Skip to main content

Circulating Cell-Derived Microparticles in Thrombotic and Inflammatory Disorders

  • Chapter
Inflammatory Disorders of the Nervous System

Abstract

It is now recognized that all circulating blood cells, as well as endothelial cells (EC), continuously shed small membranous vesicles (microparticles [MPs]), which are approximately less than 1 µm, and that levels of circulating MPs are sensitive indicators of disease activity. The first type extensively studied in patients was platelet MP (PMPs) (1). Currently, endothelial-derived MP (EMPs) have risen to the fore as sensitive markers of EC perturbation, recently reviewed (2) and further considered in this article. Although other reviews may differ in viewpoint and emphasis (3,4), it is generally agreed that circulating MPs comprise different subspecies of membrane vesicles released from endothelium and blood cells, such as platelets, leukocytes, and red blood cells (RBCs). MPs containing negatively charged phospatidylserine (PS) and/or tissue factor are highly procoagulant. MPs that express specific adhesion molecules are capable of interacting with leukocytes and endothelia to initiate inflammatory responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Horstman LL, Ahn YS. Platelet microparticles: a wide-angle perspective. Crit Rev Oncol Hematol 1999;30:111–142.

    Article  PubMed  CAS  Google Scholar 

  2. Horstman LL, Jy W, Jimenez JJ, Ahn YS. Endothelial microparticles as markers of endothelial dysfunction. Front Biosci 2004;9:1118–1135.

    Article  PubMed  CAS  Google Scholar 

  3. Freyssinet JM. Cellular microparticles: what are they bad or good for? J Thromb Haemost 2003;1:1655–1662.

    Article  PubMed  CAS  Google Scholar 

  4. VanWijk MJ, Nieuwland R, Boer K, van der Post JA, VanBavel E, Sturk A. Microparticle subpopulations are increased in preeclampsia: possible involvement in vascular dysfunction? Am J Obstet Gynecol 2002;187:4506.

    Google Scholar 

  5. Jy W, Minagar A, Jimenez JJ, et al. Endothelial microparticles (EMP) bind and activate monocytes: elevated EMP-monocyte conjugates in multiple sclerosis. Front Biosci 2004;9:3137–3144.

    Article  PubMed  CAS  Google Scholar 

  6. Losy J, Niezgoda A, Wender M. Increased serum levels of soluble PECAM-1 in multiple sclerosis patients with brain gadolinum-enhancing lesions. J Neuroimmunol 1999;99:169–172.

    Article  PubMed  CAS  Google Scholar 

  7. Jimenez J, Jy W, Mauro L, Horstman L, Ahn YS. Elevated endothelial microparticles in thrombotic thrombocytopenic purpura (TTP): findings from brain and renal microvascular cell culture and patients with active disease. Br J Haematol 2001;112:81–90.

    Article  PubMed  CAS  Google Scholar 

  8. Minagar A, Jy W, Jimenez JJ, Mauro LM, Horstman LL, Ahn YS, Sheremata WA. Elevated plasma endothelial microparticles in multiple sclerosis. Neurology 2001;56:1319–1324.

    PubMed  CAS  Google Scholar 

  9. Bernal-Mizrachi L, Jy W, Jimenez JJ, et al. High levels of circulating endothelial microparticles in patients with acute coronary syndromes. Am Heart J 2003;145:962–970.

    Article  PubMed  Google Scholar 

  10. Gonzalez-Quintero V, Jimenez JJ, Jy W, Mauro LM, Horstman L, O’Sullivan M, Ahn YS. Elevated plasma endothelial microparticles in preeclampsia. Am J Obstet Gynecol 2003;189:589–593.

    Article  PubMed  Google Scholar 

  11. Roldan V, Marin F, Lip GYH, Blann AD. Soluble E-selectin in cardiovascular disease and its risk factors. Thromb Haemost 2003;90:1007–1020.

    PubMed  CAS  Google Scholar 

  12. Seeman HB, Gurbel PA, Anderson JL, Muhlestein JB, Carlquist JF, Horne BD, Serebruany VL. Soluble VCAM-1 and E-selectin, but not ICAM-1, discriminate endothelial injury in patients with documented coronary artery disease. Cardiology 2000;93:7–10.

    Article  Google Scholar 

  13. Hwang SJ, Ballantyne CM, Sharrett R, Smith LC, Davis CE, Gotto AM, Boerwinkle E. Circulating adhesion molecules VCAM-1, ICAM-1, and E-selectin in carotid atherosclerosis and incident coronary heart disease cases. Circulation 1997;96:4219–4225.

    PubMed  CAS  Google Scholar 

  14. Lieuw-a-Fa M, Schalkwijk C, vanHinsbergh VWM. Distinct accumulation patterns of soluble forms of E-selectin, VCAM-1 and ICAM-1 upon infusion of TNF-alpha in tumor patients. Thromb Haemost 2003;89:1052–1057.

    PubMed  CAS  Google Scholar 

  15. Jimenez JJ, Jy W, Mauro L, Soderland C, Horstman LL, Ahn YS. Endothelial cells release phenotypically and quantitatively distinct microparticles in activation and apoptosis. Thromb Res 2003;109:175–180.

    Article  PubMed  CAS  Google Scholar 

  16. Jimenez JJ, Jy W, Mauro LM, Horstman LL, Soderland C, Ahn YS. Endothelial microparticles released in thrombotic thrombocytopenic purpura express von Willebrand factor and markers of endothelial activation. Br J Haematol 2003;12:896–902.

    Article  Google Scholar 

  17. Jimenez JJ, Jy W, Mauro LM, Minagar A, Solderland C, Horstman LL, Ahn YS. Transendothelial migration (TEM) in multiple sclerosis (MS): induction by patient plasma and its augmentation by leukocyte endothelial microparticles (L-EMP) complexes. Blood 2003;102:72b Ab 9.

    Google Scholar 

  18. Jy W, Jimenez JJ, Mauro LM, et al. Endothelial microparticles (EMP) interact with platelets via a vWF dependent pathway to form platelet aggregates, more resistant to dissociation than those induced by soluble vWF. Blood 2003;102:783a Ab 2896.

    Article  CAS  Google Scholar 

  19. Satta N, Freyssinet JM, Toti F. The significance of human monocyte thrombomodulin during membrane vesiculation and after stimulation by lipopolysaccharide. Brit J Haematol 1997;96:534–542.

    Article  CAS  Google Scholar 

  20. Amirkhosravi A, Meyer T, Sackel D, Desai H, Biddinger R, Amaya M, Francis JL. Platelet microparticles upregulate TF and VEGF in endothelial and melanoma cells in a CD40 ligand-dependent manner: Possible role in angiogenesis and metastasis. Blood 2002;100(11, Part II):63b Ab 3721.

    Google Scholar 

  21. Heaney ML, Golde DW. Soluble cytokine receptors. Blood 1996;87:847–857.

    PubMed  CAS  Google Scholar 

  22. Miyazaki Y, Nomura S, Miyake T, et al. High shear stress can initiate both platelet aggregation and shedding of procoagulant containing microparticles. Blood 1996;88:3456–3464.

    PubMed  CAS  Google Scholar 

  23. Mills JC, Stone NL, Erhardt J, Pittman RN. Apoptotic membrane blebbing is regulated by myosin light chain phosphorylation. J Cell Biol 1998;140:627–636.

    Article  PubMed  CAS  Google Scholar 

  24. Fox JE, Austin CD, Boyles JK, Steffen PK. Role of the membrane skeleton in preventing the shedding of procoagulant-rich microvesicles from the platelet plasma membrane. J Cell Biol 1990;111:483–493.

    Article  PubMed  CAS  Google Scholar 

  25. Rohn TT, Cusack SM, Kessinger SR, Oxford JT. Caspase activation independent of cell death is required for proper cell dispersal and correct morphology in PC12 cells. Exp Cell Res 2004;295:215–225.

    Article  PubMed  CAS  Google Scholar 

  26. Zwaal RF, Schroit AJ. Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. Blood 1997;89:1121–1132.

    PubMed  CAS  Google Scholar 

  27. Weerheim AM, Kolb AM, Sturk A, Nieuwland R. Phospholipid composition of cell-derived microparticles determined by one-dimensional high-performance thin-layer chromatography. Anal Biochem 2002;302:191–198.

    Article  PubMed  CAS  Google Scholar 

  28. Fourcade O, Simon MF, Viode C, et al. Secretory phospholipase A2 generates the novel lipid mediator lysophosphatidic acid in membrane microvesicles shed from activated cells. Cell 1995;80:919–927.

    Article  PubMed  CAS  Google Scholar 

  29. Berckmans RJ, Neiuwland R, Boing AN, Romijn FP, Hack CE, Sturk A. Cell-derived microparticles circulate in healthy humans and support low grade thrombin generation. Thromb Haemost 2001;85:639–646.

    PubMed  CAS  Google Scholar 

  30. Berckmans RJ, Nieuwland R, Tak PP, et al.Cell-derived microparticles in synovial fluid from inflamed arthritic joints support coagulation exclusively via a factor VII-dependent mechanism. Arthritis Rheum 2002;46:2857–2866.

    Article  PubMed  CAS  Google Scholar 

  31. Blanchard N, Lankar D, Faure F, Regnault A, Dumont C, Raposo G, Hivroz C. TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/zeta complex. J Immunol 2002;168:3235–3241.

    PubMed  CAS  Google Scholar 

  32. Jy W, Jimenez JJ, Mauro LM, et al. Agonist-induced capping of adhesion proteins and microparticle shedding in cultures of human renal microvascular endothelial cells. Endothelium 2002;9:179–189.

    Article  PubMed  CAS  Google Scholar 

  33. Salzer U, Hinterdorfer P, Hunger U, Borken C, Prohaska R. Ca(++)-dependent vesicle release from erythrocytes involves stomatin-specific lipid rafts, synexin (annexin VII), and sorcin. Blood 2002;99:2569–2577.

    Article  PubMed  CAS  Google Scholar 

  34. Wolf P. The nature and significanc of platelet product in human plasma Br J Haematol 1967;13:269–288.

    PubMed  CAS  Google Scholar 

  35. Wartiovaara U, Salven P, Mikkola H, et al. Peripheral blood platelets express VEGF-C and VEGF which are released during platelet activation. Thromb Haemost 1998;80:171–175.

    PubMed  CAS  Google Scholar 

  36. George JN, Pickett EB, Saucerman S, McEver RP, Kunicki TJ, Kieffer N, Newman PJ. Platelet surface glycoproteins. Studies on resting and activated platelets and platelet membrane microparticles in normal subjects, and observations in patients during adult respiratory distress syndrome and cardiac surgery. J Clin Invest 1986;78:340–348.

    PubMed  CAS  Google Scholar 

  37. Iwamoto S, Kawasaki T, Kambayashi J, Ariyoshi H, Monden M. Platelet microparticles: a carrier of platelet-activating factor? Biochem Biophys Res Commun 1996;218:940–944.

    Article  PubMed  CAS  Google Scholar 

  38. Nomura S, Komiyama Y, Miyake T, et al. Amyloid beta-protein precursor-rich platelet microparticles in thrombotic disease. Thromb Haemost 1994;72:519–522.

    PubMed  CAS  Google Scholar 

  39. Tans G, Rosing J, Thomassen MC, Heeb MJ, Zwaal RF, Griffin JH. Comparison of anticoagulant and procoagulant activities of stimulated platelets and platelet-derived microparticles. Blood 1991;77:2641–2648.

    PubMed  CAS  Google Scholar 

  40. Sims PJ, Faioni EM, Wiedmer T, Shattil SJ. Complement proteins C5b-9 cause release of membrane vesicles from the platelet surface that are enriched in the membrane receptor for coagulation factor Va and express prothrombinase activity. J Biol Chem 1988;263:18205–18212.

    PubMed  CAS  Google Scholar 

  41. Sims PJ, Wiedmer T, Esmon CT, Weiss HJ, Shattil SJ. Assembly of the platelet prothrombinase complex is linked to vesiculation of the platelet plasma membrane. Studies in Scott syndrome: an isolated defect in platelet procoagulant activity. J Biol Chem 1989;264:17,049–17,057.

    PubMed  CAS  Google Scholar 

  42. Combes V, Simon AC, Grau GE, et al. In vitro generation of endothelial microparticles and possible prothrombotic activity in patients with lupus anticoagulant. J Clin Invest 1999;104:93–102.

    PubMed  CAS  Google Scholar 

  43. Mallat Z, Hugel B, Ohan J, Leseche G, Freyssinet JM, Tedgui A. Shed membrane microparticles with procoagulant potential in human atherosclerotic plaques: a role for apoptosis in plaque thrombogenicity. Circulation 1999;99:348–353.

    PubMed  CAS  Google Scholar 

  44. Preston RA, Jy W, Jimenez JJ, et al. Effects of severe hypertension on endothelial and platelet microparticles. Hypertension 2003;41:211–217.

    Article  PubMed  CAS  Google Scholar 

  45. Sabatier F, Darmon P, Hugel B, et al. Type 1 and type 2 diabetic patients display different patterns of cellular microparticles. Diabetes 2002;51:2840–2845.

    Article  PubMed  CAS  Google Scholar 

  46. Simak J, Holada K, Risitano AM, Zivny JH, Young NS, Vostal JG. Elevated circulating endothelial membrane microparticles in paroxysmal nocturnal haemoglobinuria. Br J Haematol 2004;125:804–813.

    Article  PubMed  Google Scholar 

  47. Biro E, Sturk-Maquelin KN, Vogel GM, et al. Human cell-derived microparticles promote thrombus formation in vivo in a tissue factor-dependent manner. J Thromb Haemost 2003;1:2561–2568.

    Article  PubMed  CAS  Google Scholar 

  48. Nieuwland R, Berckmans RJ, McGregor S, et al. Cellular origin and procoagulant properties of microparticles in meningococcal sepsis. Blood 2000;95:930–935.

    PubMed  CAS  Google Scholar 

  49. Nagahama M, Nomura S, Kanazawa S, Ozaki Y, Kagawa H, Fukuhara S. Significance of anti-oxidized LDL antibody and monocyte-derived microparticles in anti-phospholipid antibody syndrome. Autoimmunity 2003;36:125–131.

    Article  PubMed  CAS  Google Scholar 

  50. Shet AS, Aras O, Gupta K, et al. Sickle blood contains tissue factor-positive microparticles derived from endothelial cells and monocytes. Blood 2003;102:2678–2683.

    Article  PubMed  CAS  Google Scholar 

  51. Fujimi S, Ogura H, Tanaka H, et al. Increased production of leukocyte microparticles with enhanced expression of adhesion molecules from activated polymorphonuclear leukocytes in severely injured patients. J Trauma 2003;54:114–119.

    Article  PubMed  Google Scholar 

  52. Myers DD, Hawley AE, Farris DM, et al. P-selectin and leukocyte microparticles are associated with venous throm-bogenesis. J Vasc Surg 2003;38:1075–1089.

    Article  PubMed  Google Scholar 

  53. Kagawa H, Komiyama Y, Nakamura S, et al. Expression of functional tissue factor on small vesicles of lipopolysaccharide-stimulated human vascular endothelial cells. Thromb Res 1998;91:297–304.

    Article  PubMed  CAS  Google Scholar 

  54. Mallat Z, Benamer H, Hugel B, Benessiano J, Steg PG, Freyssinet JM, Tedgui A. Elevated levels of shed membrane microparticles with procoagulant potential in the peripheral circulating blood of patients with acute coronary syndromes. Circulation 2000;101:841–843.

    PubMed  CAS  Google Scholar 

  55. Bajaj MS, Birktoft JJ, Steer SA, Bajaj SP. Structure and biology of tissue factor pathway inhibitor. Thromb Haemost 2001;86:959–972.

    PubMed  CAS  Google Scholar 

  56. Camerer E, Kolsto AB, Prydz H. Cell biology of tissue factor, the principal initiator of blood coagulation. Thromb Res 1996;81:1–41.

    Article  PubMed  CAS  Google Scholar 

  57. Horstman LL, Cast L, Jy W, Jimenez JJ, Ahn YS. Tissue factor activity is controlled by its inhibitor and redox state: findings in endothelial microparticles, monocytes and a porcine trauma model. Presented at the 19th Annual ISTH Congress, Birmingham, U.K. July 12–18, 2003.

    Google Scholar 

  58. Gris JC, Toulon P, Brun S, Maugard C, Sarlat C, Schved JF, Berlan J. The relationship between plasma microparticles, protein S and anticardiolipin antibodies in patients with human immunodeficiency virus infection. Thromb Haemost 1996;76:38–45.

    PubMed  CAS  Google Scholar 

  59. Jy W, Mao WW, Horstman L, Tao J, Ahn YS. Platelet microparticles bind, activate and aggregate neutrophils in vitro. Blood Cells Mol Dis 1995;21:217–231.

    Article  PubMed  CAS  Google Scholar 

  60. Barry OP, Pratico D, Savani RC, FitzGerald GA. Modulation of monocyte-endothelial cell interactions by platelet microparticles. J Clin Invest 1998;102:136–144.

    Article  PubMed  CAS  Google Scholar 

  61. Mesri M, Altieri DC. Endothelial cell activation by leukocyte microparticles. J Immunol 1998;161:4382–4387.

    PubMed  CAS  Google Scholar 

  62. Sabatier F, Roux V, Anfosso F, Camoin L, Sampol J, Dignat-George F. Interaction of endothelial microparticles with monocytic cells in vitro induces tissue factor-dependent procoagulant activity. Blood 2002;99:3962–3970.

    Article  PubMed  CAS  Google Scholar 

  63. Boulanger CM, Scoazec A, Ebrahimian T, Henry P, Mathieu E, Tedgui A, Mallat Z. Circulating microparticles from patients with myocardial infarction cause endothelial dysfunction. Circulation 2001;104:2649–2652.

    Article  PubMed  CAS  Google Scholar 

  64. VanWijk MJ, Svedas E, Boer K, Nieuwland R, Vanbavel E, Kublickiene KR. Isolated microparticles, but not whole plasma, from women with preeclampsia impaired endothelium-dependent relaxation in isolated myometrial arteries from healthy pregnant women. Am J Obstet Gynecol 2002;187:1686–1693.

    Article  PubMed  Google Scholar 

  65. Rikitake Y, Hirata K, Kawashima S, et al. Inhibition of endothelium-dependent arterial relaxation by oxidized phosphatidylcholine. Atherosclerosis 2000;152:79–87.

    Article  PubMed  CAS  Google Scholar 

  66. Barry OP, Pratico D, Lawson JA, FitzGerald GA. Transcellular activation of platelets and endothelial cells by bioactive lipids in platelet microparticles. J Clin Invest 1997;99:2118–2127.

    PubMed  CAS  Google Scholar 

  67. Kim HK, Song KS, Chung JH, Lee KR, Lee SN. Platelet microparticles induce angiogenesis in vitro. Br J Haematol 2004;124:376–384.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Jy, W., Horstman, L.L., Jimenez, J.J., Minagar, A., Ahn, Y.S. (2005). Circulating Cell-Derived Microparticles in Thrombotic and Inflammatory Disorders. In: Minagar, A., Alexander, J.S. (eds) Inflammatory Disorders of the Nervous System. Current Clinical Neurology. Humana Press. https://doi.org/10.1385/1-59259-905-2:091

Download citation

  • DOI: https://doi.org/10.1385/1-59259-905-2:091

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-424-1

  • Online ISBN: 978-1-59259-905-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics