrossRefGoogle Scholar
  218. 218.
    Young ME, Patil S, Ying J, et al. Uncoupling protein 3 transcription is regulated by peroxisome proliferator-activated receptor a in the adult rodent heart. FASEB J 2001;15:833–845.PubMedCrossRefGoogle Scholar
  219. 219.
    Hidaka S, Kakuma T, Yoshimatsu H, et al. Streptozotocin treatment upregulates uncoupling protein 3 expression in the rat heart. Diabetes 1999;48:430–435.PubMedCrossRefGoogle Scholar
  220. 220.
    Turko IV, Murad F. Quantitative protein profiling in heart mitochondria from diabetic rats. J Biol Chem 2003;278:35844–35849.PubMedCrossRefGoogle Scholar
  221. 221.
    Matsumoto Y, Kaneko M, Kobayashi A, et al. Creatine kinase kinetics in diabetic cardiomyopathy. Am J Physiol 1995;268:E1070–E1076.PubMedGoogle Scholar
  222. 222.
    Spindler M, Saupe K, Tian R, et al. Altered creatine kinase enzyme kinetics in diabetic cardiomyopathy. A 3 1P NMR magentization transfer study of the intact beating rat heart. J Mol Cell Cardiol 1999;31:2175–2189.PubMedCrossRefGoogle Scholar
  223. 223.
    Metzler B, Schocke MF, Steinboeck P, et al. Decreased high-energy phosphate ratios in the myocardium of men with diabetes mellitus type I. J Cardiovasc Magn Reson 2002;4:493–502.PubMedCrossRefGoogle Scholar
  224. 224.
    Scheuermann-Freestone M, Madsen PL, Manners D, et al. Abnormal cardiac and skeletal muscle energy metabolism in patients with type 2 diabetes. Circulation 2003;107:3040–3046.PubMedCrossRefGoogle Scholar
  225. 225.
    Young ME, Razeghi P, Taegtmeyer H. Clock genes in the heart: characterization and attenuation with hypertrophy. Circ Res 2001;88:1142–1150.PubMedCrossRefGoogle Scholar
  226. 226.
    Young ME, Wilson CR, Razeghi P, et al. Alterations of the circadian clock in the heart by streptozotocin-induced diabetes. J Mol Cell Cardiol 2002;34:223–231.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Lawrence H. Young
    • 1
  • Raymond R. RussellIII
    • 1
  • Deborah Chyun
    • 2
  1. 1.Department of Internal Medicine (Cardiovascular Medicine)Yale University School of MedicineNew Haven
  2. 2.Adult Advanced Practice Nursing SpecialityYale University School of NursingNew Haven

Personalised recommendations