Skip to main content

The mTOR Pathway and Its Inhibitors

  • Chapter

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

The mammalian target of rapamycin (mTOR) plays a central role in the regulation of cell growth and proliferation by controlling translation in response to nutrients, energy levels, and growth factors. A number of proteins both upstream and downstream in the mTOR signaling pathway have been found to be modified in multiple cancers. As a result, significant interest has been generated in developing small-molecule inhibitors directed against mTOR. Over 30 yr ago a naturally occurring macrolide antibiotic, rapamycin, was isolated that subsequently was identified as a specific inhibitor of mTOR. Rapamycin has played a critical role as a chemical probe for defining the role of mTOR and served as a template for developing compounds with improved therapeutic properties. This chapter will describe our current understanding of the cellular functions of mTOR, modifications of the mTOR pathway currently identified in various types of cancer, the status of clinical trials using rapamycin analogs targeting mTOR, and future possibilities for novel small-molecule inhibitors of mTOR.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vezina C, Kudelski A, Sehgal SN. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo) 1975; 28:721–726.

    CAS  Google Scholar 

  2. Sehgal SN, Baker H, Vezina C. Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization. J Antibiot (Tokyo) 1975; 28:727–732.

    CAS  Google Scholar 

  3. Sehgal SN. Rapamune (RAPA, rapamycin, sirolimus): mechanism of action immunosuppressive effect results from blockade of signal transduction and inhibition of cell cycle progression. Clin Biochem 1998; 31:335–340.

    PubMed  CAS  Google Scholar 

  4. Heitman J, Movva NR, Hall MN. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 1991; 253:905–909.

    PubMed  CAS  Google Scholar 

  5. Koltin Y, et al. Rapamycin sensitivity in Saccharomyces cerevisiae is mediated by a peptidyl-prolyl cis-trans isomerase related to human FK506-binding protein. Mol Cell Biol 1991; 11:1718–1723.

    PubMed  CAS  Google Scholar 

  6. Cafferkey R, McLaughlin MM, Young PR, Johnson RK, Livi GP. Yeast TOR (DRR) proteins: amino-acid sequence alignment and identification of structural motifs. Gene 1994; 141:133–136.

    PubMed  CAS  Google Scholar 

  7. Helliwell SB, Wagner P, Kunz J, Deuter-Reinhard M, Henriquez R, Hall MN. TOR1 and TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast. Mol Biol Cell 1994; 5:105–118.

    PubMed  CAS  Google Scholar 

  8. Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, Lane WS, et al. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 1994; 369:756–758.

    PubMed  CAS  Google Scholar 

  9. Kunz J, Henriquez R, Schneider U, Deuter-Reinhard M, Movva NR, Hall MN. Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression. Cell 1993; 73:585–596.

    PubMed  CAS  Google Scholar 

  10. Zheng XF, Florentino D, Chen J, Crabtree GR, Schreiber SL. TOR kinase domains are required for two distinct functions, only one of which is inhibited by rapamycin. Cell 1995; 82:121–130.

    PubMed  CAS  Google Scholar 

  11. Schmidt A, Kunz J, Hall MN. TOR2 is required for organization of the actin cytoskeleton in yeast. Proc Natl Acad Sci USA 1996; 93:13,780–13,785.

    PubMed  CAS  Google Scholar 

  12. Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH. Raft1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 1994; 78: 35–43.

    PubMed  CAS  Google Scholar 

  13. Sabers CJ, Martin MM, Brunn GJ, Williams JM, Dumont FJ, Wiederrecht G, et al. Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J Biol Chem 1995; 270:815–822.

    PubMed  CAS  Google Scholar 

  14. Chen Y, et al. A putative sirolimus (rapamycin) effector protein. Biochem Biophys Res Commun 1994;203:1–7.

    PubMed  CAS  Google Scholar 

  15. Abraham RT. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev 2001; 15: 2177–2196.

    PubMed  CAS  Google Scholar 

  16. Andrade MA, Bork P. HEAT repeats in the Huntington’s disease protein. Nat Genet 1995; 11:115–116.

    PubMed  CAS  Google Scholar 

  17. Bosotti R, Isacchi A, Sonnhammer EL. FAT: a novel domain in PIK-related kinases. Trends Biochem Sci 2000; 25:225–227.

    PubMed  CAS  Google Scholar 

  18. Chen J, Zheng XF, Brown EJ, Schreiber SL. Identification of an 11-kDa FKBP12-rapamycin-binding domain within the 289-kDa FKBP12-rapamycin-associated protein and characterization of a critical serine residue. Proc Natl Acad Sci USA 1995; 92:4947–4951.

    PubMed  CAS  Google Scholar 

  19. Choi J, Chen J, Schreiber SL, Clardy J. Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP. Science 1996; 273:239–242.

    PubMed  CAS  Google Scholar 

  20. Scott PH, Brunn GJ, Kohn AD, Roth RA, Lawrence JC. Evidence of insulin-stimulated phosphorylation and activation of the mammalian target of rapamycin mediated by a protein kinase B signaling pathway. Proc Natl Acad Sci USA 1998; 95:7772–7777.

    PubMed  CAS  Google Scholar 

  21. Nave B, Ouwens M, Withers DJ, Alessi DR, Shepherd PR. Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino acid deficiency on protein translation. Biochem J 1999; 344:427–431.

    PubMed  CAS  Google Scholar 

  22. Sekulic A, Hudson CC, Homme JL, Yin P, Otterness DM, Karnitz LM, et al. A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin (mTOR) in mitogen-stimulated and transformed cells. Cancer Res 2000; 60:3504–3513.

    PubMed  CAS  Google Scholar 

  23. Thomas G, Sabatini DM, Hall MN. Tor (target of rapamycin). In: Thomas G, Sabatini DM, Hall MN, eds. Current Topics in Microbiology and Immunology, Vol. 279. Berlin: Springer-Verlag, 2004.

    Google Scholar 

  24. Huang S, Bjornsti MA, Houghton PJ. Rapamycins: mechanisms of action and cellular resistance. Cancer Biol Ther 2003; 2:222–232.

    PubMed  CAS  Google Scholar 

  25. Chung J, Grammer TC, Lemon KP, Kazlauskas A, Blenis J. PDGF-and insulin-dependent pp70S6k activation mediated by phosphatidylinositol-3-OH kinase. Nature 1994; 370:71–75.

    PubMed  CAS  Google Scholar 

  26. Ullrich A, Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell 1990; 61: 203–212.

    PubMed  CAS  Google Scholar 

  27. Ueki K, Algenstaedt P, Mauvais-Jarvis F, Kahn CR. Positive and negative regulation of phosphoinositide 3-kinase-dependent signaling pathways by three different gene products of the p85 regulatory subunit. Mol Cell Biol 2000; 20:8035–8046.

    PubMed  CAS  Google Scholar 

  28. Whitman M, Downes CP, Keeler M, Keller T, Cantley L. Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature 1988; 332:644–646.

    PubMed  CAS  Google Scholar 

  29. Chan T, Rittenhouse S, Tsichlis P. AKT/PKB and other D3 phosphoinostide regulated kinases: kinase acitivation by phosphoimositide-dependent phosporylation. Annu Rev Biochem 1998; 68:965–1014.

    Google Scholar 

  30. Jacinto E, Hall MN. Tor signalling in bugs, brain and brawn. Nat Rev Mol Cell Biol 2003; 4:117–126.

    PubMed  CAS  Google Scholar 

  31. Inoki K, Li Y, Zhu T, Wu J, Guan KL. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 2002; 4:648–657.

    PubMed  CAS  Google Scholar 

  32. Potter CJ, Pedraza LG, Xu T. Akt regulates growth by directly phosphorylating Tsc2. Nat Cell Biol 2002;4:658–665.

    PubMed  CAS  Google Scholar 

  33. Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phoshpoinositide-3-kinase/akt pathway. Mol Cell 2002; 10:151–162.

    PubMed  CAS  Google Scholar 

  34. Tee AR, et al. Tuberous sclerosis complex-1 and-2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proc Natl Acad Sci USA 2002; 99: 13,571–13,576.

    PubMed  CAS  Google Scholar 

  35. Zhang Y, et al. Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat Cell Biol 2003; 5:578–581.

    PubMed  CAS  Google Scholar 

  36. Saucedo LJ, et al. Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nat Cell Biol 2003; 5:566–571.

    PubMed  CAS  Google Scholar 

  37. Stocker H, et al. Rheb is an essential regulator of S6K in controlling cell growth in Drosophila. Nat Cell Biol 2003; 5:559–565.

    PubMed  CAS  Google Scholar 

  38. Inoki K, Li Y, Xu T, Guan KL. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 2003; 15:1829–1834.

    Google Scholar 

  39. Kim DH, Sarbassov dos D, Ali SM, Latek RR, Guntur KV, Erdjument-Bromage H, et al. GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell 2003; 4:895–904.

    Google Scholar 

  40. Brunn SJ, Hudson CC, Sekulic A, Williams JM, Hosoi H, Houghton PJ, et al. Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science 1997; 277:99–101.

    PubMed  CAS  Google Scholar 

  41. Burnett PE, Barrow RK, Cohen NA, Snyder SH, Sabatini DM. RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc Natl Acad Sci USA 1998; 95:1432–1437.

    PubMed  CAS  Google Scholar 

  42. Schalm SS, Blenis J. Identification of a conserved motif required for mTOR signaling. Curr Biol 2002;12:632–639.

    PubMed  CAS  Google Scholar 

  43. Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S, et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 2002; 110:177–189.

    PubMed  CAS  Google Scholar 

  44. Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002;110:163–175.

    PubMed  CAS  Google Scholar 

  45. Schalm SS, Fingar DC, Sabatini DM, Blenis J. TOS motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function. Curr Biol 2003; 13:797–806.

    PubMed  CAS  Google Scholar 

  46. Nojima H, Tokunaga C, Eguchi S, Oshiro N, Hidayat S, Yoshino K, et al. The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif. J Biol Chem 2003; 278:15,461–15,464.

    PubMed  CAS  Google Scholar 

  47. Mader S, Lee H, Pause A, Sonenberg N. The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4G and the translational repressor 4E-binding proteins. Mol Cell Biol 1995; 15:4990–4997.

    PubMed  CAS  Google Scholar 

  48. Pause A, Belsham GJ, Gingras AC, Donze O, Lin TA, Lawrence JC, et al. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′-cap function. Nature 1994; 371:762–767.

    PubMed  CAS  Google Scholar 

  49. Rosenwald IB, Kaspar R, Rousseau D, Gehrke L, Leboulch P, Chen JJ, et al. Eukaryotic translation initiation factor 4E regulates expression of cyclin D1 at transcriptional and post-transcriptional levels. J Biol Chem 1995; 270:21,176–21,180.

    PubMed  CAS  Google Scholar 

  50. Hashemolhosseini S, Nagamine Y, Morley SJ, Desrivieres S, Mercep L, Ferrari S. Rapamycin inhibition of the G1 to S transition is mediated by effects on cyclin D1 mRNA and protein stability. J Biol Chem 1998; 273:14,424–14,429.

    PubMed  CAS  Google Scholar 

  51. Shantz LM, Pegg AE. Overproduction of ornithine decarboxylase caused by relief of translational repression is associated with neoplastic transformation. Cancer Res 1994; 54:2313–2316.

    PubMed  CAS  Google Scholar 

  52. DeBenedetti A, Joshi B, Graff JR, Zimmer SG. CHO cells transformed by the translation factor eIF4E display increased c-myc expression but require overexpression of Max for tumorigenicity. Mol Cell Differ 1994; 2:347–371.

    CAS  Google Scholar 

  53. Zhong H, Chiles K, Feldser D, Laughner E, Hanrahan C, Georgescu MM, et al. Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res 2000; 60:1541–1545.

    PubMed  CAS  Google Scholar 

  54. Mayerhofer M, Valent P, Sperr WR, Griffin JD, Sillaber C. BCR/ABL induces expression of vascular endothelial growth factor and its transcriptional activator, hypoxia inducible factor-1alpha, through a pathway involving phosphoinositide 3-kinase and the mammalian target of rapamycin. Blood 2002; 100:3767–3775.

    PubMed  CAS  Google Scholar 

  55. Jefferies HB, Reinhard C, Kozma SC, Thomas G. Rapamycin selectively represses translation of the “polypyrimidine tract” mRNA family. Proc Natl Acad Sci USA 1994; 91:4441–4445.

    PubMed  CAS  Google Scholar 

  56. Terada N, et al. Rapamycin selectively inhibits translation of mRNAs encoding elongation factors and ribosomal proteins. Proc Natl Acad Sci USA 1994; 91:11,477–11,481.

    PubMed  CAS  Google Scholar 

  57. Jefferies HB, et al. Rapamycin suppresses 5′TOP mRNA translation through inhibition of p70s6k. EMBO J 1997; 16:3693–3704.

    PubMed  CAS  Google Scholar 

  58. Gingras AC, Raught B, Sonenberg N. mTOR signaling to translation. Curr Topics Microbiol Immunol 2004; 279:169–197.

    CAS  Google Scholar 

  59. Tang H, et al. Amino acid-induced translation of TOP mRNAs is fully dependent on phosphatidylinositol 3-kinase-mediated signaling, is partially inhibited by rapamycin, and is independent of S6K1 and rpS6 phosphorylation. Mol Cell Biol 2001; 21:8671–8683.

    PubMed  CAS  Google Scholar 

  60. Wang X, et al. Regulation of elongation factor 2 kinase by p90(RSK1) and p70 S6 kinase. EMBO J 2001; 20:4370–4379.

    PubMed  CAS  Google Scholar 

  61. Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003; 115:577–590.

    PubMed  CAS  Google Scholar 

  62. Zhang H, Stallock JP, Ng JC, Reinhard C, Neufeld TP. Regulation of cellular growth by the Drosophila target of rapamycin dTOR. Genes Dev 2000; 14:2712–2724.

    PubMed  CAS  Google Scholar 

  63. Oldham S, Montagne J, Radimerski T, Thomas G, Hafen E. Genetic and biochemical characterization of dTOR, the Drosophila homolog of the target of rapamycin. Genes Dev 2000; 14:2689–2694.

    PubMed  CAS  Google Scholar 

  64. Tee AR, Manning BD, Roux PP, Cantley LC, Blenis J. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol 2003; 13:1259–1268.

    PubMed  CAS  Google Scholar 

  65. Gao X, et al. Tsc tumour suppressor proteins antagonize amino-acid-TOR signalling. Nat Cell Biol 2002;4:699–704.

    PubMed  CAS  Google Scholar 

  66. Stocker H, et al. Rheb is an essential regulator of S6K in controlling cell growth in Drosophila. Nat Cell Biol 2003; 5:559–565.

    PubMed  CAS  Google Scholar 

  67. Montagne J, et al. Drosophila S6 kinase: a regulator of cell size. Science 1999; 285:2126–2129.

    PubMed  CAS  Google Scholar 

  68. Hentges KE, et al. FRAP/mTOR is required for proliferation and patterning during embryonic development in the mouse. Proc Natl Acad Sci USA 2001; 98:13,796–13,801.

    PubMed  CAS  Google Scholar 

  69. Hentges K, Thompson K, Peterson A. The flat-top gene is required for the expansion and regionalization of the telencephalic primordium. Development 1999; 126:1601–1609.

    PubMed  CAS  Google Scholar 

  70. Shima H, et al. Disruption of the p70(s6k)/p85(s6k) gene reveals a small mouse phenotype and a new functional S6 kinase. EMBO J 1998; 17:6649–6659.

    PubMed  CAS  Google Scholar 

  71. Fingar DC, Richardson CJ, Tee AR, Cheatham L, Tsou C, Blenis J. mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E. Mol Cell Biol 2004; 24:200–216.

    PubMed  CAS  Google Scholar 

  72. Dilling MB, et al. 4E-binding proteins, the suppressors of eukaryotic initiation factor 4E, are down-regulated in cells with acquired or intrinsic resistance to rapamycin. J Biol Chem 2002; 277:13,907–13,917.

    PubMed  CAS  Google Scholar 

  73. Law BK, et al. Rapamycin potentiates transforming growth factor beta-induced growth arrest in nontransformed, oncogene-transformed, and human cancer cells. Mol Cell Biol 2002; 22:8184–8198.

    PubMed  CAS  Google Scholar 

  74. Nourse J, et al. Interleukin-2-mediated elimination of the p27Kip1 cyclin-dependent kinase inhibitor prevented by rapamycin. Nature 1994; 372:570–573.

    PubMed  CAS  Google Scholar 

  75. Barata JT, Cardoso AA, Nadler LM, Boussiotis VA. Interleukin-7 promotes survival and cell cycle progression of T-cell acute lymphoblastic leukemia cells by down-regulating the cyclin-dependent kinase inhibitor p27(kip1). Blood 2001; 98:1524–1531.

    PubMed  CAS  Google Scholar 

  76. Jiang H, Coleman J, Miskimins R, Miskimins WK. Expression of constitutively active 4EBP-1 enhances p27Kip1 expression and inhibits proliferation of MCF7 breast cancer cells. Cancer Cell Int 2003; 3:2.

    PubMed  Google Scholar 

  77. Huang S, et al. p53/p21(CIP1) cooperate in enforcing rapamycin-induced G(1) arrest and determine the cellular response to rapamycin. Cancer Res 2001; 61:3373–3381.

    PubMed  CAS  Google Scholar 

  78. Lieberthal W, et al. Rapamycin impairs recovery from acute renal failure: role of cell-cycle arrest and apoptosis of tubular cells. Am J Physiol Renal Physiol 2001; 281:693–706.

    Google Scholar 

  79. Thimmaiah KN, et al. Insulin-like growth factor I-mediated protection from rapamycin-induced apoptosis is independent of Ras-Erk1-Erk2 and phosphatidylinositol 3′-kinase-Akt signaling pathways. Cancer Res 2003; 63:364–374.

    PubMed  CAS  Google Scholar 

  80. Woltman AM, et al. Rapamycin specifically interferes with GM-CSF signaling in human dendritic cells, leading to apoptosis via increased p27KIP1 expression. Blood 2003; 101:1439–1445.

    PubMed  CAS  Google Scholar 

  81. Kenerson HL, Aicher LD, True LD, Yeung RS. Activated mammalian target of rapamycin pathway in the pathogenesis of tuberous sclerosis complex renal tumors. Cancer Res 2002; 62:5645–5650.

    PubMed  CAS  Google Scholar 

  82. Huang S, et al. Sustained activation of the JNK cascade and rapamycin-induced apoptosis are suppressed by p53/p21(Cip1). Mol Cell 2003; 11:1491–1501.

    PubMed  CAS  Google Scholar 

  83. Neshat MS, et al. Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc Natl Acad Sci USA 2001; 98:10,314–10,319.

    PubMed  CAS  Google Scholar 

  84. Podsypanina K, et al. An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten+/™ mice. Proc Natl Acad Sci USA 2001; 98:10,320–10,325.

    PubMed  CAS  Google Scholar 

  85. Shi Y, et al. Enhanced sensitivity of multiple myeloma cells containing PTEN mutations to CCI-779. Cancer Res 2002; 62:5027–5034.

    PubMed  CAS  Google Scholar 

  86. Treins C, Giorgetti-Peraldi S, Murdaca J, Semenza GL, Van Obberghen E. Insulin stimulates hypoxia-inducible factor 1 through a phosphatidylinositol 3-kinase/target of rapamycin-dependent signaling pathway. J Biol Chem 2002; 277:27,975–27,981.

    PubMed  CAS  Google Scholar 

  87. Zhong H, et al. Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res 2000; 60:1541–1545.

    PubMed  CAS  Google Scholar 

  88. Zundel W, et al. Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev 2000; 14:391–396.

    PubMed  CAS  Google Scholar 

  89. Jiang BH, et al. Phosphatidylinositol 3-kinase signaling controls levels of hypoxia-inducible factor 1. Cell Growth Differ 2001; 12:363–369.

    PubMed  CAS  Google Scholar 

  90. Laughner E, Taghavi P, Chiles K, Mahon PC, Semenza GL. HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol Cell Biol 2001; 21:3995–4004.

    PubMed  CAS  Google Scholar 

  91. Mayerhofer M, Valent P, Sperr WR, Griffin JD, Sillaber C. BCR/ABL induces expression of vascular endothelial growth factor and its transcriptional activator, hypoxia inducible factor-1alpha, through a pathway involving phosphoinositide 3-kinase and the mammalian target of rapamycin. Blood 2002;100:3767–3775.

    PubMed  CAS  Google Scholar 

  92. Brugarolas JB, Vazquez F, Reddy A, Sellers WR, Kaelin WG. TSC2 regulates VEGF through mTOR-dependent and-independent pathways. Cancer Cell 2003; 4:147–158.

    PubMed  CAS  Google Scholar 

  93. Guba M, et al. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med 2002; 8:128–135.

    PubMed  CAS  Google Scholar 

  94. Arsham AM, Howell JJ, Simon MC. A novel hypoxia-inducible factor-independent hypoxic response regulating mammalian target of rapamycin and its targets. J Biol Chem 2003; 278:29,655–29,660.

    PubMed  CAS  Google Scholar 

  95. Li J, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human, brain, breast, and prostate cancer. Science 1997; 275:1943–1947.

    PubMed  CAS  Google Scholar 

  96. Steck PA, et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 1997; 15:356–362.

    PubMed  CAS  Google Scholar 

  97. Risinger JI, Hayes AK, Berchuck A, Barrett JC. PTEN/MMAC1 mutations in endometrial cancers. Cancer Res 1997; 57:4736–4738.

    PubMed  CAS  Google Scholar 

  98. Haydon MS, Googe JD, Sorrells DS, Ghali GE, Li BD. Progression of eIF4e gene amplification and overexpression in benign and malignant tumors of the head and neck. Cancer 2000; 88:2803–2810.

    PubMed  CAS  Google Scholar 

  99. Sorrells DL, Meschonat C, Black D, Li BD. Pattern of amplification and overexpression of the eukaryotic initiation factor 4E gene in solid tumor. J Surg Res 1999; 85:37–42.

    PubMed  CAS  Google Scholar 

  100. Wang S, et al. Expression of eukaryotic translation initiation factors 4E and 2alpha correlates with the progression of thyroid carcinoma. Thyroid 2001; 11:1101–1107.

    PubMed  CAS  Google Scholar 

  101. Berkel HJ, Turbat-Herrera EA, Shi R, de Benedetti A. Expression of the translation initiation factor eIF4E in the polyp-cancer sequence in the colon. Cancer Epidemiol Biomarkers Prev 2001; 10:663–666.

    PubMed  CAS  Google Scholar 

  102. Rosenwald IB, et al. Upregulation of protein synthesis initiation factor eIF-4E is an early event during colon carcinogenesis. Oncogene 1999; 18:2507–2517.

    PubMed  CAS  Google Scholar 

  103. Li BD, et al. Prospective study of eukaryotic initiation factor 4E protein elevation and breast cancer outcome. Ann Surg 2002; 235:732–738.

    PubMed  Google Scholar 

  104. Crew JP, et al. Eukaryotic initiation factor-4E in superficial and muscle invasive bladder cancer and its correlation with vascular endothelial growth factor expression and tumour progression. Br J Cancer 2000; 82:161–166.

    PubMed  CAS  Google Scholar 

  105. Scott PA, et al. Differential expression of vascular endothelial growth factor mRNA vs protein isoform expression in human breast cancer and relationship to eIF-4E. Br J Cancer 1998; 77:2120–2128.

    PubMed  CAS  Google Scholar 

  106. Martin ME, et al. 4E binding protein 1 expression is inversely correlated to the progression of gastrointestinal cancers. Int J Biochem Cell Biol 2000; 32:633–642.

    PubMed  CAS  Google Scholar 

  107. Douros J, Suffness M. New antitumor substances of natural origin. Cancer Treat Rev 1981; 8:63–87.

    PubMed  CAS  Google Scholar 

  108. Houchens DP, Ovejera AA, Riblet SM, Slagel DE. Human brain tumor xenografts in nude mice as a chemotherapy model. Eur J Cancer Clin Oncol 1983; 19:799–805.

    PubMed  CAS  Google Scholar 

  109. Eng CP, Sehgal SN, Vezina C. Activity of rapamycin (AY-22,989) against transplanted tumors. J Antibiot (Tokyo) 1984; 37:1231–1237.

    CAS  Google Scholar 

  110. Dilling MB, Dias P, Shapiro DN, Germain GS, Johnson RK, Houghton PJ. Rapamycin selectively inhibits the growth of childhood rhabdomyosarcoma cells through inhibition of signaling via the type I insulin-like growth factor receptor. Cancer Res 1994; 54:903–907.

    PubMed  CAS  Google Scholar 

  111. Shi Y, Frankel A, Radvanyi LG, Penn LZ, Miller RG, Mills GB. Rapamycin enhances apoptosis and increases sensitivity to cisplatin in vitro. Cancer Res 1995; 55:1982–1988.

    PubMed  CAS  Google Scholar 

  112. Seufferlein T, Rozengurt E. Rapamycin inhibits constitutive p70s6k phosphorylation, cell proliferation, and colony formation in small cell lung cancer cells. Cancer Res 1996; 56:3895–3897.

    PubMed  CAS  Google Scholar 

  113. Hosoi H, Dilling MB, Liu LN, Danks MK, Shikata T, Sekulic A, et al. Studies on the mechanism of resistance to rapamycin in human cancer cells. Mol Pharmacol 1998; 54:815–824.

    PubMed  CAS  Google Scholar 

  114. Hosoi H, Dilling MB, Shikata T, Liu LN, Shu L, Ashmun RA, et al. Rapamycin causes poorly reversible inhibition of mTOR and induces p53-independent apoptosis in human rhabdomyosarcoma cells. Cancer Res 1999; 59:886–894.

    PubMed  CAS  Google Scholar 

  115. Geoerger B, Kerr K, Tang CB, Fung KM, Powell B, Sutton LN, et al. Antitumor activity of the rapamycin analog CCI-779 in human primitive neuroectodermal tumor/medulloblastoma models as single agent and in combination chemotherapy. Cancer Res 2001; 61:1527–1532.

    PubMed  CAS  Google Scholar 

  116. Ogawa T, Tokuda M, Tomizawa K, Matsui H, Itano T, Konishi R, et al. Osteoblastic differentiation is enhanced by rapamycin in rat osteoblast-like osteosarcoma (ROS 17/2.8) cells. Biochem Biophys Res Commun 1998; 249:226–230.

    PubMed  CAS  Google Scholar 

  117. Grewe M, Gansauge F, Schmid RM, Adler G, Seufferlein T. Regulation of cell growth and cyclin D1 expression by the constitutively active FRAP-S6K1 pathway in human pancreatic cancer cells. Cancer Res 1999; 59:3581–3587.

    PubMed  CAS  Google Scholar 

  118. Shah SA, Potter MW, Ricciardi R, Perugini RA, Callery MP. Frap-S6K1 signaling is required for pancreatic cancer cell proliferation. J Surg Res 2001; 97:123–130.

    PubMed  CAS  Google Scholar 

  119. Gibbons JJ, Discafani C, Peterson R, Hernandez R, Skotnicki J, Frost P. The effect of CCI-779, a novel macrolide anti-tumor agent, on the growth of human tumor cells in vitro and in nude mouse xenografts in vivo. Proc Am Assoc Cancer Res 1999; 40:301.

    Google Scholar 

  120. Yu K, Zhang W, Lucas J, Toral-Barza L, Peterson R, Skotnicki J, et al. Deregulated PI3K/AKT/TOR pathway in PTEN-deficient tumor cells correlates with an increased growth inhibition sensitivity to a TOR kinase inhibitor CCI-779. Proc Am Assoc Cancer Res 2001; 42:802.

    Google Scholar 

  121. Yu K, Toral-Barza L, Discafani C, Zhang WG, Skotnicki J, Frost P, et al. mTOR, a novel target in breast cancer: the effect of CCI-779, an mTOR inhibitor, in preclinical models of breast cancer. Endocr Relat Cancer 2001; 8:249–258.

    PubMed  Google Scholar 

  122. Hultsch T, Martin R, Hohman RJ. The effect of the immunophilin ligands rapamycin and FK506 on proliferation of mast cells and other hematopoietic cell lines. Mol Biol Cell 1992; 3:981–987.

    PubMed  CAS  Google Scholar 

  123. Gottschalk AR, Boise LH, Thompson CB, Quintans J. Identification of immunosuppressant-induced apoptosis in a murine B-cell line and its prevention by bcl-x but not bcl-2. Proc Natl Acad Sci USA 1994;91:7350–7354.

    PubMed  CAS  Google Scholar 

  124. Muthukkumar S, Ramesh TM, Bondada S. Rapamycin, a potent immunosuppressive drug, causes programmed cell death in B lymphoma cells. Transplantation 1995; 60:264–270.

    PubMed  CAS  Google Scholar 

  125. Mateo-Lozano S, Tirado OM, Notario V. Rapamycin induces the fusion-type independent downregulation of the EWS/FLI-1 proteins and inhibits Ewing’s sarcoma cell proliferation. Oncogene 2003; 22:9282–9287.

    PubMed  CAS  Google Scholar 

  126. Dancey JE. Clinical development of mammalian target of rapamycin inhibitors. Hematol Oncol Clin North Am 2002; 16:1101–1114.

    PubMed  Google Scholar 

  127. Atkin MB, et al. A randomized double-blind phase 2 study of intraveneous CCI-779 administered weekly to patients with advanced renal cell carcinoma. Proc Am Soc Clin Oncol 2002; 21:36A

    Google Scholar 

  128. Atkins MB, et al. Randomized phase II study of multiple dose levels of CCI-779, a novel mTOR kinase inhibitor, in patients with advanced refractory renal cell carcinoma. Clin Cancer Res 2004; J Clin Oncol 22:909–918.

    Google Scholar 

  129. Boulay A, et al. Antitumor efficacy of intermittent treatment schedules with the rapamycin derivative RAD001 correlates with prolonged inactivation of ribosomal protein S6 kinase 1 in peripheral blood mononuclear cells. Cancer Res 2004; 64:252–261.

    PubMed  CAS  Google Scholar 

  130. O’Donnell A, et al. A phase I study of the oral mTOR inhibitor RAD001 as monotherapy to identify the optimal biologically effective dose using toxicity, pharmacokinetic (PK) and pharmacodynamic (PD) endpoints in patients with solid tumours. Proc Am Soc Clin Oncol 2003; 22:200.

    Google Scholar 

  131. Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN, et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 2001; 293:876–880.

    PubMed  CAS  Google Scholar 

  132. Sawyers CL. Finding the next Gleevec: FLT3 targeted kinase inhibitor therapy for acute myeloid leukemia. Cancer Cell 2002; 5:413–415.

    Google Scholar 

  133. Verweij J, et al. Imatinib mesylate (STI-571 Glivec, Gleevec) is an active agent for gastrointestinal stromal tumours, but does not yield responses in other soft-tissue sarcomas that are unselected for a molecular target. Results from an EORTC Soft Tissue and Bone Sarcoma Group phase II study. Eur J Cancer 2003; 39:2006–2011.

    PubMed  CAS  Google Scholar 

  134. Schittenhelm M, Aichele O, Krober SM, Brummendorf T, Kanz L, Denzlinger C. Complete remission of third recurrence of acute myeloid leukemia after treatment with imatinib (STI-571). Leuk Lymphoma 2003; 44:1251–1253.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Easton, J.B., Houghton, P.J. (2005). The mTOR Pathway and Its Inhibitors. In: LaRochelle, W.J., Shimkets, R.A. (eds) The Oncogenomics Handbook. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1385/1-59259-893-5:553

Download citation

  • DOI: https://doi.org/10.1385/1-59259-893-5:553

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-425-8

  • Online ISBN: 978-1-59259-893-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics