Skip to main content

Islet Precursor Cells in Adult Pancreatic Islets

  • Chapter
Stem Cells in Endocrinology

Part of the book series: Contemporary Endocrinology ((COE))

  • 500 Accesses

Abstract

The search for new sources of β cells is driven by the shortage of islets of Langerhans suitable for replacement therapy for type I diabetes. Recent advances in stem cell research, described in other sections of this book, have led to promising sources of insulin-producing cells (15). In addition, significant progress in the elucidation of the molecular program that guides the differentiation of islet cells during development (622) will certainly provide tools to expand the population of embryonic β-precursor cells and promote their differentiation into mature, insulin-producing cells. The adult pancreas is another potential source of β-precursor cells. The existence of islet progenitor cells in mature pancreas can be inferred from the fact that new islets are normally formed during postnatal life (23,24) and that a dramatic increase in islet number occurs in response to various stimuli (2527). The presence of “endocrine stem/progenitor cells” could not only provide a source of cells suitable for transplantation, but also could replenish the β-cell population that has been depleted by injury or disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Assady S, Maor G, Amit M, Itskovitz-Eldor J, Skorecki KL, Tzukerman M. Insulin production by human embryonic stem cells. Diabetes 2001;50:1691–1697.

    Article  PubMed  CAS  Google Scholar 

  2. Cornelius JG, Tchernev V, Kao K-J, Pech AB. In vitro-generation of islets in long term cultures of pluripotent stem cells from adult mouse pancreas. Horm Metab Res 1997; 29:271–277.

    Article  PubMed  CAS  Google Scholar 

  3. Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R. Differentiation of embryonic stem cells to insulin secreting structures similar to pancreatic islets. Science 2001;292:1389–1394.

    Article  PubMed  CAS  Google Scholar 

  4. Ramiya VK, Maraist M, Arfors KE, Schatz DA, Peck AB, Cornelius JG. Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells. Nat Med 2000;6:278–282.

    Article  PubMed  CAS  Google Scholar 

  5. Soria B, Roche E, Berna G, Leon-Quinto T, Reig JA, Martin F. Insulin secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes 2000;49:1–6.

    Article  Google Scholar 

  6. Edlund H. Pancreatic organogenesis—developmental mechanisms and implications for therapy. Nat Rev Genet 2002;3:524–532.

    Article  PubMed  CAS  Google Scholar 

  7. Gu G, Brown JR, Melton DA. Direct lineage tracing reveals the ontogeny of pancreatic cell fates during mouse embryogenesis. Mech Dev 2003;120:35–43.

    Article  PubMed  CAS  Google Scholar 

  8. Gradwohl G, Dierich A, LeMeur M, Guillemot F. Neurogenin 3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci USA 2000;97:1607–1611.

    Article  PubMed  CAS  Google Scholar 

  9. Gu G, Dubauskaite J, Melton DA. Direct evidence for the pancreatic lineage: Ngn3+ cells are islet progenitors and are distinct from duct progenitors. Development 2002;129:2447–2457.

    PubMed  CAS  Google Scholar 

  10. Grappin-Botton A, Majithia AR, Melton DA. Key events of pancreas formation are triggered in gut endoderm by ectopic expression of pancreatic regulatory genes. Genes Dev 2001;15:444–454.

    Article  Google Scholar 

  11. Hart A, Papadopoulou S, Edlund H. Fgf10 maintains notch activation, stimulates proliferation and blocks differentiation of pancreatic epithelial cells. Dev Dyn 2003;228:185–193.

    Article  PubMed  CAS  Google Scholar 

  12. Cleaver O, Melton DA. Endothelial signaling during development. Nat Med 2003;9:661–668.

    Article  PubMed  CAS  Google Scholar 

  13. Jenssen J, Heller RS, Funder-Nielsen T, et al. Independent development of pancreatic α and β cells from neurogenin-3 expressing precursors. Diabetes 2000;49:163–176.

    Article  Google Scholar 

  14. Jensen J. Gene regulatory factors in pancreatic development. Dev Dyn 2004;229:176–200.

    Article  PubMed  CAS  Google Scholar 

  15. Kawaguchi Y, Cooper B, Gannon M et al. The role of transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat Genet 2002;32:128–134.

    Article  PubMed  CAS  Google Scholar 

  16. Murtaugh LC, Melton DA. Genes, signals, and lineages in pancreas development. Annu Rev Cell Dev Biol 2003;19:71–89.

    Article  PubMed  CAS  Google Scholar 

  17. Schwittzgebel VM, Scheel DW, Conners JR, et al. Expression of neurogenin 3 reveals an islet cell precursor population in the pancreas. Development 2000;127:3533–3542.

    Google Scholar 

  18. St-Onge L, Sosa-Pineda B, Chowdhury K, Mansouri A, Gruss P. Pax 6 is required for differentiation of glucagon-producing a cells in the mouse pancreas. Nature 1997;387:406–409.

    Article  PubMed  CAS  Google Scholar 

  19. Sosa-Pineda B, Chowdhury K, Torres M, Oliver G, Gruss P. The Pax4 gene is essential for differentiation of insulin-producing β cells in the mammalian pancreas. Nature 1997;386: 99–402.

    Article  Google Scholar 

  20. Chiang MK, Melton DA. Single cell transcript analysis of pancreas development. Dev Cell 2003;4: 383–393.

    Article  PubMed  CAS  Google Scholar 

  21. Sussel L, Kalamaras J, Hartigan-O’Connor DJ, et al. Mice lacking the homeodomain transcription factor Nkx2.2 have diabetes due to arrested differentiation of pancreatic beta cells. Development 1998;125: 2213–2221.

    PubMed  CAS  Google Scholar 

  22. Wilson ME, Scheel D, German MS. Gene expression cascades in pancreatic development. Mech Dev 2003; 120:5–80.

    Article  Google Scholar 

  23. Hellestrom C, Swenne I. Growth pattern of pancreatic islet cells in animals. In: Volk BV, Arquilla ER, eds. The Diabetic, 2nd ed. New York, Plenum Medical Book Co., 1985, pp. 53–80.

    Google Scholar 

  24. Bonner-Weir S. Perspective—postnatal pancreatic β cell growth. Endocrinology. 2000;141: 1926–1929.

    Article  PubMed  CAS  Google Scholar 

  25. Lipsett M, Finegood DT. β cell neogenesis during prolonged hyperglycemia in rats. Diabetes 2002; 51:1834–1841.

    Article  PubMed  CAS  Google Scholar 

  26. Song SY, Gannon M, Washington MK, et al. Expansion of Pdx-1 expressing pancreatic epithelium and islet neogenesis in transgenic mice over-expressing transforming growth factor alpha. Gastroenterology 1999;117: 1416–1426.

    Article  PubMed  CAS  Google Scholar 

  27. Garcia-Ocana A, Takane KK, Syed MA, Philbrick WM, Vasavada RC, Stewart AF. Hepatocyte growth factor overexpression in the islet of transgenic mice increases beta cell proliferation, enhances islet mass and induces mild hyperglycemia. J Biol Chem 2000;275:1226–1232.

    Article  PubMed  CAS  Google Scholar 

  28. Pictet R, Rutter WJ. Development of the embryonic pancreas. In: Steiner DF, Frenkel N, eds. Handbook of Physiology, Section 7. Washington, DC, American Physiological Society, 1972, pp 25–66.

    Google Scholar 

  29. Bonner-Weir S, Baxter LA, Schuppin GT, Smith FE. A second pathway for regeneration of adult exocrine and endocrine pancreas: a possible recapitulation of embryonic development. Diabetes 1993;42:1715–1720.

    Article  PubMed  CAS  Google Scholar 

  30. Rooman I, Lardon J, Bowens L. Gastrin stimulates β cell neogenesis and increases islet mass from transdifferentiated but not from normal exocrine pancreas tissue. Diabetes 2002;51:686–690.

    Article  PubMed  CAS  Google Scholar 

  31. Rooman I, Hereman Y, Heimberg H, Bowens L. Modulation of rat pancreatic acinoductal transdifferentiation and expression of Pdx-1 in vitro. Diabetologia 2000;43:907–914.

    Article  PubMed  CAS  Google Scholar 

  32. Bonner-Weir S, Taneja M, Weir G, et al. In vitro cultivation of human islets from expanded ductal tissue. Proc Natl Acad Sci USA 2000;97:7999–8005.

    Article  PubMed  CAS  Google Scholar 

  33. Gao R, Ustinov J, Pulkkinen MA, Lundin K, Korsgren O, Otonkoski T. Characterization of endocrine progenitor cells and critical factors for their differentiation in human adult pancreatic cell culture. Diabetes 2003; 52: 2007–2015.

    Article  PubMed  CAS  Google Scholar 

  34. Zulewski H, Abraham EJ, Gerlach MJ, et al. Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex-vivo into pancreatic endocrine, exocrine and hepatic phenotypes. Diabetes 2001; 50:521–533.

    Article  PubMed  CAS  Google Scholar 

  35. Alpert S, Hanahan D, Teitelman G. Hybrid insulin genes reveal a developmental lineage for pancreatic endocrine cells and imply a relationship with neurons. Cell 1988;53:295–308.

    Article  PubMed  CAS  Google Scholar 

  36. Gittes GK, Rutter WJ. Onset of cell-specific gene expression in the developing mouse pancreas. Proc Natl Acad Sci USA 1992;89:1128–1132.

    Article  PubMed  CAS  Google Scholar 

  37. Herrera PL, Huarte J, Sanvito F, Meda P, Orci L, Vassalli JD. Embryogenesis of the murine endocrine pancreas; early expression of the pancreatic polypeptide gene. Development 1991;113:1257–1265.

    PubMed  CAS  Google Scholar 

  38. Golosow N, Grobstein C. Epitheliomesenchymal interaction in pancreatic morphogenesis. Dev Biol 1962; 4:242–255.

    Article  PubMed  CAS  Google Scholar 

  39. Wessels NK, Cohen JH. Early pancreas organogenesis: morphogenesis, tissue interactions, and mass effects. Dev Biol 1967;15:237–270.

    Article  Google Scholar 

  40. Upchurch B, Aponte GW, Leiter AB. Expression of peptide YY in all four islet cell types in the developing mouse pancreas suggests a common peptide YY producing progenitor. Development 1994;120:245–252.

    PubMed  CAS  Google Scholar 

  41. Gannon M, Wright CVE. Endodermal patterning and organogenesis. In: Mood S, ed. Cell Lineage and Fate Determination. New York, Academic Press, 1999, pp. 583–615.

    Google Scholar 

  42. Guz Y, Montminy MR, Stein R, et al. Expression of murine stf-1, a putative insulin gene transcription factor, in β cells of pancreas, duodenal epithelium and pancreatic exocrine and endocrine progenitors during ontogeny. Development 1995;121:11–18.

    PubMed  CAS  Google Scholar 

  43. Offield MF, Jetton TL, Labosky PA, et al. PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 1996;122:983–995.

    PubMed  CAS  Google Scholar 

  44. Naya FJ, Stellrecht CM, Tsai MJ. Tissue-specific regulation of the insulin gene by a novel basic helix-loop-helix transcription factor. Genes Dev 1995;9:1009–1019.

    Article  PubMed  CAS  Google Scholar 

  45. Naya FJ, Huang HP, Qui Y, et al. Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2-NeuroD-deficient mice. Genes Dev 1997;11: 2323–2334.

    PubMed  CAS  Google Scholar 

  46. Herrera PL. Adult insulin and glucagon-producing cells differentiate from two independent lineages. Development 2000;127:317–2322.

    Google Scholar 

  47. Pang K, Mukonoweshuro C, Wong GC. Beta cells arise from glucose transporter type 2 (Glut-2)-expressing epithelial cells of the developing rat pancreas. Proc Natl Acad Sci USA 1994;91:9559–9563.

    Article  PubMed  CAS  Google Scholar 

  48. Teitelman G, Alpert S, Polak JM, Martinez A, Hanahan D. Precursor cells of mouse endocrine pancreas coexpress insulin,glucagon,and the neuronal proteins tyrosine hydroxylase and neuropeptide Y, but not pancreatic polypeptide. Development 1993;118:1031–1039.

    PubMed  CAS  Google Scholar 

  49. Vincent M, Guz Y, Rozenberg M, et al. Abrogation of protein convertase 2 (PC-2) activity results in delayed islet cell differentiation and maturation, increase in alpha cell proliferation and islet neogenesis. Endocrinology 2003;144:4061–4069.

    Article  PubMed  CAS  Google Scholar 

  50. Fernandes A, King LC, Guz Y, Stein R, Wright CVE, Teitelman G. Differentiation of new insulin producing cells is induced by injury in adult pancreatic islets. Endocrinology 1997;138:1750–1762.

    Article  PubMed  CAS  Google Scholar 

  51. Guz Y, Nasir I, Teitelman G. Regeneration of pancreatic β cells from intra-islet precursor cells in an experimental model of diabetes. Endocrinology 2001;142:4956–4969.

    Article  PubMed  CAS  Google Scholar 

  52. Like AA, Rossini AA. Streptozotocin-induced pancreatic insulinitis: new model of diabetes mellitus. Science 1976;193:415–418.

    Article  PubMed  CAS  Google Scholar 

  53. Rodrigues B, Poucheret P, Batell ML, McNeill JH. In: McNeill JH, ed. Streptozotocininduced diabetes: induction, mechanisms(s), and dose dependency. Experimental Models of Diabetes. Boca Raton, FL, CRC Press, 1999, pp. 3–14.

    Google Scholar 

  54. Guz Y, Torres A, Teitelman G. Detrimental effect of protracted hyperglycaemia on beta-cell neogenesis in a mouse murine model of diabetes. Diabetologia 2002;45:1689–1696.

    Article  PubMed  CAS  Google Scholar 

  55. Leiter EH, Gerling IC, Flynn JC. Spontaneous insulin-dependent diabetes mellitus (IDDM) in nonobese diabetic(NOD) mice: comparison with experimentally induced IDDM. In: McNeill JH, ed. Experimental Models of Diabetes. Boca Raton, FL, CRC Press, 1999, pp. 257–294.

    Google Scholar 

  56. Reddy S, Young M, Poole CA, JM Ross. Loss of glucose transporter-2 precedes insulin loss in the non-obese diabetic and the low-dose streptozotocin mouse models: a comparative immunohistochemical study by light and confocal microscopy. Gen Comp Endocrinol 1998;111:9–19.

    Article  PubMed  CAS  Google Scholar 

  57. Sorenson RL, Brejle TC. Adaptation of islets of Langerhans to pregnancy: β cell growth, enhanced insulin secretion and the role of lactogenic hormones. Horm Metab Res 1996;29:301–307.

    Google Scholar 

  58. Nielsen JH, Galsgaard ED, Moldrup A, et al. Regulation of β cell mass by hormones and growth factors. Diabetes 2001;50(Suppl. 1):S25–S29.

    Article  PubMed  CAS  Google Scholar 

  59. Wang J, Webb G, Cao Y, Steiner DF. Contrasting patterns of expression of transcription factors in pancreatic alpha and beta cells. Proc Natl Acad Sci USA 2003;100:12660–12665.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Teitelman, G., Nasir, I. (2005). Islet Precursor Cells in Adult Pancreatic Islets. In: Lester, L.B. (eds) Stem Cells in Endocrinology. Contemporary Endocrinology. Humana Press. https://doi.org/10.1385/1-59259-900-1:115

Download citation

  • DOI: https://doi.org/10.1385/1-59259-900-1:115

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-407-4

  • Online ISBN: 978-1-59259-900-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics