Skip to main content

Multiple Sclerosis

Clinical Features, Immunopathogenesis, and Clinical Management

  • Chapter
Inflammatory Disorders of the Nervous System

Part of the book series: Current Clinical Neurology ((CCNEU))

  • 787 Accesses

Abstract

Multiple sclerosis (MS) was first described by Charcot in mid-19th century Paris. Charcot, however, attributed the original recognition of this disorder to Cruveillier, the famed professor of anatomy. Although others also described the pathological anatomy of the disease in remarkable detail, it was Charcot who characterized the clinical illness and correlated the illness with its unique neuropathology (1). From the outset, researchers recognized that the illness differed from one patient to another, with the majority of patients experiencing a relapsing-remitting disease (relapsing-remitting MS) (1,2). Charcot recognized that a minority of patients had a fundamentally different illness, which he described as an “incomplete” form of the disease (1,2). From their first symptoms, these patients showed signs of a progressive spinal cord disease without relapses. These patients are now designated as having primary progressive MS (PPMS) (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Charcot JM. Histologie de la sclerose en plaques. Gaz Hop (Paris) 1868;41:554–566.

    Google Scholar 

  2. Compston A, Ebers G, Lassman H, McDonald I, Mathews B, Wekerle H. McAlpine’s Multiple Sclerosis. 3rd ed. London. Churchill Livingstone, 1988.

    Google Scholar 

  3. Firth D. The Case of Sir Augustus d’Este. London. Cambridge University Press, 1947.

    Google Scholar 

  4. Kurtzke JF. A reassessment of the distribution of MS. Part one. Acta Neurologica Scand 1975;51:110–136.

    CAS  Google Scholar 

  5. Kurtzke JF. A reassessment of the distribution of MS. Art two. Acta Neurologica Scand 1975;51:137–157.

    CAS  Google Scholar 

  6. Weinshenker BG, Bass B, Rice GPA, et al. The natural history of MS: a geographically based study. 1. Clinical course and disability. Brain 1989;112:133–146.

    Article  PubMed  Google Scholar 

  7. Noseworthy JH, Luccinetti C, Rodriguez M, Weinschenker BG. Multiple sclerosis. New Engl J Med 2000;343:938–952.

    Article  PubMed  CAS  Google Scholar 

  8. Schumacher GA, Beebe G, Kibler RF, et al. Problems of experimental trials of therapy in MS: report by the panel on the evaluation of experimental trials of therapy in MS. Ann N Y Acad Sci 1965;123:552–568.

    Google Scholar 

  9. Poser CM, Paty DW, Scheinberg L, et al. New diagnostic criteria for MS: guidelines for research protocols. Ann Neurol 1983;13:227–231.

    Article  PubMed  CAS  Google Scholar 

  10. McDonald WI, Compston A, Edan G, et al. Recommended diagnostic criteria for MS: guidelines from the International Panel on the Diagnosis of Multiple Sclerosis. Ann Neurol 2001;50:121–127.

    Article  PubMed  CAS  Google Scholar 

  11. Leibowitz U, Halpern L, Alter M. Clinical studies of MS in Israel. 5. Progressive spinal syndromes and MS. Neurology 1967;17:988–992.

    PubMed  CAS  Google Scholar 

  12. Confavreux C, Vukusic S, Moreau T, Adeline P. Relapses and progression of disability in MS. N Engl J Med 2000; 343:1430–1438.

    Article  PubMed  CAS  Google Scholar 

  13. Pittock SJ, Mayr WT, McClelland RL, et al. Change in MS-related disability in a population-based cohort: a 10-year follow-up study. Neurology 2004;62:51–59.

    Article  PubMed  CAS  Google Scholar 

  14. Berger J, Sheremata WA. Persistent neurological deficit in MS precipitated by hot bath test. J Am Med Assoc 1983;133:1224–1226.

    Google Scholar 

  15. Berger JR Sheremata WA, Melmed E. Paroxysmal dystonia as the initial manifestation of MS. Arch. Neurol 1984;41:747–750.

    PubMed  CAS  Google Scholar 

  16. Cottrell DA, Kremenchutzky M, Rice GPA, et al. The natural history of MS: a geographically based study. 5. The clinical features and natural history of primary progressive MS. Brain 1999;122:625–689.

    Article  PubMed  Google Scholar 

  17. Sheremata WA, Berger JR, Harrington W Jr, Ayyar R, Stafford JM, Defreitas E. Human lymphotropic (HTLV-I) associated myelopathy: a report of ten cases born in the United States. Arch Neurol 1992;31:34–38.

    Article  Google Scholar 

  18. Lowis GW, Sheremata WA, Minagar A. Epidemiologic features of HTLV-II: serological and molecular evidence. Ann Epidemiol 2992;12:46–66.

    Article  Google Scholar 

  19. Fink JK. Hereditary spastic paraplegia: the pace quickens. Ann Neurol 1992;51:669–672.

    Article  Google Scholar 

  20. Jacobs LD, Beck RW, Simon JH, et al. Intramuscular interferon beta-1 a therapy initiated during a first demyelinating event in MS. N Engl J Med 2000:343:898–904.

    Article  PubMed  CAS  Google Scholar 

  21. Sadovnick AD, Ebers GC. Epidemiology of MS: a critical overview. Can J Neurol Sci 1993;20:17–19.

    PubMed  CAS  Google Scholar 

  22. Confavreux C, Hutchinson M, Hours MM, et al. Rate of pregnancy-related relapse in MS. N Engl J Med 1998;339:285–291.

    Article  PubMed  CAS  Google Scholar 

  23. Confavreux C. Infections and the risk of relapse in MS [Editorial]. Brain 2002;125:933–934.

    Article  PubMed  Google Scholar 

  24. Warren S, Greenhill S, Warren KG. Emotional stress and the development of MS: case-control evidence of a relationship. J Chronic Dis 1982;35:821–831.

    Article  PubMed  CAS  Google Scholar 

  25. Grant I, Brown GW, Harris T, McDonald WI, Patterson T, Trimble MR. Severely threatening events and marked life difficulties preceding onset or exacerbation of MS. J Neurol Neurosurg Psychiat 1989;52:8–13.

    PubMed  CAS  Google Scholar 

  26. Warren S, Warren KG, Cockerill R. Emotional stress and coping in MS and exacerbations. J Psychosom Res 1991;35:37–47.

    Article  PubMed  CAS  Google Scholar 

  27. Mohr DC, Goodkin DE, Bacchetti P, Boudewyn AC, Huang L, Marietta P, Cheuk W, Dee B. Psychological stress and he subsequent appearance of new brain MRI lesions in MS. Neurology 2000;55:55–61.

    PubMed  CAS  Google Scholar 

  28. Cala LA, Mastaglia FL, Black JL. Computerized tomography of brain and optic nerve in MS: observation in 100 patients including serial studies in 16. J Neurol Sci 1978;36:411–426.

    Article  PubMed  CAS  Google Scholar 

  29. Hershey LA, Gado MH, Trotter JL. Computerized tomography in the diagnostic evaluation of MS. Ann Neurol 1979;5:32–39.

    Article  PubMed  CAS  Google Scholar 

  30. Barrett L, Drayer B, Shin C. High-resolution computerized tomography in the diagnostic evaluation of MS. Ann Neurol 1985;17:33–38.

    Article  PubMed  CAS  Google Scholar 

  31. Bradley WG, Walauch Y, Yadley RA, Wycoff RR. Comparison of CT and MR in 400 patients with suspected disease of the brain and cervical spinal cord. Radiology 1984;152:895–702.

    Google Scholar 

  32. Sheldon JJ, Siddharthan R, Tobias J, et al. Magnetic resonance imaging of MS: comparison with clinical, paraclinical, laboratory and CT examination. AJNR 1985;6:683–690.

    Google Scholar 

  33. Jacobs L, Kinkel WR, Polachini I, Kinkel RP. Correlations of nuclear magnetic resonance imaging, computerized tomography, and clinical profiles in MS. Neurology 1986;36:27–34.

    PubMed  CAS  Google Scholar 

  34. Honig LS, Siddharthan R, Sheremata WA, Sheldon JJ, Sazant A. Multiple sclerosis: correlation of magnetic resonance imaging with cerebrospinal fluid findings. Neurol Neurosurg Psychiat 1988;51:27–280.

    Google Scholar 

  35. Honig LS, Sheremata WA. Magnetic resonance imaging of spinal cord lesions in MS. Neurol Neurosurg Psychiat 1989;52:459–466.

    Article  CAS  Google Scholar 

  36. Brex PA, Ciccarelli O, O’Riordan JI, Sailer M, Thompson AJ, Miller DH. A longitudinal study of abnormalities on MRI and disability from MS. New Engl J Med 2002;348:158–164.

    Article  Google Scholar 

  37. Leist TP, Gobbini MI, Frank JA, McFarland HF. Enhancing magnetic resonance imaging lesions and cerebral atrophy in patients with relapsing MS. Arch Neurol 2000;57:57–60.

    Article  Google Scholar 

  38. van Walderveen MA, Kamphorst W, Scheltens P, et al. Histopathologic correlate of hypointense lesions on T1-weighted spin-echo magnetic resonance images in MS. Neurology 1998;50:1282–1288.

    PubMed  Google Scholar 

  39. De Stefano N, Narayanan S, Francis GS, et al. Evidence of axonal damage in the early stages of MS and its relevance to disability. Arch Neurol 2001;5:65–70.

    Article  Google Scholar 

  40. Sobel RA. The pathology of MS. In: Multiple Sclerosis. Antel J, ed., Neurologic Clinics, Sanders, Philadelphia, 1995;13:1–22.

    Google Scholar 

  41. Oppenheimer DR. Demyelinating diseases. In:Greenfield’s Neuropathology. 3rd ed. Blackwood W, Corsellis JAN, eds. Edward Arnold, London, 1976:470–499.

    Google Scholar 

  42. Lumsden CE. The neuropathology of MS. In: Handbook of Clinical Neurology Vinken PJ, Bruyn GW, eds. Elsevier, New York, 1969:217–309.

    Google Scholar 

  43. Adams RD, Kubick CS. The morbid anatomy of the demyelinative disease. Am J Med 1952;12:510–546.

    Article  PubMed  CAS  Google Scholar 

  44. Zimmerman HM, Netsky HG. The pathology of MS. Res Publ Res Nerv Ment Dis 1950;28:271–312.

    CAS  Google Scholar 

  45. Lampert PW. Fine structure of the demyelinating process. In:Hallpike JF, Adams CWM, Tourtelotte WW, eds. Multiple Sclerosis: Pathology, Diagnosis and Management. Williams and Wilkins, Baltimore, 1983:29–46.

    Google Scholar 

  46. Trapp BD, Peterson J, Ransahoff RM, Rudick R, Moerk S, Boe L. Axonal transaction in the lesions of MS. N Engl J Med 1998;338:278–285.

    Article  PubMed  CAS  Google Scholar 

  47. Lassmann H, Vass K. Are current immunological concepts of MS reflected by the immunopathology of its lesions? Semin Immunopathol 1995;17:77–87.

    CAS  Google Scholar 

  48. Lassman H, Raine CS, Antel J, Prineas JW. Immunopathology of MS: report on an international meeting held at the Institute of Neurology of the University of Vienna. J Neuroimmunol 1998;86:213–217.

    Article  Google Scholar 

  49. Luccinetti C, Brueck W, Paris J, et al. Heterogeneity of MS lesions: implications for the pathogenesis of demyelination. Ann Neurol 2000;47:707–717.

    Article  Google Scholar 

  50. Cannella B, Raine CS. The adhesion molecule and cytokine profile of MS lesions. Ann Neurol 1995;37:424–435.

    Article  PubMed  CAS  Google Scholar 

  51. Poser C. The pathogenesis of MS: a commentary. Clin Neurol Neurosurg 2000;102:191–204.

    Article  PubMed  CAS  Google Scholar 

  52. Sadovnick AD, Armstrong H, Rice GF, et al. A population based study of MS in twins: an update. Ann Neurol 1993;33:281–285.

    Article  PubMed  CAS  Google Scholar 

  53. Sadovnick AD, Baird PA, Ward RH. Multiple sclerosis: update risks for relatives. Am J Genet 1988;29:533–541.

    Article  CAS  Google Scholar 

  54. Jersild C, Fog T, Hansen GS, Thomsen M, Svejgaard A, Dupont B. Histocompatibility determinants in MS with special reference to clinical course. Lancet 1973;2:1221–1225.

    Article  PubMed  CAS  Google Scholar 

  55. Wood DD, Bilbao JM, O’Connor P, Moscarello MA. A highly deiminized form of myelin basic protein in Marburg’s disease. Ann Neurol 1996;40:18–24.

    Article  PubMed  CAS  Google Scholar 

  56. Schwarz S, Mohr A, Knauth M, Wildemann B, Storch-Hagenlocher B. Acute disseminated encephalomyelitis. A follow-up study of 40 adult patients. Neurology 2001;56:1313–1318.

    PubMed  CAS  Google Scholar 

  57. Hartung HP, Grossman RI. ADEM. Distinct disease or part of the MS spectrum? Neurology 2001;56:1257–1260.

    PubMed  CAS  Google Scholar 

  58. Murthy JM, Yangala R, Meena AK, Jaganmohan-Reddy J. Acute disseminated encephalomyelitis: clinical and MRI study from South India. J Neurol Sci 1999;165:133–136.

    Article  PubMed  CAS  Google Scholar 

  59. Patterson PY. Transfer of allergic encephalomyelitis in rats by means of lymph node cells. J Exp Med 1960;111:119–136.

    Article  Google Scholar 

  60. Bornstein MB, Appel SH. Application of tissue culture to the study of experimental allergic encephalomyelitis. 1. Patterns of demyelination. J Neuropath Exp Neurol 1961;20:141–157.

    Google Scholar 

  61. Bornstein MB, Raine CS. Multiple sclerosis and experimental allergic encephalomyelitis: Specific demyelination of CNS in culture. Neuropathol Appl Neurobiol 1977;3:359–367.

    Google Scholar 

  62. Ben-Nun A, Cohen IR. Genetic control of experimental autoimmune encephalomyelitis at the level of cytotoxic lymphocytes in guinea pigs. Eur J Immunol 1982; 12:709–713.

    Article  PubMed  CAS  Google Scholar 

  63. Owens T, Sriram S. The immunology of MS and its animal model experimental allergic encephalomyelitis. Neurology Clinics 1995;13:57–73.

    Google Scholar 

  64. Massacesi L, Genain CP, Lee-Parritz D, et al. Active and passively induced experimental autoimmune encephalomyelitis in common marmosets: a new model for MS. Ann Neurol 1995;37:519–530.

    Article  PubMed  CAS  Google Scholar 

  65. Uccelli A, Giunti D, Capello E, Roccatagliata L, Mancardi GL. EAE in the common marmoset Callithrix jacchus. Int MS J 2003;10:6–12.

    PubMed  CAS  Google Scholar 

  66. Bronstein JM, Lallone RL, Seitz RS, Ellison GW, Myers LW. A humoral response to oligodendrocyte-specific protein in MS. A potential molecular mimic. Neurology 1999;53:154–161.

    PubMed  CAS  Google Scholar 

  67. Berger T, Rubner P, Schautzer F, et al. Antimyelin antibodies as a predictor of clinically definite MS after a first demyelinating event. N Engl J Med 2004;349:139–145.

    Article  Google Scholar 

  68. Yu T, Ellison GW, Mendoza F, Bronstein JM. T-cell responses to oligodendrocyte-specific protein in MS. J Neurosci Res 2001;66:506–509.

    Article  Google Scholar 

  69. Adorini L, Singaglia F. Pathogenesis and immunotherapy of autoimmune disease. Immunol Today 1997;18:209–211.

    Article  PubMed  CAS  Google Scholar 

  70. Yang Y, Tomura M, Ono S, Hamaoka T, Fujiwara H. Requirement for IFN-γ in IL-12 production induced by collaboration between Vα14+NKT cells and antigen-presenting cells. Int Immunol 2000;12:1669–1675.

    Article  PubMed  CAS  Google Scholar 

  71. Liu CC, Young LH, Young JD. Lymphocyte-mediated cytolysis and disease. New Engl J Med 2004;335:1651–1659.

    Article  Google Scholar 

  72. Minagar A, Alexander JS. Blood-brain barrier disruption in MS. Multiple Sclerosis 2003;9:540–549.

    Article  PubMed  CAS  Google Scholar 

  73. Yednock TA, Cannon C, Fritz LC, Sanchez-Madrid F, Steinman L, Karin N. Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin. Nature 1992;356:63–66.

    Article  PubMed  CAS  Google Scholar 

  74. Carlos TM, Harlan JM. Leukocyte-endothelial adhesion molecules. Blood 1994;84:2068–2101.

    PubMed  CAS  Google Scholar 

  75. Frenette PS, Wagner DD. Adhesion molecules—Part 1. N Engl J Med 1996;334:1526–1529.

    Article  PubMed  CAS  Google Scholar 

  76. Frenette PS, Wagner DD. Adhesion molecules—Part II: Blood vessels and blood cells. N Engl J Med 1996;335:43–45.

    Article  PubMed  CAS  Google Scholar 

  77. von Andrian UH, MacKay CR. T-cell function and migration. Two sides of the same coin. N Engl J Med 2000;343:1020–1034.

    Google Scholar 

  78. von Adrian UH, Engelhardt B. α4 integrins as therapeutic targets in autoimmune disease. N Engl J Med 2004;348:68–72.

    Article  Google Scholar 

  79. Vestweber D, Blanks JE. Mechanisms that regulate the function of the selectins and their ligands. Physiol Rev 1999;79:181–213.

    PubMed  CAS  Google Scholar 

  80. Takada Y, Elices MJ, Crouse C, Hemler ME. The primary structure of the alpha 4 subunit of VLA-4: homology to other integrins and a possible cell-cell adhesion function. EMBO J 1989;8:1361–1368.

    PubMed  CAS  Google Scholar 

  81. Hynes RO. Integrins: a family of cell surface receptors. Cell 1987;48:549–554.

    Article  PubMed  CAS  Google Scholar 

  82. Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 1992;69:11–25.

    Article  PubMed  CAS  Google Scholar 

  83. Piccio L, Rossi B, Scarpini E, et al. Molecular mechanisms involved in lymphocyte recruitment in inflamed brain microvessels: critical roles for P-selectin glycoprotein ligand-1 and heterotrimeric Gi-linked receptors. J Immunol 2002;168:1940–1849.

    PubMed  CAS  Google Scholar 

  84. Minagar A, Jy W, Jimenez JJ, et al. Elevated plasma endothelial microparticles in MS. Neurology 2001;56:1319–1324.

    PubMed  CAS  Google Scholar 

  85. Qin S, Rottman JB, Myers P, et al. The chemokine receptors CSCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reaction. J Clin Invest 1998;101:746–754.

    PubMed  CAS  Google Scholar 

  86. Kent S, Karlik SJ, Cannon C, et al. A monoclonal antibody to α4 integrin suppresses and reverses active experimental allergic encephalomyelitis. J Neuroimmunol 1995;58:1–10.

    Article  PubMed  CAS  Google Scholar 

  87. Keszthelyi E, Karlik S, Hyduk S, et al. Evidence for a prolonged role of α3 integrin throughout active experimental allergic encephalomyelitis. Neurology 1996;47:1053–1059.

    PubMed  CAS  Google Scholar 

  88. Lin K, Ateeq HS, Hsiung SH, et al. Selective tight binding inhibitors of integrin α4β1 that inhibit allergic airway responses. J Med Chem 1999;42:920–934.

    Article  PubMed  CAS  Google Scholar 

  89. Kelly TA, Jeanfavre DD, McNeil DW, et al. Cutting edge: a small molecule antagonist of LFA-1 mediated cell adhesion. J Immunol 1999;163:5173–5177.

    PubMed  CAS  Google Scholar 

  90. Cannella B, Gaupp S, Tilton RG, Raine CS. Differential efficacy of a synthetic antagonist of VLA-4 during the course of chronic relapsing experimental autoimmune encephalomyelitis. J Neurosci Res 2003;71:407–416.

    Article  PubMed  CAS  Google Scholar 

  91. You TJ, Maxwell DS, Kogan TP, et al. A 3D structure model of integrin alpha 4 beta 1 complex: I. Construction of a homology model of beta 1 and ligand binding analysis. Biophys J 2002;82(Pt 1):447–457.

    CAS  Google Scholar 

  92. Vanderslice P, Biediger RJ, Woodside DG, Berens KL, Holland GW, Dixon RA. Development of cell adhesion molecule antagonists as therapeutics for asthma and COPD. Pulm Pharmacol Ther 2004;17:1–10.

    Article  PubMed  CAS  Google Scholar 

  93. Elices MJ, Osborn L, Takada Y, et al. VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site. Cell 1990;60:577–584.

    Article  PubMed  CAS  Google Scholar 

  94. Dasgupta S, Jana M, Liu X, Pahan K. Myelin basic protein-primed T cells induce nitric oxide synthase in microglial cells. Implications for MS. J Biol Chem 2002;277:39,327–39,333.

    CAS  Google Scholar 

  95. Dasgupta S, Jana M, Liu X, Pahan K. Role of very-late antigen-4 (VLA-4) in myelin basic protein-primed T cell contact-induced expression of proinflammatory cytokines in microglial cells. J Biol Chem 2003;278: 22,424–22,431.

    Article  PubMed  CAS  Google Scholar 

  96. Stanilaus R, Singh AK, Singh I. Lovastatin treatment decreases mononuclear cell infiltration into the CNS of Lewis rats with experimental allergic encephalomyelitis. J Neurosci Res 2001;66:159–162.

    Google Scholar 

  97. Pahan K, Sheikh F, Namboodin A, Singh I. Lovastatin and phenylacetate inhibit the induction of nitric oxide synthase and cytokines in rat primary astrocytes, microglial and macrophages. J Clin Invest 1997;100:2671–2679.

    Article  PubMed  CAS  Google Scholar 

  98. Vollmer T, Key L, Durkalski V, et al. Oral simvastatin treatment in relapsing-remitting MS. Lancet 2004;363:1607–1608.

    Article  PubMed  CAS  Google Scholar 

  99. Denkinger CM, Denkinger M, Kort JJ, Metz C, Forthuber TG. In vivo blockade of macrophage migration inhibitory factor ameliorates acute experimental autoimmune encephalomyelitis by impairing the homing of encephalitogenic T cells to the central nervous system. J Immunol 2003; 170:1274–1282.

    PubMed  CAS  Google Scholar 

  100. Rocklin RE, Sheremata WA, Feldman RG, Kies MW, David JR. The Guillain-Barre syndrome and MS: in vitro cellular responses. New Engl J Med 1971;284:803–808.

    Article  PubMed  CAS  Google Scholar 

  101. Sheremata WA, Cosgrove JBR, Eylar EH. Cellular hypersensitivity to basic myelin (A1) protein and clinical MS. New Engl J Med 1974;291:14–17.

    Article  PubMed  CAS  Google Scholar 

  102. Sheremata WA, Cosgrove JBR, Eylar EH. Hypersensitivity to myelin protein preceding attacks of MS. Trans Am Neurol Assoc 1974;99:49–54.

    Google Scholar 

  103. Sheremata WA, Wood DD, Moscarello MA, Cosgrove JBR. Sensitization to myelin basic protein in attacks of MS. J Neurol Sci 1978;36:165–170.

    Article  PubMed  CAS  Google Scholar 

  104. Sheremata WA., Wood DD, Moscarello MA. Cellular and humoral responses to myelin basic protein in MS: a dichotomy. In: Myelination and Demyelination. Palao J, ed. Plenum, New York, 1978:501–511.

    Google Scholar 

  105. Calabresi PA, Pelfrey CM, Tranquill LR, Maloni H, McFarland HF.VLA-4 expression on peripheral blood lymphocytes is downregulated after treatment of MS with interferon beta. Neurology 1997;49:1111–1116.

    PubMed  CAS  Google Scholar 

  106. Muraro PA, Leist T, Bielekova B, McFarland HF. VLA-4/CD49d downregulated on primed T lymphocytes during interferon-beta therapy in MS. J Neuroimmunol 2000;111:186–194.

    Article  PubMed  CAS  Google Scholar 

  107. Lou J, Gasche Y, Zheng L, et al. Interferon-β inhibits activated leukocyte migration through human brain microvascular endothelial cell monolayer. J Lab Invest 1999;79:1015–1025.

    CAS  Google Scholar 

  108. Elovaara I, Ukkonen M, Leppakynnas M, et al. Adhesion molecules in MS: relation to subtypes of disease and methylprednisolone therapy. Arch Neurol 2000;47:546–551.

    Article  Google Scholar 

  109. Gelati M, Corsini E, de Rossi M, et al. Methylprednisolone acts on peripheral blood mononuclear cells and endothelium in inhibiting migration phenomena in patients with MS. Arch Neurol 2002;59:774–780.

    Article  PubMed  Google Scholar 

  110. Diem R, Hobom M, Maier K, et al. Methylprednisolone increases neuronal apoptosis during autoimmune CNS inflammation by inhibition of an endogenous neuroprotective pathway. J Neurosci 2003;23:6993–7000.

    PubMed  CAS  Google Scholar 

  111. Sheremata WA, Vollmer TL, Stone LA, Willmer-Hulme AJ, Koller M. A pharmacokinetic study of intravenous natal-izumab in patients with MS. Neurology 1999;52:1072–1074.

    PubMed  CAS  Google Scholar 

  112. Tubridy N, Behan PO, Capildo R, et al. The effect of anti-alpha4 integrin antibody on brain lesion activity in MS. The UK Antegren Study Group. Neurology 1999;53:466–472.

    PubMed  CAS  Google Scholar 

  113. Minagar A, Sheremata WA, Hume A, Koller M, Vollmer T. Reduction of relapses in MS after Natalizumab (Antegren) treatment. Int MS J (On line) March 15, 2000.

    Google Scholar 

  114. O’Connor PW, Goodman A, Willmer-Hulme AJ, et al. Randomized. Multicenter trial of intravenous natalizumab in acute MS relapses: clinical and MRI effects. Neurology 1994;62:2038–2043.

    Google Scholar 

  115. Miller DH, Khan OA, Sheremata WA, et al. A controlled trial of natalizumab for relapsing-remitting MS. N Engl J Med 2003;348:15–23.

    Article  PubMed  CAS  Google Scholar 

  116. Dalton CM, Miszkiel KA, Barker GJ, et al. The effect of natalizumab on conversion of T1 gadolinium enhancing lesions to T1 hypodense lesions. Neurology 2004;60(Suppl 1):S484.

    Google Scholar 

  117. Murray TJ. Amantadine therapy for fatigue in MS. Can J Neurol Sci 1994;21:9–14.

    Article  PubMed  Google Scholar 

  118. Krupp LB, Coyle PK, Doscher C, et al. Fatigue therapy in MS: results of a double-blind, randomized, parallel trial of amantadine, pemoline, and placebo. Neurology 1995;45:1956–1961.

    PubMed  CAS  Google Scholar 

  119. Rammohan KW, Rosenberg JH, Lynn DJ, et al. Efficacy and safety of modafinil (Provigil) for the treatment of fatigue in MS: a two centre phase 2 study. J Neurol Neurosurg Psychiatry 2002;72:150–179.

    Article  Google Scholar 

  120. Traugott U. Detailed analysis of immunomodulatory properties of fluoxetine (Prozac) in chronic experimental allergic encephalomyelitis in SJL/J mice. Neurology 1998;50:1998. (abstract)

    Google Scholar 

  121. Penn RD, Savoy SM, Corcos D, et al. Intrathecal baclofen for severe spinal spasticity. New Engl J Med 1989;320:1517–1521.

    Article  PubMed  CAS  Google Scholar 

  122. Nance P, Sheremata WA, Lynch SG, et al. Relationship of the antispasticity effect of tizanidine to plasma concentration in patients with MS. Arch Neurol 1997;54:731–706.

    PubMed  CAS  Google Scholar 

  123. Rose AS, Kuzma JW, Kurtzke JF, et al. Cooperative study in the evaluation of therapy in MS: ACTH vs. placebo. Final Report. Neurology 1970;20(Part 2):1–19.

    PubMed  CAS  Google Scholar 

  124. Beck BW, Cleary PA, Anderson MM, et al. A randomized controlled trial of corticosteroids in the treatment of acute optic neuritis. N Engl J Med 1992;326:581–588.

    Article  PubMed  CAS  Google Scholar 

  125. Botticelli LJ, Wurtman RJ. Septo-hippocampal cholinergic neurons are regulated transynaptically by endorphin and corticotrophin neuropeptides. J Neurosci 1982;2:1316–1321.

    PubMed  CAS  Google Scholar 

  126. Spruijt BM, Van Rijzingen I, Masswinkel H. The ACTH (4–9 analog Org2766) modulates the behavioral changes induced by NMDA and the NMDA receptor antagonist AP5. J Neurosci 1994; 14:3225–3230.

    PubMed  CAS  Google Scholar 

  127. Hol EM, Mandys V, Sodnar P, Gispen WH, Bar PR. Protection by ACTH4-9 analogue against the toxic effects of cisplatin and taxol on sensory neurons and glial cells in vitro. J Neurosci Res 1994;39:178–185.

    Article  PubMed  CAS  Google Scholar 

  128. Diem R, Hobom M, Maier K, et al. Methylprednisolone increases neuronal apoptosis during autoimmune CNS inflammation by inhibition of an endogenous neuroprotective pathway. J Neurosci 1993;23:6993–7000.

    Google Scholar 

  129. The IFNB Multiple Sclerosis Study Group. Interferon beta-1b is effective in relapsing-remitting MS. 1. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology 1993;43:655–661.

    Google Scholar 

  130. Paty DW, Li KDB, the UBC MS/MRI Group and the IFN Multiple Sclerosis Study Group. Interferon beta-1b is effective in relapsing-remitting MS. Neurology 1993;42:662–667.

    Google Scholar 

  131. Jacobs LD, Cookfair DL, Rudick RA, et al. Intramuscular interferon beta-1a for disease progression in relapsing MS. Ann Neurol 1996;39:285–294.

    Article  PubMed  CAS  Google Scholar 

  132. Rudick RA, Goodkin DE, Jacobs LD, et al. Impact of interferon beta-1a on neurologic disability in relapsing MS. Neurology 1997;49:358–363.

    PubMed  CAS  Google Scholar 

  133. PRISMS (Prevention of Relapses and Disability by Interferon β-1a Subacutaneously in MS) Study Group. Randomised double-blind placebo-controlled study of interferon β-1a in relapsing/remitting MS. Lancet 2002;352:1498–1504.

    Google Scholar 

  134. Panitch H, Goodin DS, Francis G, et al. Randomized, comparative study of interferon β-1a treatment regimens in MS: The EVIDENCE Trial. Neurology, 2002;59:1496–1506.

    PubMed  CAS  Google Scholar 

  135. The PRISMS Study Group and the University of British Columbia MS/MRI Analysis Group PRISMS-4: longer term efficacy of interferon-beta-1a in relapsing MS. Neurology 2001;56:1628–1636.

    Google Scholar 

  136. Johnson KP, Brooks BR, Cohen JA, et al. Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting MS: results of a phase HJ multicenter, double-blind, placebo-controlled trial. Neurology 1995;45:1268–1276.

    PubMed  CAS  Google Scholar 

  137. Johnson KP, Brooks BR, Ford CC, et al. Sustained clinical benefits of glatimer acetate (Copaxone) in MS patients observed for 6 years. Mult Scler 2000;6:255–266.

    PubMed  CAS  Google Scholar 

  138. Stone LA, Frank JA, Albert PS, et al. Characterization of MRI response to treatment with interferon beta-1b: contrast-enhancing MRI lesion frequency as a primary outcome measure. Neurology 1997;49:862–869.

    PubMed  CAS  Google Scholar 

  139. Mancardi GL, Sardanelli F, Parodi RC, et al. Effect of copolymer-1 on serial gadolinium-enhanced MRI in relapsing-remitting MS. Neurology 1998;50:1127–1133.

    PubMed  CAS  Google Scholar 

  140. Rudick RA, Fisher E, Lee JC, et al. Us of the brain parenchymal fraction to measure whole brain atrophy in relapsing-remitting MS. Neurology 1999;53:1698–1704.

    PubMed  CAS  Google Scholar 

  141. Ge Y, Grossman RI, Udupa JK, et al. Glatiramer acetate (Copaxone) treatment in relapsing-remitting MS. Neurology 2000;54:813–817.

    PubMed  CAS  Google Scholar 

  142. Frank JA, Richert N, Bash C, et al. Interferon-β-1b slows progression of atrophy in RRMS. Neurology 2004;62:719–725.

    PubMed  CAS  Google Scholar 

  143. Hartung HP, Gonsette R, Koenig N, et al. Mitoxantrone in progressive MS: a placebo controlled, double-blind, randomized, multicentre trial. Lancet 2002;360:2018–2025.

    Article  PubMed  Google Scholar 

  144. Ghalie RG, Edan G, Laurent M, et al. Cardiac adverse effects associated with mitoxantrone (Novantrone) therapy in patients with MS. Neurology 2002;59:909–913.

    Article  PubMed  CAS  Google Scholar 

  145. European Study Group on Interferon β-1b in Secondary Progressive MS. Placebo-controlled multicentre randomised trial of interferon β-1b in treatment of secondary progressive MS. Lancet 1998;352:1491–1497.

    Article  Google Scholar 

  146. Vandenbark AA, Chou YK, Whitham R, et al. Treatment of MS with T-cell receptor peptides: results of a double-blind pilot trial. Nat Med 1996;2:1109–1115.

    Article  PubMed  CAS  Google Scholar 

  147. Goodkin DE, Shulman M, Winkelhake J, et al. A phase I trial of solubilized DR2: MBP84-102 (AG284) in MS. Neurology 2000;54:1414–1420.

    PubMed  CAS  Google Scholar 

  148. Aisen ML. Justifying neurorehabilitation [Editorial]. Neurology 1999;52:8.

    PubMed  CAS  Google Scholar 

  149. Thompson A. Symptomatic management and rehabilitation in MS. J Neurol Neurosurg Psychiatry 2001;71(Suppl 11): 112–1127.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Sheremata, W.A. (2005). Multiple Sclerosis. In: Minagar, A., Alexander, J.S. (eds) Inflammatory Disorders of the Nervous System. Current Clinical Neurology. Humana Press. https://doi.org/10.1385/1-59259-905-2:103

Download citation

  • DOI: https://doi.org/10.1385/1-59259-905-2:103

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-424-1

  • Online ISBN: 978-1-59259-905-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics