Skip to main content

The Metabolic Syndrome and Vascular Disease

  • Chapter
Diabetes and Cardiovascular Disease

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 1271 Accesses

Abstract

The concept of the metabolic syndrome is perhaps the most significant development in the management of cardiovascular disease (CVD) in the last 15 years. Prior to this, physicians often treated diabetes, hypertension, or dyslipidaemia as separate diseases and did not really consider the impact of treatment of one of these conditions on the other co-existing conditions. Avogaro first described the syndrome more than 40 years ago (1). The prevalence and importance of the concept to everyday clinical practice was, however, first highlighted in 1988 when Gerald Reaven drew attention to a constellation of features associated with coronary heart disease (2) (Table 1). Reavan gave the constellation the name Syndrome X (3). He also suggested that insulin resistance played a central etiological role in providing a link between these components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avogaro P, Creapaldi G, Essential Hyperlipaemia, obesity and diabetes (abstract). Diabetologia 1965;1:137

    Google Scholar 

  2. Reaven GM. Banting lecture 1988: role of insulin in human disease. Diabetes 1988;37:1595–1607.

    PubMed  CAS  Google Scholar 

  3. Laws A, Reaven GM. Insulin resistance and risk factors for coronary heart disease. Baillieres Clin Endocrinol Metab 1993;7(4):1063–1078.

    PubMed  CAS  Google Scholar 

  4. Haffner SM, Mietinen H. Insulin resistance implications for type II diabetes mellitus and coronary heart disease. Am J Med 1997;103:152–159.

    PubMed  CAS  Google Scholar 

  5. Ferranini E, Haffner SM, Mitschell BD, Stern MP. Hyperinsulinaemia: the key feature of a cardiovascular syndrome and metabolic syndrome. Diabetologia 1991;34:416–422.

    Google Scholar 

  6. Berenson GS, Srinivasan SR, Bao W, Newman WP, Tracy RE, Wattingney WA. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. N Engl J Med 1998;338,23:1650–1656.

    PubMed  CAS  Google Scholar 

  7. Bao W, Srinivasan SR, Wattingney WA, Berenson GS. Persistence of multiple cardiovascular risk clustering relating to syndrome X from childhood to adulthood: the Bogalusa Heart Study. Arch Intern Med 1994;54:1842–1847.

    Google Scholar 

  8. Hodge AM, Zimmet PZ. The epidemiology of obesity. Baillieres Clin Endocrinol Metab 1994;8(3):577–599.

    PubMed  CAS  Google Scholar 

  9. McKeigue PM. Insulin resistance and risk factors in different ethnic groups. In: Poulter N, Sever P, Thom S, (eds.). Cardiovascular Disease: Risk Factors and Intervention. Radcliffe Medical, Ltd.: Abingdon, UK, 1993, pp. 53–62.

    Google Scholar 

  10. Neel JV. Diabetes mellitus: a thrifty genotype rendered detrimental by “progress”? American Journal of Human Genetics 1962;14:353–362.

    PubMed  CAS  Google Scholar 

  11. Wendorf M, Goldfine ID. Archaeology of NIDDM: excavation of the thrifty genotype. Diabetes 1991;40:161–165.

    PubMed  CAS  Google Scholar 

  12. Reavan GM. Hypothesis: muscle insulin resistance is the (“not so”) thrifty genotype. Diabetologia 1998;41(4):482–484.

    Google Scholar 

  13. Owen OE, Felig P, Morgan AP, Wahren J Cahill GF Jr. Liver and kidney metabolism during prolonged starvation. JCI 1969;48:574–583.

    PubMed  CAS  Google Scholar 

  14. Owen OE, Morgan AP, Kemo HG, et al. Brain metabolism during prolonged starvation. JCI 1967;46;1589–1597.

    PubMed  CAS  Google Scholar 

  15. Barker DJP. Intra-uterine origins of cardiovascular and obstructive lung disease in adult life. JR Coll Phys Lond 1991;25:129–133.

    CAS  Google Scholar 

  16. Barker DJP, Hales CN, et al. Type 2 (non-insulin dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced foetal growth. Diabetologia 1993;36:62–67.

    PubMed  CAS  Google Scholar 

  17. McCance DR, Pettitt DJ, Hanson RL, Jacobson LTH, Knowle WC, Bennett PH. Birth weight and non-insulin dependent diabetes: “thrifty genotype”, “thrifty phenotype” or “surviving small baby genotype”. Br Med J 1994;308:942–945.

    CAS  Google Scholar 

  18. Valdez R, Athens MA, Thompson GH, Bradshaw BS, Stern MP. Birth weight and adult outcomes in a diethnic population in the USA. Diabetologia 1994;37:624–631.

    PubMed  CAS  Google Scholar 

  19. Lithell HO, Mckeigue PM, Berglund L, Mohsen R, Lithell U-B, Leon DA. Relation of size at birth to non-insulin dependent diabetes and insulin concentrations in men aged 50–60 years. Br Med J 1996;312:406–410

    CAS  Google Scholar 

  20. Poulsen P, Vaag AA, Kyvik KO, et al. Low birth weight is associated with NIDDM in discordant monozygotic and dizygotic twin pairs. Diabetologia 1997;40:439–446.

    PubMed  CAS  Google Scholar 

  21. Stern MP. Diabetes and Cardiovascular Disease: The “Common Soil” Hypothesis. Diabetes 1995;44:369–374.

    PubMed  CAS  Google Scholar 

  22. Stern M. The Insulin Resistance Syndrome. In: Alberti KGMM, Zimmet P, DeFronzo R, Keen H, (eds.). International Textbook of Diabetes Mellitus. Wiley and Sons: New York, NY, 1997 pp. 255–283.

    Google Scholar 

  23. Hansen BC, Bodkin HL. Heterogeneity of insulin responses: phases leading to type II (non-insulin dependent) diabetes mellitus in the rhesus monkey. Diabetologia 1986;29:713–719.

    PubMed  CAS  Google Scholar 

  24. Zimmet P. Kelly West Lecture 1991. Challenges in diabetes epidemiology-from west to the rest. Diabetes Care 1992;15(2):232–252.

    PubMed  CAS  Google Scholar 

  25. Zimmet P, Dowse G, Bennet P. Hyperinsulinaemia is a predictor of non-insulin dependent diabetes mellitus. Diabetes Metab 1991;17:101–108.

    CAS  Google Scholar 

  26. Petit DJ, Moll PP, Kottke BA. Insulin resistance in apparently healthy children (Abstract). Diabetes 1990;339(Suppl 1):75A.

    Google Scholar 

  27. White K, Gracy M, Schumacher L, Spargo R, Kretchmer N. Hyperinsulinaemia and impaired glucose tolerance in young Australian Aborigines. Lancet 1990;2:735.

    Google Scholar 

  28. Stout RW. Insulin and Atheroma. Diabetes Care 1990;13(6):631–654.

    PubMed  CAS  Google Scholar 

  29. Duff GL, McMillan GC. The effect of alloxan diabetes on experimental cholesterol atherosclerosis I. The inhibition of experimental cholesterol atherosclerosis in alloxan diabetes. II The effect of alloxan diabetes on the retrogression of experimental cholesterol atherosclerosis. Journal of Experimental Medicine 1949;89:611–629.

    CAS  Google Scholar 

  30. McGill HC Jr, Holman RL. The influence of alloxan diabetes on cholesterol atheromatosis in the rabbit. Proc Soc Exp Biol Med 1954;72:72–73.

    Google Scholar 

  31. Duff GL, Brechin DJH, Findelstein WE. The effect of alloxan diabetes on experimental cholesterol atherosclerosis in the rabbit.IV. The effect of insulin therapy on the inhibition of atherosclerosis in the alloxan-diabetic rabbit. J Exp Med 1954;100:371–80.

    PubMed  CAS  Google Scholar 

  32. Norddestgaard BG, Zilversmit DB. Hyperglycaemia in normotriglyceridemic, hypercholestrolemic insulin treated diabetic rabbits does not accelerate atherogenesis. Atherosclerosis 1988;72:37–47.

    Google Scholar 

  33. Cruz AB Jr, Amatuzio DS, Grande F, Hay LJ. Effect of intra-arterial insulin on tissue cholesterol and fatty acids in alloxan-diabetic dogs. Circulation Research 1961;9:39–43.

    PubMed  CAS  Google Scholar 

  34. Pfeilfle B, Ditschuneit H. Effect of insulin on growth of cultured arterial smooth muscle cells. Diabetologia 1981;20:155–158.

    Google Scholar 

  35. Krone W, Naegele H, Behnke B, Greten H. Opposite effects of insulin and catecholamines on LDL-receptor activity in human mononuclear leukocytes. Diabetes 1988;37:1386–1391.

    PubMed  CAS  Google Scholar 

  36. Oppenheimer MJ, Sundquist K, Bierman EL. Downregulation of high-density lipoprotein receptor in human fibroblasts by insulin and IGF-1. Diabetes 1989;38:117–122.

    PubMed  CAS  Google Scholar 

  37. Elliot TG, Viberti G. Relationship between insulin resistance and the risk for coronary heart disease in diabetes mellitus and the general population: a critical appraisal. Baillieres Clin Endocrinol Metab 1993;7(4):1079–1103.

    Google Scholar 

  38. Duciemetiere P, Eschwege E, Papoz L, Richard JL, Claude JR. Relationship of plasma insulin levels to the incidence of myocardial infarction and coronary heart disease mortality in a middle aged population. Diabetologia 1980;19:205–210.

    Google Scholar 

  39. Eschwege E, Richard JL, Thibult N, et al. Coronary heart disease mortality in relation with diabetes, blood glucose and plasma insulin levels: the Paris prospective study, ten years later. Horm Metab Res 1985;15:41–46.

    CAS  Google Scholar 

  40. Fontbonne A, Charles MA, Thibult N, et al. Hyperinsulinaemia as a predictor of coronary heart disease mortality in a healthy population: the Paris prospective Study 15 year follow up. Diabetologia 1992;34:356–361.

    Google Scholar 

  41. Pyorala K. Relationship of glucose tolerance and plasma insulin to the incidence of coronary heart disease: results from two population studies in Finland. Diabetes Care 1979;2:121–141.

    Google Scholar 

  42. Pyorala K, Savolainen E, Kaukola S, Haapakoski J. Plasma insulin as coronary heart disease risk factor: relationship to other risk factors and predictive value during 9.5 year follow-up of the Helsinki Policeman Study population. Acta Med Scad (Suppl) 1985;70:35–52.

    Google Scholar 

  43. Despres JP, Lamarche B, Mauriege P, Cantin B, Dagenais G, Moorajani S, Lupien PJ. Hyperinsulinaemia as an independent risk factor for ischaemic heart disease. N Engl J Med 1996;334(15):952–957.

    PubMed  CAS  Google Scholar 

  44. Hargreaves AD, Logan RL, Elton RA, Buchanan KD, Oliver MF, Riemersma RA. Glucose tolerance, plasma insulin, HDL cholesterol and obesity: 12-year follow-up and development of coronary heart disease in Edinburgh men. Atherosclerosis 1992;94(1):61–69.

    PubMed  CAS  Google Scholar 

  45. Welin L, Eriksson H, Larsson B, Ohlson LO, Svardsudd K, Tibblin G. Hyperinsulinaemia is not a major coronary risk factor in elderly men. The study of men born in 1913. Diabetologia 1992;35(8):766–770.

    PubMed  CAS  Google Scholar 

  46. Welborn TA, Wearne K. Coronary heart disease incidence and cardiovascular mortality in Busselton with reference to glucose and insulin concentration. Diabetes Care 1979;21:154–160.

    Google Scholar 

  47. Cullen K, Stenhouse NS, Wearne KL, Welborne TA. Multiple regression analysis of risk factors for cardiovascular disease and cancer mortality in Busselton, Western Australia—3-year study. Journal of Chronic Diseases 1983;36:371–377.

    PubMed  CAS  Google Scholar 

  48. Ferrara A, Barrett-Connor EL, Edelstein SL. Hyperinsulinaemia does not increase the risk of fatal cardiovascular disease in elderly men or women without diabetes: the Rancho Bernardo Study. 1984–1991. Am J Epidemiol 1994;140:857–869.

    PubMed  CAS  Google Scholar 

  49. Nattrass M. Managing diabetes after myocardial infarction BMJ 1997;314:1497.

    PubMed  CAS  Google Scholar 

  50. Malmberg K, for the DIG AMI study group. Prospective randomised study of intensive insulin treatment on long term survival after acute myocardial infarction in patients with diabetes mellitus. BMJ 1997;314:1512–1515.

    PubMed  CAS  Google Scholar 

  51. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998;12(352):837–853

    Google Scholar 

  52. Nathan D. Some answers, more controversy, from UKPDS. Lancet 1998;352:832–833.

    PubMed  CAS  Google Scholar 

  53. Welborn TA, Breckenbridge A, Rubenstein AH, Dollery CT, Fraser TR. Serum insulin in essential hypertension and in peripheral vascular disease. Lancet 1996;1:1336–1337.

    Google Scholar 

  54. Modan M, Halkin H, Almog S, et al. Hyperinsulinemia: a link between hypertension, obesity and glucose intolerance. J Clin Inv. 1985;75:809–817.

    CAS  Google Scholar 

  55. Saad MF, Lillioja S, Nyomba BL, et al. iRacial differences in the relation between blood pressure and insulin resistance NEJM 1991;324:733–739.

    PubMed  CAS  Google Scholar 

  56. Falkner B, Hulman S, Tannenbaum J, Kushner H. Insulin resistance and blood pressure in young black men. Hypertension 1990;16:706–711.

    PubMed  CAS  Google Scholar 

  57. Collins VR, Dowse GK, Finch CFG, Zimmet PZ. An inconsistent relationship between insulin and blood pressure in three Pacific island populations. J Clin Epidemiol 1990;43:1369–1378.

    PubMed  CAS  Google Scholar 

  58. Landsberg L, Krieger DR. Obesity, metabolism and the sympathetic nervous system. Am J Hyper 1989;2:125S–132S.

    CAS  Google Scholar 

  59. Rocchini AP, Moorehead C, DeRemer S, Goodfriend TL, Ball DL Hyperinsulinaemia and the aldosterone and pressor responses to angiotensin II. Hypertension 1990;15:867–866.

    Google Scholar 

  60. Ward KD, Sparrow D, Landsberg L, Young JB, Weiss ST. The influence of obesity, insulin and the sympathetic nervous system activity on blood pressure. Clin Res 1993;41:168A.

    Google Scholar 

  61. DeFronzo RA, Ferrannini E. Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidaemia and atherosclerotic cardiovascular disease. Diabetes Care 1991;14:173–194.

    PubMed  CAS  Google Scholar 

  62. Laing C-S, Doherty JU, Faillace R, et al. Insulin infusion in conscious dogs: effects on systemic and coronary haemodynamics, regional blood flows and plasma catecholamines. J Clin Invest 1982;69:1321–1336.

    Google Scholar 

  63. Laakso M, Edelman SV, Brechtel G, Baron AD. Decreased effects of insulin to stimulate skeletal muscle blood flow in obese man: a novel mechanism for insulin resistance. J Clin Invest 1990;85:1844–1852.

    PubMed  CAS  Google Scholar 

  64. Creagar MA, Liang C-S, Coffman JD. Beta-adrenergic-mediated vasodilator response to insulin in the human forearm. J Pharmacol Exp Ther 1985;235:709–714.

    Google Scholar 

  65. Anderson EA, Hoffman RP, Balon TW, Sinkey CA, Mark AL. Hyperinsulinaemia produces both sympathetic neural activation and vasodilation in normal humans. J Clin Invest 1991;87:2246–2252.

    PubMed  CAS  Google Scholar 

  66. Berne C, Fagius J, Pollare T, Hjemdahl P. The sympathetic response to euglycaemic hyperinsulinaemia. Diabetologia 1992;35:873–879.

    PubMed  CAS  Google Scholar 

  67. Karlson C, Lindell K, Ottosson M, et al. Huamn adipose tissue expresses angiotensinogen and enzymes necessary for its conversion to Angiotensin II. J Clin Endo Metab 1998;83:3925–3929.

    Google Scholar 

  68. Schling P, Mallow H, Trindl A, et al. Evidence for a local rennin angiotensin system in primary cultured pre-adipocytes. Int J Obes Relat Metab Disord 1999;23:336–341.

    PubMed  CAS  Google Scholar 

  69. Eggena P, Sowers JR, Maxwell MH, Barrett JD, Golub MS. Hormonal correlates of weight loss associated with blood pressure reduction Clin Exp Hypertens A 1991;13(8):1447–1456.

    PubMed  CAS  Google Scholar 

  70. Garrow J. Importance of obesity. BMJ 1991;303:704–706.

    PubMed  CAS  Google Scholar 

  71. Kissebah AH, Krakower GR. Regional adiposity and morbidity. Physiological Reviews 1994;74:761–809.

    PubMed  CAS  Google Scholar 

  72. Lew EA, Garfinkel L. Variations in mortality by weight among 750,000 men and women. J Chron Dis 1974;32:563–576.

    Google Scholar 

  73. Build study 1979. Chicago, IL: Society of Actuaries and Association of Life Insurance Medical Directors, 1980.

    Google Scholar 

  74. Willett WC, Manson JE, Stampfer MJ, et al. Weight, weight change and coronary heart disease in women. JAMA 1995:27:1461–1465.

    Google Scholar 

  75. Royal College of Physicians. Obesity. J Roy Coll Physicians Lond 1983;17:3–58.

    Google Scholar 

  76. Colditz GA, Willett WC, Rotnitzky A, Manson JE. Weight gain as risk factor for clinical diabetes mellitus in women Ann Int Med 1995;122:481–486.

    PubMed  CAS  Google Scholar 

  77. Jung RT. Obesity as a disease. British medical Bulletin 1997;35(2):307–321.

    Google Scholar 

  78. Vague J. The degree of masculine differentiation of obesities, a factor determining predisposition to diabetes, atherosclerosis, gout and uric calculous disease. Am J Clin Nutr 1956;4:20–34.

    PubMed  CAS  Google Scholar 

  79. Larsson B, Svardsudd K, Welin L, Wilhelmsen L, Bjorntorp P, Tibblin G. Abdominal adipose tissue distribution, obesity, and risk of cardiovascular disease and death: 12-year follow-up of participants in the study of men born in 1913. BMJ 1984;289:1401–1404.

    Google Scholar 

  80. Bengtsson C, Bjorkelund C, Lapidus L, Lissner L. Association of serum lipid concentration and obesity with mortality in women 20-year follow-up of participants in the prospective population study in Gothenburg Sweden. BMJ 1993;307(6916):1385–1388.

    PubMed  CAS  Google Scholar 

  81. Stokes J, Garrison RJ, Kannek WB. The independent association of various indices of obesity to the 22-year incidence of coronary heart disease: the Framingham Heart Study. In: Vague J, Bjorntorp P, Guy-Grand B, Rebuffe-Scrive M, Vague P, (eds.). Proceedings of the international symposium on the metabolic complications of human obesities. Elservier: Marseilles, France, 1985, pp. 49–57.

    Google Scholar 

  82. Arner P. Regional adipocity in man. Journal of Endocrinology 1997;155:191–192.

    PubMed  CAS  Google Scholar 

  83. Bujalska IJ, Kumar S, Stewart PM. does central obesity reflect Cushing’s disease of the omentum. Lancet 1998;349:1210–1213.

    Google Scholar 

  84. Ludvil B, Nolan JJ, Bolago J, Sacks D, Olefsky J. Effects of obesity on insulin resistance in normal subjects and patients with NIDDM. Diabetes 1995;44:1121–1125.

    Google Scholar 

  85. Campbell PJ, Gerich JE. Impact of obesity on insulin action in volunteers with normal glucose tolerance: demonstration of threshold for the adverse effects of obesity. J Clin Endo Metab 1990;70:1114–1118.

    CAS  Google Scholar 

  86. Swinburn BA, Nyomba BL, Saad MF, et al. Insulin resistances associated with lower rates of weight gain in Pima Indians. JCI 1991;88:168–173.

    PubMed  CAS  Google Scholar 

  87. Odeleeye OE, de Courten M, Ravussin E. Insulin resistance as a predictor of body weight gain in 5–10 year old Pima Indians. Diabetes 1995;44(Suppl 1):7a.

    Google Scholar 

  88. Bjorntorp P. Portal adipose tissue as a generator of risk factors for cardiovascular disease and diabetes Arteriosclerosis 1990;42:493–496.

    Google Scholar 

  89. Durrington PN, Newton RS, Weinstein DB, Steinberg D. Effects of insulin and glucose on VLDL triglyceride secretion by cultured rat hepatocytes. J Clin Invest 1982;70:63–73.

    PubMed  CAS  Google Scholar 

  90. Jackson TW, Salhanick AI, Elvoson J, Deichman ML, Amaatruda JM. Insulin regulates apolipoprtein B turnover and phosphorylation in rat hepatocytes. J Clin Invest 1990;86:1746–1751.

    PubMed  CAS  Google Scholar 

  91. Mohammed-Ali V, Goodrick S, Rawesh A, et al. Adipose tissue as an endocrine and paracrine organ. Int J of Obes and Rel Metab Disord 1998;22(12):1145–1158.

    Google Scholar 

  92. Funahashi T, Nakamura T, Shinmura K, et al. Role of adipocytokines on the pathogenesis of atherosclerosis in visceral obesity. Intern Med 1999;38:202–206.

    PubMed  CAS  Google Scholar 

  93. Maeda K, Okubo K, Shimomura I, Funahashi T, Matsuzawa Y, Matsubara K. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (adipose most abundant Gene transcript 1) Biochem Biophys Res Commun 1996;221:286–296.

    PubMed  CAS  Google Scholar 

  94. Scherer P.E, Williams S, Fogliano M Baldini G, Lodish HF. A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem 1995;270:26,746–26,749.

    PubMed  CAS  Google Scholar 

  95. Hu E, Liang P, Spiegelman BM. AdipoQ is novel adipose specific gene dysregulated in obesity. J Biol Chem 1996;271:10,697–10,703.

    PubMed  CAS  Google Scholar 

  96. Nakano Y, Tobe T, Choi-Muira NH, Mazda T, Tomita M. Isolation and characterization OF gBP28, a novel gelatine-binding protein purified from human plasma. J. Biochem (Tokyo) 1991;120:802–812.

    Google Scholar 

  97. Pickup JC, Crook MA. Is type II diabetes a disease of the innate immune system? Diabetologia 1998;41(10):1241–1248.

    PubMed  CAS  Google Scholar 

  98. Pickup JC, Mattock MB, Chusney GD, Burt D. NIDDM as a disease of the innate immune system: association of acute phase reactants and interleukin-6 with metabolic syndrome X. Diabetologia 1997;40:1286–1292.

    PubMed  CAS  Google Scholar 

  99. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obestiy-linked insulin resistance. Science 1993;259(5091):87–91.

    PubMed  CAS  Google Scholar 

  100. Kubaszek A, Pihlajamaki J, Komarovski V, et al. Promoter polymorphisms of the TNF-α(G-308 A) and IL-6 (C174G) genes predict the conversion from impaired glucose tolerance to type 2 diabetes: the Finnish diabetes prevention study Diabetes 2003;52:1872–1876.

    PubMed  CAS  Google Scholar 

  101. Hotamisligil GS, Budavari A, Murray D, Spiegelman BM. Reduced tyrosine kinase activity of the insulin receptor in obesity diabetes. Central role of TNF-α. J Clin Invest 1994;94:1543–1549.

    PubMed  CAS  Google Scholar 

  102. Aljada A, Ghanim H, Assian E, Dandona P. Tumor necrosis factor-α inhibits insulin-induced increase in endothelial nitric oxide synthase and reduces insulin receptor content and phosphorylation in human aortic endothelial cells. Metabolism 2002;51:487–491.

    PubMed  CAS  Google Scholar 

  103. Senn JJ, Klover PJ, Nowak IA, Mooney RA. Interleukin-6 induces cellular insulin resistance in hepatocytes. Diabetes 2002;51:3391–3399.

    PubMed  CAS  Google Scholar 

  104. Coleman DL. Effects of parabiosis of obese with diabetic and normal mice. Diabetologia 1973;9:294–298.

    PubMed  CAS  Google Scholar 

  105. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature 1994;372:425–432.

    PubMed  CAS  Google Scholar 

  106. Halaas JL, Gajiwala KS, Maffei M, et al. Weight reducing effects of the plasma protein encoded by the obese gene. Science 1995;269:543–546.

    PubMed  CAS  Google Scholar 

  107. Stephens TW, Basinski M, Bristow PK, et al. The role of neuropeptide Y in the antiobesity action of the obese gene product. Nature 1995;377:530–532.

    PubMed  CAS  Google Scholar 

  108. Erickson JC, Clegg KE, Palmiter RD. Attenuation of the obesity syndrome of ob/ob mice by loss of neuropeptide Y. Science 1996;274:1704–1707.

    PubMed  CAS  Google Scholar 

  109. Shimabukuro M, Koyama K, Chen G, et al. Direct antidiabetic effect of leptin through triglyceride depletion of tissues. Proc Natl Acad Sci USA 1997;94:4637–4641.

    PubMed  CAS  Google Scholar 

  110. Muller G, Ertl J, Gerl M, Preibisch G. Leptin impairs metabolic actions of insulin in isolated rat adipocytes. J Biol Chem 1997;272:10,585–10,593.

    PubMed  CAS  Google Scholar 

  111. Zimmet P, Hodge A, Nicholson M, et al. Serum leptin concentration, obesity and insulin resistance in Western Samoans: cross-sectional study. Br Med J 1996;313:965–969.

    CAS  Google Scholar 

  112. Larsson H, Elmstahl S, Ahren B. Plasma leptin levels correlate to islet function independently of body fat in post-menopausal women. Diabetes 1996;45:1580–1584.

    PubMed  CAS  Google Scholar 

  113. Damani S, Gabriel M, Khan A, Boyadjian R, Kamadar V, Saad M. Adiposity and insulinaemia determine plasma leptin concentration (Abstract) Diabetes 1996;45(Suppl 1):41A.

    Google Scholar 

  114. Ramanchandran A, Snehalatha C, Vijay V, Satayavani K, Latha E, Haffner SM. Plasma leptin in non-diabetic Asian Indians. Association with abdominal obesity. Diabetic Med 1997;14:937–941.

    Google Scholar 

  115. Wilsey J, Zolotukhin S, Prima V, Scarpace PJ. Central leptin gene therapy fails to overcome leptin resistance associated with diet-induced obesity. Am J Physio Integr Comp Physiol 2003;285(5):R1011–R1020.

    CAS  Google Scholar 

  116. Carmeliet P, Schoonjans L, Kieckens L, et al. Physiological consequences of loss of plasminogen activator gene function in mice. Nature 1994;368:419–424.

    PubMed  CAS  Google Scholar 

  117. Carmeliet P, Bouche A, De Clercq C, et al. Biological effects of disruption of the tissue-type plasminogen activator and plasminogen activator inhibitor-1 genes in mice Ann NY Acad Sci 1995;748:367–382.

    PubMed  CAS  Google Scholar 

  118. Erickson LA, Fici Gj, Lund JE, Boyle TP, Polites HG, Marotti KR. Development of venous occlusions in mice transgenic for the PAI-1 gene. Nature 1990;346:74–76.

    PubMed  CAS  Google Scholar 

  119. Schneiderman J, Sawdey MS, Keeton MR, et al. Increased type 1 Plasminogen activator inhibitor gene expression in atherosclerotic human arteries. Proc Natl Acad Sci 1992;89:6998–7002.

    PubMed  CAS  Google Scholar 

  120. Eliasson M, Evrin PE, Lundblad D. Fibrinogen and fibrinolytic variables in relation to anthropometry, lipids and blood pressure. The Northern Sweden MONICA Study. J Clin Epidemiol 1994;47:513–524.

    PubMed  CAS  Google Scholar 

  121. Sundell IB, Nilsson TK, Ranby M, Hallmans G, Hellsten G. Fibrinolytic variables are related to age, sex, blood pressure, and body build measurements: a cross-sectional study in Norsjo, Sweden. J Clin Epidemiol 1989;42:719–723.

    PubMed  CAS  Google Scholar 

  122. Juhan-Vague I, Alessi MC. PAI-1, Obesity, Insulin resistance and risk of cardiovascular events. Thromb Haemostas 1997;78(1):656–660.

    CAS  Google Scholar 

  123. Eliasson M, Evrin PE, Lundblad D. Fibrinogen and fibrinolytic variables in relation to anthropometry, lipids and blood pressure. The Northern Sweden MONICA Study. J Clin Epidemiol 1994;47:513–524.

    PubMed  CAS  Google Scholar 

  124. Sundell IB, Dahlgren S, Ranby M, Lundin E, Stenling R, Nilsson TK. Reduction of elevated plasminogen activator inhibitor levels during modest weight loss. Fibrinolysis 1989;3:51–53.

    CAS  Google Scholar 

  125. Gray RP, Panahloo A, Mohamed-Ali V, Patterson DL, Yudkin JS. Proinsulin-like molecules and plasminogen activator inhibitor type1 (PAI-1) activity in diabetic subjects with and without myocardial infarction. Atherosclrerosis 1997;130:171–178.

    CAS  Google Scholar 

  126. Thompson SG, Kienast J, Pyke SDM, Haverkate F, van de Loo JCW. Haemostatic factors and the risk of myocardial infarction or sudden death in patients with angina pectoris N Engl J Med 1995;332:635.

    PubMed  CAS  Google Scholar 

  127. Coley WB. The treatment of malignant tumours by repeated inoculations of erysipelas; with a report often original cases. Clin Orthop 1991;262:3–11.

    PubMed  Google Scholar 

  128. Old LJ. Tumour necrosis factor (TNF) Science 1985;230:630–632.

    PubMed  CAS  Google Scholar 

  129. Argiles JM, Lopez-Soriano J, Busquets S, Lopez-Soriano FJ. Journey from cachexia to obesity by TNF. FASEB 1997;11:743–751.

    CAS  Google Scholar 

  130. Hotamisligil GS, Peraldi P, Spiegelman BM. The molecular link between obesity and diabetes. Curr Opin Endocrinol Diabetes 1996;3:16–23.

    CAS  Google Scholar 

  131. Stephens JM, Pekela PH. Transcriptional reression of the GLUT4 and C/EBP genes in 3T3-L1 adipocytes by tumor necrosis factor-alpha. J Biol Chem 1191;266(32):21,839–21,845.

    Google Scholar 

  132. Hoffman C, Lorenz K, Braithwaite SS, et al. Altered gene expression for tumor necrosis factor-alpha and its receptors during drug and dietary modulation of insulin resistance. Endocrinology 1994;134(1):264–270.

    Google Scholar 

  133. FasshauerM, Klein J, Lossner U, Paschke R. Interleukin (IL)-6 expression is stimulated by insulin, tumor necrosis factor alpha, growth hormone and IL-6 in 3T3-L1 adipocytes. Horm Metab Res 2003;35(3):147–152.

    PubMed  CAS  Google Scholar 

  134. Bullo M, Garcia-Lorda P, Peinado-Onsurbe J, et al. TNF-alpha expression of subcutaneous adipose tissue in obese and morbid obese females: relationship to adipocyte LPL activity and leptin synthesis. Int J Obes Relat Metab Disord 2002;26(5):652–658.

    PubMed  CAS  Google Scholar 

  135. Kern PA, DiGregorio GB, Lu T, Rassouli N, Ranganathan G. Adiponectin expression from human adipose tissue: relation to obesity, insulin resistance and tumor necrosis factor-alpha expression. Diabetes 2003;57:1779–1785.

    Google Scholar 

  136. Shojima N, Sakoda H, Ogihara T, et al. Humoral Regulation of resistin expression in £T£-L! And mouse adipose cells. Diabetes 2002;51(6):1737–1744.

    PubMed  CAS  Google Scholar 

  137. Peraldi P, Xu M, Speigelman BM. Thiiozolidinediones block tumor necrosis factor-alpha-induced inhibition of insulin signalling. J Clin Invest 1997;100(7):1863–1869.

    PubMed  CAS  Google Scholar 

  138. Iwata M, Haruta T, Usui I, et al. Pioglitazone ameliorates tumor necrosis factor-alpha-induced insulin resistance by a mechanism independent of adipogenic activity of peroxisome proliferators-activated-receptor-gamma. Diabetes 2001;50(5):1083–1092.

    PubMed  CAS  Google Scholar 

  139. Mohamed-Ali V, Goodrick S, Rawesh A, et al. Subcutaneous adipose tissue releases interleukin-6, but not TNF-α, in vivo. J Clin Endocrinol Metab 1997;82:4196–4200.

    PubMed  CAS  Google Scholar 

  140. Vozarova B, Weyer C, Hanson K, Tataranni PA, Bogardus C, Pratley RE. Circulating interleukin in relation to adiposity, insulin action, and insulin secretion. Obes Res 2001;9:414–417.

    PubMed  CAS  Google Scholar 

  141. Bastard J-P, Jardel C, Bruckert E, et al. Elevated levels of interleukin-6 are reduced in serum and subcutaneous adipose tissue of obese women after weight loss. J Clin Endocrin Metab 2000;85(9):338–342.

    Google Scholar 

  142. Rotter V, Nagaev I, Smith U. Interleukin-6 (IL-6) induces insulin resitance in 3T3-L1 adipocytes and is, like IL-8 and TNF-α, overexpressed in human fat cells form insulin resistant subjects. J Biol Chem 2003;278(46):45,777–45,784.

    PubMed  CAS  Google Scholar 

  143. Stouthard JM, Oude Elferink RP, Sauerwein HP. Interleukin-6 enhances glucose transport in 3T3-L1 adipocytes. Biochem Biophys Res Commun 1996;220(2):241–245.

    PubMed  CAS  Google Scholar 

  144. Engeli S, Feldpausch M, Gorzelniak K, et al. Association between adiponectin and mediators of inflammation in obese women. Diabetes 2003;52(4):942–947.

    PubMed  CAS  Google Scholar 

  145. Kaser S, Kaser A, Sandhofer A, Ebenbichler CF, Tilg H, Patsch JR. Resistin messenger-RNA is increased by proinflammatory cytokines in vitro. Biochem Biophys Res Commun 2003;309(2):286–290.

    PubMed  CAS  Google Scholar 

  146. Weyer C, Funahashi T, Tanaka S, et al. Hypoadiponectinaemia in obesity and type 2 diabetes. Close association with insulin resitance and hyperinsulinaemia. J Clin Endocrinol Metab 2001;86:1930–1935.

    PubMed  CAS  Google Scholar 

  147. Yang WS, Jeng CY, Wu TJ, et al. Synthetic peroxisome proliferator-activated receptor-gamma agonist, rosiglitazone, increases plasma levels of adiponectin in type 2 diabetic patients Diabetes Care 2002;25(2):376–380.

    PubMed  CAS  Google Scholar 

  148. Combs TP, Berg AH, Obicii S, Scherer PE, Rossetti L. Endogenous glucose production is inhibited by the adipose derived protein Arcp30. J Clin Invest 2001;108(12):1875–1881.

    PubMed  CAS  Google Scholar 

  149. Fruebis J, Tsao TS, Javorschi S, et al. Proteolytic cleavage product of 30 kDa adipocyte complement related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci USA 2001;98(4):2005–2010.

    PubMed  CAS  Google Scholar 

  150. Ouchi N, Kihara s, Arita Y, et al. Adiponectin, adipocyte-derived plasma protein inhibits NF-κB signalling through cAMP dependent pathway. Circulation 2000;102:1296–1301.

    PubMed  CAS  Google Scholar 

  151. Kubota N, Teauchi Y, Yamauchi T, et al. Disruption of adiponectin causes insulin resistance and neointimal formation. Jour Biol Chem 2002;277:25,863–25,866.

    CAS  Google Scholar 

  152. Chen H, Montagnani M, Funahashi T, Shimomura I, Quon MJ. Adiponectin stimulates production of nitric oxide in vascular endothelial cells. J Biol Chem 2003;278(45):45,021–45,026.

    PubMed  CAS  Google Scholar 

  153. Yokota T, Oritani K, Takahashi I, et al. Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood 2000;96:1723–1732.

    PubMed  CAS  Google Scholar 

  154. Fasshauer M, Klein J, Neumann S, Eszlinger M, Paschke R. Hormonal regulation of adiponectin gene expression in 3T3-L1 adipocytes. Biochem Biophys Res Comm 2002;290:1084–1089.

    PubMed  CAS  Google Scholar 

  155. Kappes A, Loffler G. Influences of ionomycin, dibutyryl-cycloAMP and tumour necrosis factor-alpha on intracellular amount and secretion of apM1 in differentiating primary human preadipocytes. Horm Metab Res 2000;32:548–554.

    PubMed  CAS  Google Scholar 

  156. Ouchi N, Kihara S, Arita Y, et al. Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages. Circulation 2001;103:1057–1063.

    PubMed  CAS  Google Scholar 

  157. Halleux CM, Takahashi M, Delporte ML, et al. Secretion of adiponectin and regulation of apM1 gene expression in human visceral adipose tissue. Biochem Biophys Res Comm 2001;288:1102–1107.

    PubMed  CAS  Google Scholar 

  158. Nishizawa H, Shimomura I, Kishida K, et al. Androgens decrease plasma adiponectin, an insulin-sensitizing adipocyte-derived protein. Diabetes 2002;51:2734–2741.

    PubMed  CAS  Google Scholar 

  159. Steppan CM, Bailey ST, Bhat S, et al. The hormone resistin links obesity to diabetes. Nature 2001;409:307–312.

    PubMed  CAS  Google Scholar 

  160. Lee JH, Chan JL, Yiannakouris N, et al. Circulating resistin levels are not associated with obesity or insulin resitance in humans and are not regulated by fasting or leptin administration: cross-sectional and interventional studies in normal, insulin resistant and diabetic subjects. J Clin Endocrin Metab 2003;88(10):4848–4856.

    CAS  Google Scholar 

  161. Janke J, Engeli S, Gorzelniak K, Luft FC, Sharma AM. Resistin gene expression in human adipocytes is not related to insulin resistance. Obes Res 2002;10(1):1–5.

    PubMed  CAS  Google Scholar 

  162. McTernan PG, Fisher FM, Valsamakis G, et al. Resistin and type 2 diabetes: Regulation of Resistin Expression ny insulin and rosiglitazone and the effects of recombinant resistin on human differentiated adipocytes. Jour Clin Endocrin Metab 2003;88(12):6098–6106.

    CAS  Google Scholar 

  163. Patel L, Buckels AC, Kinghorn IJ, et al. Resistin is expressed in human macrophages and directly regulated by PPARgamma activtors. Biochem Biophys Res Commun 2003;300(2):472–476.

    PubMed  CAS  Google Scholar 

  164. Minn AH, Patterson NB, Pack S, et al. Resistin is expressed in pancreatic islets. Biochem Biophys Res Commun 2003;310(2):641–645.

    PubMed  CAS  Google Scholar 

  165. Yura S, Sagawa N, Itoh H, et al. Resistin is expressed in the human placenta. J Clin Endocrin Metab 2003;88(3):1394–1397.

    Google Scholar 

  166. Despres JP. Lipoprotein metabolism in visceral obesity International Journal of obesity 1991;2:5–15.

    CAS  Google Scholar 

  167. Gaziano JM. When should heart disease prevention begin. N Engl J Med 338;23:1690–1691.

    Google Scholar 

  168. De Fronzo RA, Varzilai N, Simonson DC. Mechanism of metformin action in obese and lean non-insulin dependent diabetic subjects. J Clin Endo Metab 991;73:1294–1301.

    Google Scholar 

  169. Vague P, Juhan-Vague I, Alessi MC, Badier C, Valadier J. Metformin decreases the high plasminogen activator inhibition capacity, plasma insulin and triglyceride levels in non diabetic obese subjects. Throm Haemostas 1987;57:326–328.

    CAS  Google Scholar 

  170. Wood D. European and American recommendations for coronary heart disease prevention. Eur Heart J 1998;19(Suppl A)A12–A19.

    PubMed  Google Scholar 

  171. Jones AF, Game FL. Cardiovascular risk assessment. Mod Hyp Man 1999;1:10–13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Creely, S.J., Anwar, A.J., Kumar, S. (2005). The Metabolic Syndrome and Vascular Disease. In: Johnstone, M.T., Veves, A. (eds) Diabetes and Cardiovascular Disease. Contemporary Cardiology. Humana Press. https://doi.org/10.1385/1-59259-908-7:281

Download citation

  • DOI: https://doi.org/10.1385/1-59259-908-7:281

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-413-5

  • Online ISBN: 978-1-59259-908-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics