Skip to main content

Neuropsychiatric SLE

Pathogenesis, Immunology, and Clinical Management

  • Chapter
Inflammatory Disorders of the Nervous System

Part of the book series: Current Clinical Neurology ((CCNEU))

  • 776 Accesses

Abstract

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease affecting multiple organ systems. The incidence of SLE is 5.6 per 100,000, with an estimated prevalence of 130 per 100,000 people in the United States (1). Thus, about 380,000 Americans have SLE. Women are affected nine times more frequently than men (2). African Americans and Hispanics are affected much more frequently than Euro-Americans and have more disease morbidity (26). Although SLE-related morbidity remains high, the prognosis for survival has improved in recent years, from a 5-yr survival of 51% in the 1950s to more than 90% in recent studies (3). A bimodal pattern of mortality, in which early deaths are caused by SLE disease activity or infections and later deaths are owing primarily to vascular causes (79) has been described. Because of this greater survival, emphasis has shifted towards improving health status and quality of life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Uramoto KM, Michet CJ, Thumboo J Jr, et al. Trends in the incidence and mortality of systemic lupus erythematosus, 1950–1992. Arthritis Rheum 1999;42:46–50.

    PubMed  CAS  Google Scholar 

  2. Fessel WJ. Systemic lupus erythematosus in the community: incidence, prevalence, outcome, and first symptoms; the high prevalence in black women. Arch Intern Med 1974;134:1027–1035.

    PubMed  CAS  Google Scholar 

  3. Bresnihan B. Outcome and survival in systemic lupus erythematosus. Ann Rheum Dis 1989;48:443–445.

    PubMed  CAS  Google Scholar 

  4. Rivest C, Lew R, Welsing P, et al. Association between clinical factors, socio-economic status, and organ damage in recent onset systemic lupus erythematosus. J Rheumatol 2000;27:680–684.

    PubMed  CAS  Google Scholar 

  5. Alarcon GS, Friedman AW, Straaton KV, et al. Systemic lupus erythematosus in three ethnic groups: III. A comparison of characteristics early in the natural history of the LUMINA cohort. Lupus in minority populations: nature vs nurture. Lupus 1999;8:197–209.

    PubMed  CAS  Google Scholar 

  6. Alarcon GS, Roseman JM, Bartolucci AA, et al. Systemic lupus erythematosus in three ethnic groups: II. Features predictive of disease activity early in its course. LUMINA Study Group. Lupus in minority populations: nature vs nurture. Arthritis Rheum 1998;41:1173–1180.

    PubMed  CAS  Google Scholar 

  7. Urowitz MB, Bookman AAM, Koehler BE, Gordon DA, Smythe HA, Ogryzlo MA. The bimodal mortality pattern of systemic lupus erythematosus. Am J Med 1976;60:221–225.

    PubMed  CAS  Google Scholar 

  8. Roman MJ, Shanker BA, Davis A, et. al. Prevalence and correlates of accelerated atherosclerosis in system lupus erythematosus. N Engl J Med 2003;349:2399–2406.

    PubMed  CAS  Google Scholar 

  9. Asanuma Y, Oeser A, Shintani AK, et al. Premature coronary-artery atherosclerosis in systemic lupus erythematosus. N Engl J Med 2003;349:2407–2415.

    PubMed  CAS  Google Scholar 

  10. Kaposi MK. Neue Beitrage zur Kenntniss des. Lupus erythematosus. Arch Dermatol Syph 1872;4:36–78.

    Google Scholar 

  11. American College of Rheumatology (ACR) ad hoc committee on neuropsychiatric lupus. The American College of Rheumatology nomenclature and case definitions for neuropsychiatric lupus syndrome. Arthritis Rheumatism 1999;42:599–608.

    Google Scholar 

  12. Drenkard C, Villa AR, Reyes E, et al. Vasculitis in systemic lupus erythematosus. Lupus 1997;6:235–242.

    PubMed  CAS  Google Scholar 

  13. Emlen W, Neibur J, Kadera R. Accelerated in vitro apoptosis of lymphocytes from patients with systemic lupus erythematosus. J Immunol 1994;152:3685–92.

    PubMed  CAS  Google Scholar 

  14. Chan TM, Yu PM, Tsang KL, Cheng IK. Endothelial cell binding by human polyclonal anti-DNA antibodies: relationship to disease activity and endothelial functional alterations. Clin Exp Immunol 1995;100:506–513.

    PubMed  CAS  Google Scholar 

  15. Hahn BH. Antibodies to DNA. N Engl J M 1998;338:1359–68.

    CAS  Google Scholar 

  16. Hanly JG. Evaluation of patients with CNS involvement in SLE. Baillieres Clinical Rheumatology. 1998;12(3):415–31.

    CAS  Google Scholar 

  17. Hanly JG, Walsh NMG, Sangalang V. Brain pathology in systemic lupus erythematosus. J Rheumatol 1992;19:732–741.

    PubMed  CAS  Google Scholar 

  18. Sibbitt WL, Sibbitt RR, Brooks WM. Neuroimaging in neuropsychiatric systemic lupus erythematosus. Arthritis Rheum 1999;42:2026–2038.

    PubMed  Google Scholar 

  19. Belmont HM, Abramson SB, Lie JT. Pathology and pathogenesis of vascular injury in systemic lupus erythematosus: interactions of inflammatory cells and activated endothelium. Arthritis Rheum 1996;39:9–22.

    PubMed  CAS  Google Scholar 

  20. Karassa F, Ioannidis JP, Boki K, et al. Predictors of clinical outcome and radiologic progression in patients with neuropsychiatric manifestations of systemic lupus erythematosus. Am J Med 2000;109:628–634.

    PubMed  CAS  Google Scholar 

  21. Gonzalez-Crespo MR, Blanco FJ, Ramos A, et al. Magnetic resonance of the brain in systemic lupus erythematosus. Br J Rheumatol 1995;34:1055–1060.

    PubMed  CAS  Google Scholar 

  22. Isshi K, Hirihata S. Association of anti-ribosomal P protein antibodies with neuropsychiatric systemic lupus erythematosus. Arthritis Rheum 1996;39:1483–1490.

    PubMed  CAS  Google Scholar 

  23. Isshi K, Hirohata S. Differential roles of the anti-ribosomal P antibody and antineuronal antibody in the pathogenesis of central nervous system involvement in systemic lupus erythematosus. Arthritis Rheum 1998;41:1819–27.

    PubMed  CAS  Google Scholar 

  24. Alter A, Duddy M, Hebert S, et al. Determinants of human B cell migration across brain endothelial cells. J Immunol 2003;170:4497–4505.

    PubMed  CAS  Google Scholar 

  25. Chan A, Seguin R, Magnus T, et al. Phagocytosis of apoptotic inflammatory cells by microglia and its therapeutic implications: termination of central nervous system autoimmune inflammation and modulation by IFN-beta. Glia 2003;43:231–242.

    PubMed  Google Scholar 

  26. Seguin R, Biernacki K, Prat A, et al. Differential effects of Th1 and Th2 lymphocyte supernatants on human microglia. Glia 2003;42:36–45.

    PubMed  Google Scholar 

  27. Biernacki K, Prat A, Blain M, Antel JP. Regulation of Th1 and Th2 lymphocyte migration by human adult brain endothelial cells. J Neuropathol Exp Neurol 2001;60:1127–1136.

    PubMed  CAS  Google Scholar 

  28. Kelley VR, Wuthrich RP. Cytokines in the pathogenesis of systemic lupus erythematosus. Sem Nephrol 1999;19:57–66.

    CAS  Google Scholar 

  29. Kirou KA, Crow MK. New pieces to the SLE cytokine puzzle. Clin Immunol 1999;91:1–5.

    PubMed  CAS  Google Scholar 

  30. Jara LJ, Irigoyen L, Ortiz MJ, Zazueta B, Bravo G, Espinoza LR. Prolactin and interleukin 6 in neuropsychiatric lupus erythematosus. Clin Rheumatol 1998;17:110–114.

    PubMed  CAS  Google Scholar 

  31. Alcocer-Varela J, Aleman-Hoey D, Alarcon-Segovia D. Interleukin-1 and interleukin-6 activities are increased in the cerebrospinal fluid of patients with CNS lupus erythematosus and correlate with local late T-cell activation markers. Lupus 1992;1:111–7.

    PubMed  CAS  Google Scholar 

  32. Tesar V, Jirsa M, Masek Z, et al. Soluble cytokinin receptors in renal vasculitis and lupus nephritis. Cas Lek Cesk 1998;137:271–275.

    PubMed  CAS  Google Scholar 

  33. Waszczykowska E, Robak E, Wozniacka A, Narbutt J, Torzecka JD, Sysa-Jedrzejowska A. Estimation of SLE activity based on the serum level of chosen cytokines and superoxide radical generation. Mediators Inflamm 1999;8:93–100.

    PubMed  CAS  Google Scholar 

  34. Viedt C, Hansch GM, Brandes RP, Kubler W, Kreuzer J. The terminal complement complex C5b-9 stimulates interleukin-6 production in human smooth muscle cells through activation of transcription factors NF-κB and AP-1. Faseb J. 2000;14:2370–2372.

    PubMed  CAS  Google Scholar 

  35. Shikano M, Sobajima H, Yoshikawa H, et al. Usefulness of a highly sensitive urinary and serum IL-6 assay in patients with diabetic nephropathy. Nephron 2000;85:81–85.

    PubMed  CAS  Google Scholar 

  36. Kado S, Nagase T, Nagata N. Circulating levels of interleukin-6, its soluble receptor and interleukin-6/interleukin-6 receptor complexes in patients with type 2 diabetes mellitus. Acta Diabetol 1999;36:67–72.

    PubMed  CAS  Google Scholar 

  37. van Aken BE, Jansen J, van Deventer SJ, Reitsma PH. Elevated levels of homocysteine increase IL-6 production in monocytic Mono Mac 6 cells. Blood Coagul Fibrinolysis 2000;11:159–164.

    PubMed  Google Scholar 

  38. Yudkin JS, Kumari M, Humphries SE, Mohamed-Ali V. Inflammation, obesity, stress and coronary heart disease: is interleukin-6 the link? Atherosclerosis 2000;148:209–214.

    PubMed  CAS  Google Scholar 

  39. Young DG, Skibinski G, Mason JI, James K. The influence of age and gender on serum dehydroepiandrosterone sulphate (DHEA-S), IL-6, IL-6 soluble receptor (IL-6 sR) and transforming growth factor beta 1 (TGF-beta1) levels in normal healthy blood donors. Clin Exp Immunol 1999;117:476–481.

    PubMed  CAS  Google Scholar 

  40. Straub RH, Konecna L, Hrach S, et al. Serum dehydroepiandrosterone (DHEA) and DHEA sulfate are negatively correlated with serum interleukin-6 (IL-6), and DHEA inhibits IL-6 secretion from mononuclear cells in man in vitro: possible link between endocrinosenescence and immunosenescence. J Clin Endocrinol Metab 1998;83: 2012–2017.

    PubMed  CAS  Google Scholar 

  41. Kozora E, Laudenslager M, Lemieux A, West SG. Inflammatory and hormonal measures predict neuropsychological functioning in systemic lupus erythematosus and rheumatoid arthritis patients. J Int Neuropsychol Soc 2001;7:745–754.

    PubMed  CAS  Google Scholar 

  42. Hickey WF. T-lymphocyte entry into the central nervous system. J Neurosci Res 1991;28:254–260.

    PubMed  CAS  Google Scholar 

  43. Zabry Z, Waldschmidt MM, Hendrickson D, et al. Adhesion molecules on murine brain microvascular endothelial cells: expression and regulation of ICAM-1 and Lgp 55. J Neuroimmunol 1992;36:1–11.

    Google Scholar 

  44. Belmont HM, Buyon J, Giorno R, Abramson S. Upregulation of endothelial cell adhesion molecules characterized disease activity in systemic lupus erythematosus. Arthritis Rheum 1994;37:376–383.

    PubMed  CAS  Google Scholar 

  45. Janssen BA, Luqmani RA, Gordon C, et al. Correlation of blood levels of soluble vascular cell adhesion molecule-1 with disease activity in systemic lupus erythematosus and vasculitis. Br J Rheumatol 1994;33:1112–1116.

    PubMed  CAS  Google Scholar 

  46. Egerer K, Feist E, Rohr U, Pruss A, Burmester GR, Dörner T. Increased serum soluble CD14, ICAM-1 and E-selectin correlate with disease activity and prognosis in systemic lupus erythematosus. Lupus 2000;9:614–621.

    PubMed  CAS  Google Scholar 

  47. Barcellini W, Rizzardi GP, Borghi MO, et al. In vitro type-1 and type-2 cytokine production in systemic lupus erythematosus: lack of relationship with clinical disease activity. Lupus 1996;5:139–145.

    PubMed  CAS  Google Scholar 

  48. Zaccagni H, Fried J, Cornell J, Padilla P, Brey RL. Soluble adhesion molecule levels, neuropsychiatric lupus and lupus-related damage. Front Biosci 2004;9:1654–1659.

    PubMed  CAS  Google Scholar 

  49. Sfikakis PP, Charalambopoulos D, Vayoipoulos G, Oglesby RPS, Tsokos GC. Increased levels of intercellular adhesion molecule-1 in the serum of patients with SLE. Clin Exp Rheumatol 1994;12:5–9.

    PubMed  CAS  Google Scholar 

  50. Matsuda J, Gohchi K, Gotoh M, Tsukamoto M, Saitoh N. Circulation intercellular adhesion molecule-1 and soluble interleukin 2-receptor in patients with systemic lupus erythematosus. Eur J Haematol 1994;52:302–303.

    PubMed  CAS  Google Scholar 

  51. Wellicome SM, Kapahi P, Mason JC, Lebranchu Y, Yarwood H, Haskard DO. Detection of a circulating form of vascular cell adhesion molecule-1: raised levels in rheumatoid arthritis and systemic lupus erythematosus. Clin Exp Immunol 1993;92:412–418.

    PubMed  CAS  Google Scholar 

  52. Spronk PE, Bootsma H, Huitema MG, et al. Levels of soluble VCAM-1, ICAM-1 and E-selectin during disease exacerbations in patients with SLE. Clin Exp Immunol 1994;97:439–444.

    PubMed  CAS  Google Scholar 

  53. Machold KP, Kiener HP, Graninger W, et al. Soluble ICAM-1 in patients with rheumatoid arthritis and SLE. Clin Immunol Immunopathol 1993;68:74–78.

    PubMed  CAS  Google Scholar 

  54. Baraczka K, Pozsonyi T, Szongoth M, et al. A study of increased levels of soluble vascular cell adhesion molecule-1 in the cerebrospinal fluid of patients with multiple sclerosis and systemic lupus erythematosus. Acta Neurol. Scand 1999;99:95–99.

    PubMed  CAS  Google Scholar 

  55. Del Papa N, Guidali L, Sala A, et al. Endothelial cells as target for antiphospholipid antibodies. Arthritis Rheum 1997;40:551–561.

    PubMed  Google Scholar 

  56. Pierangeli SS, Espinola RG, Liu X, Harris EN. Thrombogenic effects of antiphospholipid antibodies are mediated by intercellular cell adhesion molecule-1, vascular cell adhesion molecule-1, and P-selectin. Circ Res 2001;88:245–50.

    PubMed  CAS  Google Scholar 

  57. Kaplanski G, Cacoub P, Farnarier C, et al. Increased soluble vascular cell adhesion molecule-1 concentrations in patients with primary or systemic lupus erythematosus-related antiphospholipid syndrome: correlations with the severity of thrombosis. Arthritis Rheum 2000;43:55–60.

    PubMed  CAS  Google Scholar 

  58. Reichlin M. Ribosomal P antibodies and CNS Lupus. Lupus 2003;12:916–918.

    PubMed  CAS  Google Scholar 

  59. Nojima Y, Minota S, Yamada A, Aosuka S, Yokohari R. Correlation of antibodies to ribosomal P protein with psychosis in patients with systemic lupus erythematosus. J Rheum Dis 1992;51:1053–1055.

    CAS  Google Scholar 

  60. Arnett FC, Reveille JD, Moutsopoulos HM, Georgescu L, Elkon KB. Ribosomal P autoantibodies in systemic lupus eruthematosus. Arthritis Rheum 1996;39:1833–1839.

    PubMed  CAS  Google Scholar 

  61. Press J, Palayew K, Laxer RM, et al. Antiribosomal P antibodies in pediatric patients with systemic lupus erythematosus and psychosis. Arthritis Rheum 1996;39:671–676.

    PubMed  CAS  Google Scholar 

  62. Isshi K, Hirohata S. Association of anti-ribosomal P protein antibodies with neuropsychiatric systemic lupus erythematosus. Arthritis Rheum 1996;39:1483–1490.

    PubMed  CAS  Google Scholar 

  63. Bonfa E, Golombek SJ, Kaufman LD, et al. Association between lupus psychosis and anti-ribosomal P protein antibodies. N Engl J Med 1987;317:265–271.

    PubMed  CAS  Google Scholar 

  64. Schneebaum AB, Singleton JD, West SG, et al. Associations of psychiatric manifestations with antibodies to ribosomal P proteins in systemic lupus erythematosus. Am J Med 1991;90:54–62.

    PubMed  CAS  Google Scholar 

  65. Van Dam A, Nossent H, de Jong J, et al. Diagnostic value of antibodies against ribosimal phosphoproteins: a cross sectional and longitudinal study. J Rheumatol 1991;18:1026–1034.

    PubMed  Google Scholar 

  66. Isenberg DA. Antiribosomal P protein antibodies in systemic lupus erythematosus: a reappraisal. Arthritis Rheum 1994;37:307–315.

    PubMed  Google Scholar 

  67. Isshi K, Hirohata S. Differential roles of the anti-ribosmal P antibody and anti-neuronal antibody in the pathogenesis of central nervous system involvement in systemic lupus erythematosus. Arthritis Rheum 1998;41:1819–1827

    PubMed  CAS  Google Scholar 

  68. Koren E, Reichlin MW, Koscec M, Fugate RD, Reichlin M. Autoantibodies to the ribosomal P proteins react with a plasma membrane related target on human cells. J Clin Invest 1992;89:1236–1241.

    PubMed  CAS  Google Scholar 

  69. Koscec M, Koren E, Reichlin MW, et al. Autoantibodies to the ribosomal P proteins penetrate into live hepatocytes and cause cellular dysfunction in culture. J Immunol 1997;159:2033–2041.

    PubMed  CAS  Google Scholar 

  70. DeGiorgio LA, Konstantinov KN, Lee SC, Hardin JA, Volpe BT, Diamond B. A sub-set of lupus anti-DNA antibodies cross-reacts with the NR2 glutamate receptor in systemic lupus erythematosus. Nature Medicine 2001;7:1189–1193.

    PubMed  CAS  Google Scholar 

  71. Gaynor B, Putterman C, Valadon P, Spatz L, Scharff MD, Diamond B. Peptide inhibition of glomerular deposition of a pathogenic anti-DNA antibody: implications for therapy. Proc Natl Acad Sci USA 1997;94:1955–1960.

    PubMed  CAS  Google Scholar 

  72. Standaert DG, Testa CM, Penney JB, Young AB. Organization of N-methyl-D-aspartate glutamate receptor gene expression in the basal ganglia of the rat. J Comp Neurol 1994;343:1–16.

    PubMed  CAS  Google Scholar 

  73. Scherzer CR, Landwehrmeyer GB, Kerner JA, et al. Expression of N-methyl-1-D-aspartate receptor subunit mRNAs in the human brain: hippocampus and cortex. J. Comp. Neurol 1998;390:75–90.

    PubMed  CAS  Google Scholar 

  74. Counihan TJ, Landwehrmeyer GB, Standaert DG, et al. Expression of N-methyl-D-aspartate receptor subunit mRNAs in the human brain: striatum and globus pallidus. J Comp Neurol 1998;390:63–74.

    PubMed  Google Scholar 

  75. Kuppenbender KD, Standaert DG, Feuerstein TJ, Penney JB Jr, Young AB, Landwehrmeyer GB. Expression of NMDA receptor subunit mRNAs in neurochemically identified projection and interneurons in the human striatum. J Comp Neurol 2000;419:407–421.

    PubMed  CAS  Google Scholar 

  76. Lu J, Goula D, Sousa N, Almeida OF. Ionotropic and metabotropic glutamate receptor mediation of glucocorticoid-induced apoptosis in hippocampal cells and the neuroprotective role of synaptic N-methyl-D-aspartate receptors. Neuroscience 2003;121:123–31.

    PubMed  CAS  Google Scholar 

  77. Ozawa S, Kamiya H, Tsuzuki K. Glutamate receptors in the mammalian central nervous system. Prog Neurobiol 1998;54:581–618.

    PubMed  CAS  Google Scholar 

  78. Sakimura K, Kutsuwada T, Ito I, et al. Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor, 1 subunit. Nature 1995;373:151–155.

    PubMed  CAS  Google Scholar 

  79. Morris RG, Anderson E, Lynch GS, Baudry M. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 1986;319:774–776.

    PubMed  CAS  Google Scholar 

  80. Choi DW, Rothman SM. The role of glutamate neurotoxicity in hypoxicischemic neuronal death. Annu Rev Neu-rosci 1990;13:171–182.

    CAS  Google Scholar 

  81. Mattson MP, LaFerla FM, Chan SL, Leissring MA, Shepel PN, Geiger JD. Calcium signaling in the ER: its role in neuronal plasticity and neurodegenerative disorders. Trends Neurosci 2000;23:222–229.

    PubMed  CAS  Google Scholar 

  82. Akbarian S, Sucher NJ, Bradley D, et al. Selective alterations in gene expression for NMDA receptor subunits in pre-frontal cortex of schizophrenics. J Neurosci 1996;16:19–30.

    PubMed  CAS  Google Scholar 

  83. Volpe BT. Delayed neuronal degeneration results from endogenous glutamate excess: Possible role in “Neuro-SLE”. Ann NY Acad Sci 1997;280:614–620.

    Google Scholar 

  84. Omdal R, Brokstad K, Waterloo K, Koldingsnes W, Jonsson R, Mellgren SI. Anti-DNA antibodies crossreacting with the NR2 glutamate receptor are associated with psychological and cognitive disturbances in human SLE. Arthritis Rheum 2003;48:404.

    Google Scholar 

  85. Roubey RA. Immunology of the antiphospholipid antibody syndrome. Arthritis Rheum 1996;39:1444–1454.

    PubMed  CAS  Google Scholar 

  86. Holers VM, Girardi G, Mo L, et al. Complement C3 activation is required for antiphospholipid antibody-induced fetal loss. J Exp Med 2002;195:211–220.

    PubMed  CAS  Google Scholar 

  87. Brey RL, Escalante A. Neurological manifestations of antiphospholipid antibody syndrome. Lupus 1998;7(Suppl 2):S67–74.

    PubMed  Google Scholar 

  88. Menon S, Jameson-Shortall E, Newman SP, Hall-Craggs MR, Chinn R, Isenberg DA. A longitudinal study of anticardiolipin antibody levels and cognitive functioning in systemic lupus erythematosus. Arthritis Rheum 1999;42:735–741.

    PubMed  CAS  Google Scholar 

  89. Hanly JG, Hong C, Smith S, Fisk JD. A prospective analysis of cognitive function and anticardiolipin antibodies in systemic lupus erythematosus. Arthritis Rheum 1999;42:728–734.

    PubMed  CAS  Google Scholar 

  90. Denburg SD, Carbotte RM, Ginsberg JS, Denburg JA. The relationship of antiphospholipid antibodies to cognitive function in patients with systemic lupus erythematosus. J Int Neuropsychol Soc 1997;3:377–386.

    PubMed  CAS  Google Scholar 

  91. Lai NS, Lan JL. Evaluation of cerebrospinal anticardiolipin antibodies in lupus patients with neuropsychiatric manifestations. Lupus 2000;9:353–357.

    PubMed  CAS  Google Scholar 

  92. Leritz E, Brandt J, Minor M, Reis-Jensen F, Petri M. Neuropsychological functioning and its relationship to antiphospholipid antibodies in patients with systemic lupus erythematosus. J Clin Exp Neuropsych 2002;24:527–533.

    Google Scholar 

  93. Theofilopoulos AN. Murine models of lupus. In: Lahita RG. Systemic Lupus Erythematosus. New York, Churchill Livingstone, 1992;121–194.

    Google Scholar 

  94. Klinman DM, Steinberg AD. Inquiry into murine and human lupus. Immunol Rev 1995;144:157–193.

    PubMed  CAS  Google Scholar 

  95. Lampert P, Oldstone MB. Host immunoglobulin IgG and complement deposits in the choroids plexus during spontaneous immune complex disease. Science 1973;180:408–410.

    PubMed  CAS  Google Scholar 

  96. Alexander EL, Murphy ED, Roths JB, Alexander GE. Congenic autoimmune murine models of central nervous system disease in connective tissue disorders. Ann Neurol 1983;14:242–248.

    PubMed  CAS  Google Scholar 

  97. Rudick RA, Eskin TA. Neuropathological features of a lupus-like disorder in autoimmune mice. Ann Neurol 1983;14:325–332.

    PubMed  CAS  Google Scholar 

  98. Hoffman SA, Arbogast DN, Ford PM, Shucard DW, Harbeck RJ. Brain-reactive autoantibody levels in the sera of aging autoimmune mice. Clin Exp Immunol 1987;70:74–83.

    PubMed  CAS  Google Scholar 

  99. Nandy K, Lal H, Bennett M, Bennett D. Correlation between a learning disorder and elevated brain-reactive antibodies in aged C57BL/6 and young NZB mice. Life Sci 1983;33:1499–1503.

    PubMed  CAS  Google Scholar 

  100. Khin NA, Hoffman ST. Brain reactive monoclonal auto-antibodies: production and characterization. J Neuroimmunol 1993;44:137–148.

    PubMed  CAS  Google Scholar 

  101. Hess DC, Taormina M, Thompson J, et al. Cognitive and neurologic deficits in the MRL/lpr mouse: a clinicopathologic study. J Rheumatol 1993;20:610–617.

    PubMed  CAS  Google Scholar 

  102. Sakic B, Szechtman H, Stead R, Denburg JA. Joint pathology and behavioral performance in autoimmune MRL-lpr mice. Physiol Behav 1996;60:901–905.

    PubMed  CAS  Google Scholar 

  103. Schrott LM, Morrison L, Wimer R, Wimer C, Behan PO, Denenberg VH. Autoimmunity and avoidance learning in NXRF recombinant inbred strains. Brain Behav Immun 1994;8:100–110.

    PubMed  CAS  Google Scholar 

  104. Sakic B, Szechtman H, Denburg SD, Carbotte RM, Denburg JA. Brain-reactive antibodies and behavior of autoimmune MRL-lprmice. Physiol Behav 1993;54:1025–1029.

    PubMed  CAS  Google Scholar 

  105. Shoenfeld Y, Nahum A, Korczyn AD, et al. Neuronal-binding antibodies from patients with antiphospholipid syndrome induced cognitive deficits following intrathecal passive transfer. Lupus 2003;12:436–442.

    PubMed  CAS  Google Scholar 

  106. Keir AB. Clinical neurology and brain histopathology I NZB/NZW F1 lupus mice. J Comparative Pathol 1990;102:165–177.

    Google Scholar 

  107. Vogelweid CM, Hohnson GC, Besch-Williford CL, Basler J, Walker SE. Inflammatory central nervous system disease in lupus-prone MRL/lpr mice: comparative histologic and immunohistochemical findings. J Neuroimmunol 1991;35:89–97.

    PubMed  CAS  Google Scholar 

  108. Brey RL, Cote S, Teale JM. Neurological dysfunction and autoantibody producing B cells from brain in a lupus-prone mouse strain. Neurology 1993;43:420.

    Google Scholar 

  109. Sakic B, Szechtman H, Stead R, Denburg JA. Joint pathology and behavioral performance in autoimmune MRL-lpr mice. Physiol Behav 1996;60:901–905.

    PubMed  CAS  Google Scholar 

  110. Sakic B, Szechtman H, Talangbayan H, Denburg SD, Carbotte RM, Denburg JA. Disturbed emotionality in autoimmune MRL-lpr mice. Physiol Behav 1994;56:609–617.

    PubMed  CAS  Google Scholar 

  111. Sakic B, Denburg JA, Denburg SA, Szechtman H. Blunted sensitivity to sucrose reward in autoimmune MRL-lpr mice: A curve-shift study. Brain Res Bull 1996;41:305–311.

    PubMed  CAS  Google Scholar 

  112. Crnic LS, Schrott LM. Increased anxiety behaviors in autoimmune mice. Behav Neurosci 1996;110:492–502.

    PubMed  Google Scholar 

  113. Ziporen L, Eilam D, Goldberg I, et al. Neurological dysfunctions associated with antiphospholipid antibodies: animal model. Lupus 1996;5:533.

    Google Scholar 

  114. Aron AL, Cuellar ML, Brey RL, Gharavi AE, Shoenfeld Y. Early onset of autoimmunity in MRL/++ mice following immunization with Beta-2-glycoprotein 1. Clin Exp Rheum Immunol 1995;101:78–81.

    CAS  Google Scholar 

  115. Kaell AT, Shetty M, Lee BCP, Lockshin MD. The diversity of neurologic events in systemic lupus erythematosus. Arch Neurol 1986;43:273–276.

    PubMed  CAS  Google Scholar 

  116. McNicholl J, Glynn D, Mongey A, Hutchinson M, Bresnihan B. A prospective study of neurophysiologic, neurologic and immunologic abnormalities in systemic lupus erythematosus. J Rheumatol 1994;21:1061–1066.

    PubMed  CAS  Google Scholar 

  117. West SG, Emlen W, Wener MH, Kotzin BL. Neuropsychiatric lupus erythematosus: a 10-year prospective study on the value of diagnostic tests. Am J Med 1995;99:153–163.

    PubMed  CAS  Google Scholar 

  118. Carbotte RM, Denburg SD, Denburg JA. Cognitive dysfunction in systemic lupus erythematosus is independent of active disease. J. Rheumatol 1995;22:863–867.

    PubMed  CAS  Google Scholar 

  119. Hay EM, Huddy A, Black D, et al. A prospective study of psychiatric disorder and cognitive impairment in systemic lupus erythematosus. Ann Rheum Dis 1994;53:298–303.

    PubMed  CAS  Google Scholar 

  120. Ginsburg KS, Wright EA, Larson MG, et al. A controlled study of the prevalence of cognitive dysfunction in randomly selected patients with systemic lupus erythematosus. Arthritis Rheum 1992;35:776–782.

    PubMed  CAS  Google Scholar 

  121. Ainiala H, Loukkola J, Peltola J, Korpela M, Hietaharju A. The prevalence of neuropsychiatric syndromes in systemic lupus erythematosus. Neurology 2001;57:496–499.

    PubMed  CAS  Google Scholar 

  122. Brey RL, Holliday SL, Saklad AR, et al. Neuropsychiatric syndromes in SLE: prevalence using standardized definitions in the San Antonio Study of Neuropsychiatric Disease Cohort. Neurology 2002;58:1214–1220.

    PubMed  CAS  Google Scholar 

  123. Carlomagno S, Migliaresi S, Ambroxone L, Sannino M, Sanges G, Di Ioro G. Cognitive impairment in systemic lupus erythematosus: a follow up study. J Neurol 2000;247:273–279.

    PubMed  CAS  Google Scholar 

  124. Iliopoulos AG, Tsokos GC. Immunopathogenesis and spectrum of infections in systemic lupus erythematosus. Semin Arthritis Rheum 1996;25:318–36.

    PubMed  CAS  Google Scholar 

  125. Rivest C, Lew R, Welsing P, et al. Association between clinical factors, socio-economic status, and organ damage in recent onset systemic lupus erythematosus. j Rheumatol 2000;27:680–684.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Aleman-Hoey, D., Brey, R.L. (2005). Neuropsychiatric SLE. In: Minagar, A., Alexander, J.S. (eds) Inflammatory Disorders of the Nervous System. Current Clinical Neurology. Humana Press. https://doi.org/10.1385/1-59259-905-2:291

Download citation

  • DOI: https://doi.org/10.1385/1-59259-905-2:291

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-424-1

  • Online ISBN: 978-1-59259-905-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics