Skip to main content

Multiple Sclerosis

A Disease of Miscommunication Between the Immune and Central Nervous Systems?

  • Chapter
Inflammatory Disorders of the Nervous System

Abstract

A functional central nervous system (CNS) is essential for mammalian survival; therefore, the CNS must be defended from insults and other pathogens. The molecules (e.g., free radicals, cytokines, proteases) produced in vast quantities by the activated immune system to combat pathogens have the demonstrated potential to disrupt CNS function (13). To balance these opposing needs, (sufficient defense of the CNS without loss of CNS function), the CNS and immune system have developed a unique relationship referred to as immune privilege. Disruptions in this unique relationship leading to disregulated CNS inflammation are now thought to contribute to the onset and progression of many diverse types of CNS pathology, including CNS autoimmune diseases such as multiple sclerosis (MS), Rasmussen’s encephalitis, and narcolepsy; neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and stroke; and the secondary neurodegeneration associated with spinal cord injury (310).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bauer J, Rauschka H, Lassmann H. Inflammation in the nervous system: the human perspective. Glia 2001;36:235–243.

    PubMed  CAS  Google Scholar 

  2. Carson MJ, Sutcliffe JG. Balancing function vs. self defense: the CNS as an active regulator of immune responses. J Neurosci Res 1999;55:1–8.

    PubMed  CAS  Google Scholar 

  3. Stoll G, Jander S, Schroeter M. Detrimental and beneficial effects of injury-induced inflammation and cytokine expression in the nervous system. Adv Exp Med Biol 2002;513:87–113.

    PubMed  CAS  Google Scholar 

  4. Owens T, Renno T, Taupin V, Krakowski M. Inflammatory cytokines in the brain: does the CNS shape immune responses? Immunol Today 1994;15:566–571.

    PubMed  CAS  Google Scholar 

  5. Hickey WF. Leukocyte traffic in the central nervous system: the participants and their roles. Semin Immunol 1999;11:125–137.

    PubMed  CAS  Google Scholar 

  6. Chabas D, Taheri S, Renier C, Mignot E. The genetics of narcolepsy. Annu Rev Genomics Hum Genet 2003;4:459–483.

    PubMed  CAS  Google Scholar 

  7. Lagrange AH, Blaivas M, Gomez-Hassan D, Malow BA. Rasmussen’s syndrome and new-onset narcolepsy, cataplexy, and epilepsy in an adult. Epilepsy Behav 2003;4:788–792.

    PubMed  CAS  Google Scholar 

  8. Popovich PG, Hickey WF. Bone marrow chimeric rats reveal the unique distribution of resident and recruited macrophages in the contused rat spinal cord. J Neuropathol Exp Neurol 2001;60:676–685.

    PubMed  CAS  Google Scholar 

  9. Matyszak MK. Inflammation in the CNS: balance between immunological privilege and immune responses. Prog Neurobiol 1998;56:19–35.

    PubMed  CAS  Google Scholar 

  10. Stoll G, Jander S. The role of microglia and macrophages in the pathophysiology of the CNS. Prog Neurobiol 1999;58:233–247.

    PubMed  CAS  Google Scholar 

  11. Wingerchuk DM, Weinshenker BG. Multiple sclerosis: epidemiology, genetics, classification, natural history, and clinical outcome measures. Neuroimaging Clin N Am 2000;10:611–624.

    PubMed  CAS  Google Scholar 

  12. Noseworthy JH. Progress in determining the causes and treatment of multiple sclerosis. Nature 1999;399(Suppl. S):A40–A47.

    PubMed  CAS  Google Scholar 

  13. Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci 1996;19:312–318.

    PubMed  CAS  Google Scholar 

  14. Medawar PB. Immunity to homologous grafted skin. III. The fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to anterior chamber of the eye. Br J Exp Pathol 1948;29:58–69.

    Google Scholar 

  15. Perry VH. A revised view of the central nervous system microenvironment and major histocompatibility complex class n antigen presentation. J Neuroimmunol 1998;90:113–121.

    PubMed  CAS  Google Scholar 

  16. Carson MJ, Sutcliffe JG. The role of microglia in CNS inflammatory disease: Friend or Foe? In: Bondy SC, Campbell A, eds. Inflammatory Events in Neurodegeneration. Scottsdale, AZ: Prominent Press; 2001:1–14.

    Google Scholar 

  17. Lo D, Feng LL, Li L, et al. Integrating innate and adaptive immunity in the whole animal. Immunol Rev 1999;169:225–239.

    PubMed  CAS  Google Scholar 

  18. Medzhitov R, Janeway CA, Jr. Innate immune recognition and control of adaptive immune responses. Semin Immunol 1998;10:351–353.

    PubMed  CAS  Google Scholar 

  19. Barker CF, Billingham RE. Immunologically privileged sites. Adv Immunol 1977;25:1–54.

    PubMed  CAS  Google Scholar 

  20. Fujinami RS, Oldstone MB. Amino acid homology between the encephalitogenic site of myelin basic protein and virus: mechanism for autoimmunity. Science 1985;230:1043–1045.

    PubMed  CAS  Google Scholar 

  21. Stohlman SA, Hinton DR. Viral induced demyelination. Brain Pathol 2001;11:92–106.

    PubMed  CAS  Google Scholar 

  22. Kwidzinski E, Mutlu LK, Kovac AD, et al. Self-tolerance in the immune privileged CNS: lessons from the entorhinal cortex lesion model. J Neural Transm Suppl 2003(65):29–49.

    PubMed  Google Scholar 

  23. Schwartz M, Moalem G, Leibowitz-Amit R, Cohen IR. Innate and adaptive immune responses can be beneficial for CNS repair. Trends Neurosci 1999;22:295–299.

    PubMed  CAS  Google Scholar 

  24. Streit WJ. Microglial response to brain injury: a brief synopsis. Toxicol Pathol 2000;28:28–30.

    PubMed  CAS  Google Scholar 

  25. Irani DN. The susceptibility of mice to immune-mediated neurologic disease correlates with the degree to which their lymphocytes resist the effects of brain-derived gangliosides. J Immunol 1998;161:2746–2752.

    PubMed  CAS  Google Scholar 

  26. Aloisi F. Immune function of microglia. Glia 2001;36:165–179.

    PubMed  CAS  Google Scholar 

  27. Carson MJ, Sutcliffe JG, Campbell IL. Microglia stimulate naive T-cell differentiation without stimulating T-cell proliferation. J Neurosci Res 1999;55:127–134.

    PubMed  CAS  Google Scholar 

  28. Scolding N. The differential diagnosis of multiple sclerosis. J Neurol Neurosurg Psychiatry 2001;71:9–15.

    Google Scholar 

  29. Leon SF, Arimura K, Osame M. Multiple sclerosis and HTLV-I associated myelopathy/tropical spastic paraparesis are two distinct clinical entities. Mult Scler 1996;2:88–90.

    Google Scholar 

  30. Howard AK, Li DK, Oger J. MRI contributes to the differentiation between MS and HTLV-I associated myelopathy in British Columbian coastal natives. Can J Neurol Sci 2003;30:41–48.

    PubMed  Google Scholar 

  31. Hart BA, Amor S. The use of animal models to investigate the pathogenesis of neuroinflammatory disorders of the central nervous system. Curr Opin Neurol 2003;16:375–383.

    PubMed  Google Scholar 

  32. Mix E, Pahnke J, Ibrahim SM. Gene-expression profiling of experimental autoimmune encephalomyelitis. Neurochem Res 2002;27:1157–1163.

    PubMed  CAS  Google Scholar 

  33. Tsunoda I, Kuang LQ, Theil DJ, Fujinami RS. Antibody association with a novel model for primary progressive multiple sclerosis: induction of relapsing-remitting and progressive forms of EAE in H2s mouse strains. Brain Pathol 2000;10:402–418.

    PubMed  CAS  Google Scholar 

  34. Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 2000;47:707–717.

    PubMed  CAS  Google Scholar 

  35. Trapp BD, Bo L, Mork S, Chang A. Pathogenesis of tissue injury in MS lesions. J Neuroimmunol 1999;98:49–56.

    PubMed  CAS  Google Scholar 

  36. De Stefano N, Narayanan S, Francis GS, et al.Evidence of axonal damage in the early stages of multiple sclerosis and its relevance to disability. Arch Neurol 2001;58:65–70.

    PubMed  Google Scholar 

  37. Brex PA, Ciccarelli O, O’Riordan JI, Sailer M, Thompson AJ, Miller DH. A longitudinal study of abnormalities on MRI and disability from multiple sclerosis. N Engl J Med 2002;346:158–164.

    PubMed  Google Scholar 

  38. Bjartmar C, Wujek JR, Trapp BD. Axonal loss in the pathology of MS: consequences for understanding the progressive phase of the disease. J Neurol Sci 2003;206:165–171.

    PubMed  CAS  Google Scholar 

  39. Prineas JW, Kwon EE, Cho ES, et al. Immunopathology of secondary-progressive multiple sclerosis. Ann Neurol 2001;50:646–657.

    PubMed  CAS  Google Scholar 

  40. Bo L, Vedeler CA, Nyland H, Trapp BD, Mork SJ. Intracortical multiple sclerosis lesions are not associated with increased lymphocyte infiltration. Mult Scler 2003;9:323–331.

    PubMed  CAS  Google Scholar 

  41. Banati RB, Newcombe J, Gunn RN, et al. The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo imaging of microglia as a measure of disease activity. Brain 2000;123(Pt 11): 2321–2337.

    PubMed  Google Scholar 

  42. Gobin SJ, Montagne L, Van Zutphen M, Van Der Valk P, Van Den Elsen PJ, De Groot CJ. Upregulation of transcription factors controlling MHC expression in multiple sclerosis lesions. Glia 2001;36:68–77.

    PubMed  CAS  Google Scholar 

  43. Nicholas RS, Stevens S, Wing MG, Compston DA. Microglia-derived IGF-2 prevents TNFalpha induced death of mature oligodendrocytes in vitro. J Neuroimmunol 2002;124:36–44.

    PubMed  CAS  Google Scholar 

  44. Heese K, Hock C, Otten U. Inflammatory signals induce neurotrophin expression in human microglial cells. J Neurochem 1998;70:699–707.

    PubMed  CAS  Google Scholar 

  45. Lo D, Reilly CR, Scott B, Liblau R, McDevitt HO, Burkly LC. Antigen-presenting cells in adoptively transferred and spontaneous autoimmune diabetes. Eur J Immunol 1993;23:1693–1698.

    PubMed  CAS  Google Scholar 

  46. Lo D, Freedman J, Hesse S, Palmiter RD, Brinster RL, Sherman LA. Peripheral tolerance to an islet cell-specific hemagglutinin transgene affects both CD4+ and CD8+ T cells. Eur J Immunol 1992;22:1013–1022.

    PubMed  CAS  Google Scholar 

  47. Ploix C, Lo D, Carson MJ. A ligand for the chemokine receptor CCR7 can influence the homeostatic proliferation of CD4 T cells and progression of autoimmunity. J Immunol 2001;167:6724–6730.

    PubMed  CAS  Google Scholar 

  48. Surh CD, Sprent J. Homeostatic T cell proliferation: how far can T cells be activated to self-ligands? J Exp Med 2000;192:1–7.

    Google Scholar 

  49. Hug A, Korporal M, Schroder I, et al. Thymic export function and T cell homeostasis in patients with relapsing remitting multiple sclerosis. J Immunol 2003;171:432–437.

    PubMed  CAS  Google Scholar 

  50. Koetz K, Bryl E, Spickschen K, O’Fallon WM, Goronzy JJ, Weyand CM. T cell homeostasis in patients with rheumatoid arthritis. Proc Natl Acad Sci USA 2000;97:9203–9208.

    PubMed  CAS  Google Scholar 

  51. Ruddle NH. Lymphoid neo-organogenesis: lymphotoxin’s role in inflammation and development. Immunol Res 1999;19:119–125.

    PubMed  CAS  Google Scholar 

  52. Columba-Cabezas S, Serafini B, Ambrosini E, Aloisi F. Lymphoid chemokines CCL19 and CCL21 are expressed in the central nervous system during experimental autoimmune encephalomyelitis: implications for the maintenance of chronic neuroinflammation. Brain Pathol 2003;13:38–51.

    PubMed  Google Scholar 

  53. Perry VH, Newman TA, Cunningham C. The impact of systemic infection on the progression of neurodegenerative disease. Nat Rev Neurosci 2003;4:103–112.

    PubMed  CAS  Google Scholar 

  54. Brabb T, Goldrath AW, von Dassow P, Paez A, Liggitt HD, Goverman J. Triggers of autoimmune disease in a murine TCR-transgenic model for multiple sclerosis. J Immunol 1997;159:497–507.

    PubMed  CAS  Google Scholar 

  55. Lo D. T-cell tolerance. Curr Opin Immunol 1992;4:711–715.

    PubMed  CAS  Google Scholar 

  56. Lo D, Reilly C, Marconi LA, et al. Regulation of CD4 T cell reactivity to self and non-self. Int Rev Immunol 1995;13:147–160.

    PubMed  CAS  Google Scholar 

  57. Boztug K, Carson MJ, Pham-Mitchell N, Asensio VC, DeMartino J, Campbell IL. Leukocyte infiltration, but not neurodegeneration, in the CNS of transgenic mice with astrocyte production of the CXC chemokine ligand 10. J Immunol 2002;169:1505–1515.

    PubMed  CAS  Google Scholar 

  58. Lassmann S, Kincaid C, Asensio VC, Campbell IL. Induction of type 1 immune pathology in the brain following immunization without central nervous system autoantigen in transgenic mice with astrocyte-targeted expression of IL-12. J Immunol 2001;167:5485–5493.

    PubMed  CAS  Google Scholar 

  59. Campbell IK, O’Donnell K, Lawlor KE, Wicks IP. Severe inflammatory arthritis and lymphadenopathy in the absence of TNF. J Clin Invest 2001;107:1519–1527.

    PubMed  CAS  Google Scholar 

  60. Chen SC, Leach MW, Chen Y, et al. Central nervous system inflammation and neurological disease in transgenic mice expressing the CC chemokine CCL21 in oligodendrocytes. J Immunol 2002;168:1009–1017.

    PubMed  CAS  Google Scholar 

  61. Winer S, Tsui H, Lau A, et al.Autoimmune islet destruction in spontaneous type 1 diabetes is not beta-cell exclusive. Nat Med 2003;9:198–205.

    PubMed  CAS  Google Scholar 

  62. Baekkeskov S, Aanstoot HJ, Christgau S, et al. Identification of the 64K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase. Nature 1990;347:151–156.

    PubMed  CAS  Google Scholar 

  63. Lohmann T, Hawa M, Leslie RD, Lane R, Picard J, Londei M. Immune reactivity to glutamic acid decarboxylase 65 in stiffman syndrome and type 1 diabetes mellitus. Lancet 2000;356:31–35.

    PubMed  CAS  Google Scholar 

  64. Schulz RM, Hawa M, Leslie RD, et al. Proliferative responses to selected peptides of IA-2 in identical twins discordant for Type 1 diabetes. Diabetes Metab Res Rev 2000;16:150–156.

    PubMed  CAS  Google Scholar 

  65. Carson MJ, Reilly CR, Sutcliffe JG, Lo D. Mature microglia resemble immature antigen-presenting cells. Glia 1998;22:72–85.

    PubMed  CAS  Google Scholar 

  66. Becher B, Prat A, Antel JP. Brain-immune connection: immuno-regulatory properties of CNS-resident cells. Glia 2000;29:293–304.

    PubMed  CAS  Google Scholar 

  67. Tan J, Town T, Saxe M, Paris D, Wu Y, Mullan M. Ligation of microglial CD40 results in p44/42 mitogen-activated protein kinase-dependent TNF-alpha production that is opposed by TGF-beta 1 and IL-10. J Immunol 1999; 163:6614–6621.

    PubMed  CAS  Google Scholar 

  68. Nguyen VT, Benveniste EN. Critical role of TNF-alpha and NF-kB in IFN-gamma-induced CD40 expression in microglia/macrophages. J Biol Chem 2002;5:5.

    Google Scholar 

  69. Aloisi F, Penna G, Polazzi E, Minghetti L, Adorini L. CD40-CD154 interaction and IFN-gamma are required for IL-12 but not prostaglandin E2 secretion by microglia during antigen presentation to Th1 cells. J Immunol 1999;162:1384–1391.

    PubMed  CAS  Google Scholar 

  70. Wolf SA, Gimsa U, Bechmann I, Nitsch R. Differential expression of costimulatory molecules B7-1 and B7-2 on microglial cells induced by Th1 and Th2 cells in organotypic brain tissue. Glia 2001;36:414–420.

    PubMed  CAS  Google Scholar 

  71. Redwine JM, Buchmeier MJ, Evans CF. In vivo expression of major histocompatibility complex molecules on oligodendrocytes and neurons during viral infection. Am J Pathol 2001;159:1219–1224.

    PubMed  CAS  Google Scholar 

  72. Hoftberger R, Aboul-Enein F, Brueck W, et al. Expression of major histocompatibility complex class I molecules on the different cell types in multiple sclerosis lesions. Brain Pathol 2004; 14:43–50.

    PubMed  CAS  Google Scholar 

  73. Hailer NP, Heppner FL, Haas D, Nitsch R. Fluorescent dye prelabelled microglial cells migrate into organotypic hippocampal slice cultures and ramify. Eur J Neurosci 1997;9:863–866.

    PubMed  CAS  Google Scholar 

  74. Carson MJ, Reilly CR, Sutcliffe JG, Lo D. Disproportionate recruitment of CD8+ T cells into the central nervous system by professional antigen-presenting cells. Am J Pathol 1999;154:481–494.

    PubMed  CAS  Google Scholar 

  75. Becher B, Fedorowicz V, Antel JP. Regulation of CD14 expression on human adult central nervous system-derived microglia. J Neurosci Res 1996;45:375–381.

    PubMed  CAS  Google Scholar 

  76. Sedgwick JD, Schwender S, Imrich H, Dorries R, Butcher GW, ter Meulen V. Isolation and direct characterization of resident microglial cells from the normal and inflamed central nervous system. Proc Natl Acad Sci USA 1991;88:7438–7442.

    PubMed  CAS  Google Scholar 

  77. Matsumoto Y, Fujiwara M. Absence of donor-type major histocompatibility complex class I antigen-bearing microglia in the rat central nervous system of radiation bone marrow chimeras. J Neuroimmunol 1987;17:71–82.

    PubMed  CAS  Google Scholar 

  78. Hickey WF, Kimura H. Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science 1988;239:290–292.

    PubMed  CAS  Google Scholar 

  79. Schilling M, Besselmann M, Leonhard C, Mueller M, Ringelstein EB, Kiefer R. Microglial activation precedes and predominates over macrophage infiltration in transient focal cerebral ischemia: a study in green fluorescent protein transgenic bone marrow chimeric mice. Exp Neurol 2003;183:25–33.

    PubMed  Google Scholar 

  80. Unger ER, Sung JH, Manivel JC, Chenggis ML, Blazar BR, Krivit W. Male donor-derived cells in the brains of female sex-mismatched bone marrow transplant recipients: a Y-chromosome specific in situ hybridization study. J Neuropathol Exp Neurol 1993;52:460–470.

    PubMed  CAS  Google Scholar 

  81. Renno T, Krakowski M, Piccirillo C, Lin JY, Owens T. TNF-alpha expression by resident microglia and infiltrating leukocytes in the central nervous system of mice with experimental allergic encephalomyelitis. Regulation by Th1 cytokines. J Immunol 1995; 154:944–953.

    PubMed  CAS  Google Scholar 

  82. Irie-Sasaki J, Sasaki T, Penninger JM. CD45 regulated signaling pathways. Curr Top Med Chem 2003;3: 783–796.

    PubMed  CAS  Google Scholar 

  83. Popovich PG, van Rooijen N, Hickey WF, Preidis G, McGaughy V. Hematogenous macrophages express CD8 and distribute to regions of lesion cavitation after spinal cord injury. Exp Neurol 2003;182:275–287.

    PubMed  CAS  Google Scholar 

  84. Mack CL, Vanderlugt-Castaneda CL, Neville KL, Miller SD. Microglia are activated to become competent antigen presenting and effector cells in the inflammatory environment of the Theiler’s virus model of multiple sclerosis. J Neuroimmunol 2003;144:68–79.

    PubMed  CAS  Google Scholar 

  85. Juedes AE, Ruddle NH. Resident and infiltrating central nervous system APCs regulate the emergence and resolution of experimental autoimmune encephalomyelitis. J Immunol 2001;166:5168–5175.

    PubMed  CAS  Google Scholar 

  86. Willenborg DO, Staykova MA, Cowden WB. Our shifting understanding of the role of nitric oxide in autoimmune encephalomyelitis: a review. J Neuroimmunol 1999;100:21–35.

    PubMed  CAS  Google Scholar 

  87. Minghetti L, Polazzi E, Nicolini A, Greco A, Levi G. Possible role of microglial prostanoids and free radicals in neuroprotection and neurodegeneration. Adv Exp Med Biol 1999;468:109–119.

    PubMed  CAS  Google Scholar 

  88. Matyszak MK, Denis-Donini S, Citterio S, Longhi R, Granucci F, Ricciardi-Castagnoli P. Microglia induce myelin basic protein-specific T cell anergy or T cell activation, according to their state of activation. Eur J Immunol 1999;29:3063–3076.

    PubMed  CAS  Google Scholar 

  89. Santambrogio L, Belyanskaya SL, Fischer FR, et al. Developmental plasticity of CNS microglia. Proc Natl Acad Sci USA 2001;98:6295–6300.

    PubMed  CAS  Google Scholar 

  90. Miller SD, Olson JK, Croxford JL. Multiple pathways to induction of virus-induced autoimmune demyelination: lessons from Theiler’s virus infection. J Autoimmun 2001;16:219–227.

    PubMed  CAS  Google Scholar 

  91. Olson JK, Girvin AM, Miller SD. Direct activation of innate and antigen-presenting functions of microglia following infection with Theiler’s virus. J Virol 2001;75:9780–9789.

    PubMed  CAS  Google Scholar 

  92. Cash E, Zhang Y, Rott O. Microglia present myelin antigens to T cells after phagocytosis of oligodendrocytes. Cell Immunol 1993;147:129–138.

    PubMed  CAS  Google Scholar 

  93. Cash E, Rott O. Microglial cells qualify as the stimulators of unprimed CD4+ and CD8+ T lymphocytes in the central nervous system. Clin Exp Immunol 1994;98:313–318.

    PubMed  CAS  Google Scholar 

  94. Tran EH, Hoekstra K, vanRooijen N, Dijkstra CD, Owens T. Immune invasion of the central nervous system parenchyma and experimental allergic encephalomyelitis, but not leukocyte extravasation from blood, are prevented in macrophage-depleted mice. J Immunol 1998;161:3767–3775.

    PubMed  CAS  Google Scholar 

  95. Bauer J, Huitinga I, Zhao W, Lassmann H, Hickey WF, Dijkstra CD. The role of macrophages, perivascular cells, and microglial cells in the pathogenesis of experimental autoimmune encephalomyelitis. Glia 1995;15:437–446.

    PubMed  CAS  Google Scholar 

  96. Myers KJ, Dougherty JP, Ron Y. In vivo antigen presentation by both brain parenchymal cells and hematopoietically derived cells during the induction of experimental autoimmune encephalomyelitis. J Immunol 1993;151:2252–2260.

    PubMed  CAS  Google Scholar 

  97. Becher B, Durell BG, Miga AV, Hickey WF, Noelle RJ. The clinical course of experimental autoimmune encephalomyelitis and inflammation is controlled by the expression of CD40 within the central nervous system. J Exp Med 2001;193:967–974.

    PubMed  CAS  Google Scholar 

  98. Becher B, Durell BG, Noelle RJ. IL-23 produced by CNS-resident cells controls T cell encephalitogenicity during the effector phase of experimental autoimmune encephalomyelitis. J Clin Invest 2003;112:1186–1191.

    PubMed  CAS  Google Scholar 

  99. Serpe CJ, Kohm AP, Huppenbauer CB, Sanders VM, Jones KJ. Exacerbation of facial motoneuron loss after facial nerve transection in severe combined immunodeficient (scid) mice. J Neurosci 1999;19:RC7.

    PubMed  CAS  Google Scholar 

  100. Stalder AK, Carson MJ, Pagenstecher A, et al. Late-onset chronic inflammatory encephalopathy in immune-competent and severe combined immune-deficient (SCID) mice with astrocyte-targeted expression of tumor necrosis factor. Am JPathol 1998;153:767–783.

    CAS  Google Scholar 

  101. Kerschensteiner M, Gallmeier E, Behrens L, et al. Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation? J Exp Med 1999;189:865–870.

    PubMed  CAS  Google Scholar 

  102. Byram SC, Carson MJ, Deboy CA, Serpe CJ, Sanders VM, Jones KJ. CD4+ T cell-mediated neuroprotection requires dual compartment antigen presentation. 2004;24:4333–4339.

    CAS  Google Scholar 

  103. Raivich G, Jones LL, Kloss CU, Werner A, Neumann H, Kreutzberg GW. Immune surveillance in the injured nervous system: T-lymphocytes invade the axotomized mouse facial motor nucleus and aggregate around sites of neuronal degeneration. J Neurosci 1998;18:5804–5816.

    PubMed  CAS  Google Scholar 

  104. Stein-Streilein J, Streilein JW. Anterior chamber associated immune deviation (ACAID): regulation, biological relevance, and implications for therapy. International Reviews of Immunology 2002;21:123–152.

    PubMed  Google Scholar 

  105. Wenkel H, Streilein JW, Young MJ. Systemic immune deviation in the brain that does not depend on the integrity of the blood-brain barrier. J Immunol 2000;164:5125–5131.

    PubMed  CAS  Google Scholar 

  106. Olson JK, Croxford JL, Calenoff MA, Dal Canto MC, Miller SD. A virus-induced molecular mimicry model of multiple sclerosis. J Clin Invest 2001;108:311–318.

    PubMed  CAS  Google Scholar 

  107. Chabot S, Yong FP, Le DM, Metz LM, Myles T, Yong VW. Cytokine production in T lymphocyte-microglia interaction is attenuated by glatiramer acetate: a mechanism for therapeutic efficacy in multiple sclerosis. Mult Scler 2002;8:299–306.

    PubMed  CAS  Google Scholar 

  108. Neumann H. Control of glial immune function by neurons. Glia 2001;36:191–199.

    PubMed  CAS  Google Scholar 

  109. Neumann H, Misgeld T, Matsumuro K, Wekerle H. Neurotrophins inhibit major histocompatibility class n inducibility of microglia: involvement of the p75 neurotrophin receptor. Proc Natl Acad Sci USA 1998;95:5779–5784.

    PubMed  CAS  Google Scholar 

  110. Delgado R, Carlin A, Airaghi L, et al. Melanocortin peptides inhibit production of proinflammatory cytokines and nitric oxide by activated microglia. J Leukoc Biol 1998;63:740–745.

    PubMed  CAS  Google Scholar 

  111. Kim WK, Kan Y, Ganea D, Hart RP, Gozes I, Jonakait GM. Vasoactive intestinal peptide and pituitary adenylyl cyclase-activating polypeptide inhibit tumor necrosis factor-alpha production in injured spinal cord and in activated microglia via a cAMP-dependent pathway. J Neurosci 2000;20:3622–3630.

    PubMed  CAS  Google Scholar 

  112. Hoek RM, Ruuls SR, Murphy CA, et al. Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 2000;290:1768–1771.

    PubMed  CAS  Google Scholar 

  113. Sawynok J, Liu XJ. Adenosine in the spinal cord and periphery: release and regulation of pain. Prog Neurobiol 2003;69:313–340.

    PubMed  CAS  Google Scholar 

  114. McCluskey LP, Lampson LA. Local immune regulation in the central nervous system by substance P vs. glutamate. J Neuroimmunol 2001;116:136–146.

    PubMed  CAS  Google Scholar 

  115. Pedersen EB, McNulty JA, Castro AJ, Fox LM, Zimmer J, Finsen B. Enriched immune-environment of blood-brain barrier deficient areas of normal adult rats. J Neuroimmunol 1997;76:117–131.

    PubMed  CAS  Google Scholar 

  116. Flaris NA, Densmore TL, Molleston MC, Hickey WF. Characterization of microglia and macrophages in the central nervous system of rats: definition of the differential expression of molecules using standard and novel monoclonal antibodies in normal CNS and in four models of parenchymal reaction. Glia 1993;7:34–40.

    PubMed  CAS  Google Scholar 

  117. Daws MR, Sullam PM, Niemi EC, Chen TT, Tchao NK, Seaman WE. Pattern recognition by TREM-2: binding of anionic ligands. J Immunol 2003;171:594–599.

    PubMed  CAS  Google Scholar 

  118. Cella M, Buonsanti C, Strader C, Kondo T, Salmaggi A, Colonna M. Impaired differentiation of osteoclasts in TREM-2-deficient individuals. J Exp Med 2003;198:645–651.

    PubMed  CAS  Google Scholar 

  119. Schmid CD, Sautkulis LN, Danielson PE, et al. Heterogeneous expression of the triggering receptor expressed on myeloid cells-2 on adult murine microglia. J Neurochem 2002;83:1309–1320.

    PubMed  CAS  Google Scholar 

  120. Flugel A, Bradl M, Kreutzberg GW, Graeber MB. Transformation of donor-derived bone marrow precursors into host microglia during autoimmune CNS inflammation and during the retrograde response to axotomy. J Neurosci Res 2001;66:74–82.

    PubMed  CAS  Google Scholar 

  121. Priller J. Robert Feulgen Prize Lecture. Grenzganger: adult bone marrow cells populate the brain. Histochem Cell Biol 2003;120:85–91.

    PubMed  CAS  Google Scholar 

  122. Laifaille JJ, Keere FV, Hsu AL, et al. Myelin basic protein-specific T helper 2 (Th2) cells cause EAE in immunodeficient hosts rather than protect them. J Exp Med 1997;186:307–312.

    Google Scholar 

  123. Rodriguez M, Miller BJ, Lennon VA. Immunoglobulin reactive with myelin promotes CNS remyelination. Neurology 1996;46:538–545.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Carson, M.J., Anglen, C.S., Ploix, C. (2005). Multiple Sclerosis. In: Minagar, A., Alexander, J.S. (eds) Inflammatory Disorders of the Nervous System. Current Clinical Neurology. Humana Press. https://doi.org/10.1385/1-59259-905-2:017

Download citation

  • DOI: https://doi.org/10.1385/1-59259-905-2:017

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-424-1

  • Online ISBN: 978-1-59259-905-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics